
HAL Id: hal-01122471
https://hal.science/hal-01122471

Submitted on 4 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-Grained Multithreading for the Multifrontal QR
Factorization of Sparse Matrices

Alfredo Buttari

To cite this version:
Alfredo Buttari. Fine-Grained Multithreading for the Multifrontal QR Factorization of Sparse Matri-
ces. SIAM Journal on Scientific Computing, 2013, vol. 35 (n° 4), pp. 323-345. �10.1137/110846427�.
�hal-01122471�

https://hal.science/hal-01122471
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12707

To link to this article : DOI :10.1137/110846427
URL : http://dx.doi.org/10.1137/110846427

To cite this version : Buttari, Alfredo Fine-Grained Multithreading
for the Multifrontal QR Factorization of Sparse Matrices. (2013)
SIAM Journal on Scientific Computing, vol. 35 (n° 4). pp. 323-345.
ISSN 1064-8275

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12707/
http://oatao.univ-toulouse.fr/12707/
http://dx.doi.org/10.1137/110846427
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Fine-grained multithreading for the multifrontal

QR factorization of sparse matrices∗

ALFREDO BUTTARI †

March 3, 2015

Abstract

The advent of multicore processors represents a disruptive event in

the history of computer science as conventional parallel programming

paradigms are proving incapable of fully exploiting their potential for

concurrent computations. The need for different or new programming

models clearly arises from recent studies which identify fine-granularity

and dynamic execution as the keys to achieve high efficiency on multicore

systems. This work presents an approach to the parallelization of the

multifrontal method for the QR factorization of sparse matrices specif-

ically designed for multicore based systems. High efficiency is achieved

through a fine-grained partitioning of data and a dynamic scheduling of

computational tasks relying on a dataflow parallel programming model.

Experimental results show that an implementation of the proposed ap-

proach achieves higher performance and better scalability than existing

equivalent software.

1 Introduction

The QR factorization is the method of choice for the solution of least-squares
problems arising from a vast field of applications including, for example, geodesy,
photogrammetry and tomography [27, 3].

The cost of theQR factorization of a sparse matrix, as well as other factoriza-
tions such as Cholesky or LU, is strongly dependent on the fill-in generated, i.e.,
the number of nonzero coefficients introduced by the factorization. Although
the QR factorization of a dense matrix can attain very high efficiency because
of the use of Householder transformations (see Schreiber and Van Loan [29]),
early methods for the QR factorization of sparse matrices were based on Givens
rotations with the objective of reducing the fill-in. One such method was pro-
posed by Heath and George [15], where the fill-in is minimized by using Givens

∗This paper is a significantly revised and extended version of the one appearing in the
PARA 2010 conference proceedings [5].

†CNRS-IRIT, ENSEEIHT, 2 rue Charles Camichel, 31071 Toulouse, France

1

rotations with a row-sequential access of the input matrix. In order to exploit
the sparsity of the matrix, such methods suffered a considerable lack of effi-
ciency due to the poor utilization of the memory subsystem imposed by the
data structures that are commonly employed to represent sparse matrices.

The multifrontal method, first developed for the factorization of sparse,
indefinite, symmetric matrices [13] and then extended to the QR factoriza-
tion [21, 14], quickly gained popularity over these approaches thanks to its
capacity to achieve high performance on memory-hierarchy computers. In the
multifrontal method, the factorization of a sparse matrix is cast in terms of
operations on relatively smaller dense matrices (commonly referred to as frontal
matrices or, simply, fronts) which better exploits the memory subsystems and
the possibility of using Householder reflectors instead of Givens rotations while
keeping the amount of fill-in under control. Moreover, the multifrontal method
lends itself very naturally to parallelization because dependencies between com-
putational tasks are captured by a tree-structured graph which can be used to
identify independent operations that can be performed in parallel.

Several parallel implementations of the QR multifrontal method have been
proposed for shared-memory computers [24, 2, 8]; all of them are based on
the same approach to parallelization which suffers scalability limits on modern,
multicore systems (see Section 3).

This work describes a new parallelization strategy for the multifrontal QR

factorization that is capable of achieving very high efficiency and speedup on
modern multicore computers. The proposed method leverages a fine-grained
partitioning of computational tasks and a dataflow execution model [30] which
delivers a high degree of concurrency while keeping the number of thread syn-
chronizations limited.

