Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry

Ugo Boscain 1, 2 Robert Neel 3 Luca Rizzi 4
1 GECO - Geometric Control Design
Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : On a sub-Riemannian manifold we define two type of Laplacians. The macroscopic Laplacian ∆ω, as the divergence of the horizontal gradient, once a volume ω is fixed, and the microscopic Laplacian, as the operator associated with a geodesic random walk. We consider a general class of random walks, where all sub-Riemannian geodesics are taken in account. This operator depends only on the choice of a complement c to the sub-Riemannian distribution, and is denoted L c. We address the problem of equivalence of the two operators. This problem is interesting since, on equiregular sub-Riemannian manifolds, there is always an intrinsic volume (e.g. Popp's one P) but not a canonical choice of complement. The result depends heavily on the type of structure under investigation: • On contact structures, for every volume ω, there exists a unique complement c such that ∆ω = L c. • On Carnot groups, if H is the Haar volume, then there always exists a complement c such that ∆H = L c. However this complement is not unique in general. • For quasi-contact structures, in general, ∆P = L c for any choice of c. In particular, L c is not symmetric w.r.t. Popp's measure. This is surprising especially in dimension 4 where, in a suitable sense, ∆P is the unique intrinsic macroscopic Laplacian. A crucial notion that we introduce here is the N-intrinsic volume, i.e. a volume that depends only on the set of parameters of the nilpotent approximation. When the nilpotent approximation does not depend on the point, a N-intrinsic volume is unique up to a scaling by a constant and the corresponding N-intrinsic sub-Laplacian is unique. This is what happens for dimension smaller or equal than 4, and in particular in the 4-dimensional quasi-contact structure mentioned above.
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01122735
Contributeur : Luca Rizzi <>
Soumis le : mercredi 4 novembre 2015 - 15:13:09
Dernière modification le : mardi 7 novembre 2017 - 01:01:38
Document(s) archivé(s) le : vendredi 5 février 2016 - 11:13:59

Fichier

1503.00725v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Ugo Boscain, Robert Neel, Luca Rizzi. Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry. Advances in Mathematics, Elsevier, 2017, 〈10.1016/j.aim.2017.04.024〉. 〈hal-01122735v2〉

Partager

Métriques

Consultations de la notice

362

Téléchargements de fichiers

96