2 The Multifrontal QR Factorization

The multifrontal method was first introduced by Duff and Reid [13] as a method
for the factorization of sparse, symmetric linear systems and, since then, has
been the object of numerous studies and the method of choice for several, high-
performance, software packages such as MUMPS [1] and UMFPACK [7]. At
the heart of this method is the concept of an elimination tree, introduced by
Schreiber [28] and extensively studied and formalized later by Liu [23]. This tree
graph describes the dependencies among computational tasks in the multifrontal
factorization. The multifrontal method can be adapted to the QR factorization
of a sparse matrix thanks to the fact that the R factor of a matrix A and the
Cholesky factor of the normal equation matrix ATA share the same structure
under the hypothesis that the matrix A is Strong Hall (for a definition of this
property see, for example, Bjork’s book [3, page 234]). Based on this equiva-
lence, the elimination tree for the QR factorization of A is the same as that for
the Cholesky factorization of ATA. In the case where the Strong Hall property
does not hold, the elimination tree related to the Cholesky factorization of ATA

can still be used although the resulting QR factorization will perform more com-

2

putations and consume more memory than what is really needed; alternatively,
the matrix A can be permuted to a Block Triangular Form (BTF) where all the
diagonal blocks are Strong Hall.

In a basic multifrontal method, the elimination tree has n nodes, where n

is the number of columns in the input matrix A, each node representing one
pivotal step of the QR factorization of A. Every node of the tree is associated
with a dense frontal matrix that contains all the coefficients affected by the
elimination of the corresponding pivot. The whole QR factorization consists in
a topological order (i.e., bottom-up) traversal of the tree where, at each node,
two operations are performed:

• assembly: a set of rows from the original matrix is assembled together
with data produced by the processing of child nodes to form the frontal
matrix. This operation simply consists in stacking these data one on top
of the other: the rows of these data sets can be stacked in any order but
the order of elements within rows has to be the same. The set of column
indices associated with a node is, in general, a superset of those associated
with its children;

• factorization: one Householder reflector is computed and applied to the
whole frontal matrix in order to annihilate all the subdiagonal elements in
the first column. This step produces one row of the R factor of the original
matrix and a complement which corresponds to the data that will be later
assembled into the parent node (commonly referred to as a contribution
block). The Q factor is defined implicitly by means of the Householder
vectors computed on each front; the matrix that stores the coefficients of
the computed Householder vectors, will be referred to as the H matrix
from now on.

In practical implementations of the multifrontal QR factorization, nodes of
the elimination tree are amalgamated to form supernodes. The amalgamated
pivots correspond to rows of R that have the same structure and can be elim-
inated at once within the same frontal matrix without producing any addi-
tional fill-in in the R factor. The elimination of amalgamated pivots and the
consequent update of the trailing frontal submatrix can thus be performed by
means of efficient Level-3 BLAS routines through the WY representation [29].
Moreover, amalgamation reduces the number of assembly operations increasing
the computations-to-communications ratio which results in better performance.
The amalgamated elimination tree is also commonly referred to as assembly tree.

Figure 1 shows some details of a sparse QR factorization. The factorized
matrix1 is shown on the left part of the figure where a letters are used for
representing the original matrix coefficients and dots for representing the fill-in
introduced by the factorization. On the top-right part of the figure, the structure
of the resulting R factor is shown. The elimination/assembly tree is, instead

1The rows of A are sorted in order of increasing index of the leftmost nonzero in order to
show more clearly the computational pattern of the method on the input data.

3

1 2 3 4 5 6 7 8 9

1 a a �
2 a � a

3 a a �
4 a a � �
5 a � a �
6 a � a a

7 a � � a

8 a a a �
9 a a � a

10 � a � a

11 � a a a

12 a � �
13 a � a

14 a a �
15 a a a

16 a � a

17 a a �
18 � a a

19 � a a

1 2 3 4 5 6 7 8 9

1 r r r

4 r r r r

7 r r r r

8 r r r

12 r r r

13 r r

16 r r r

17 r r

18 r

2

5

4

1 3

9

8

7

6

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

Figure 1: Example of multifrontal QR factorization. On the left side the matrix
with the original coefficient represented as a and the fill-in coefficients introduced
by the factorization as dots. On the upper-right part, the structure of the
resulting R factor. On the right-bottom part the elimination tree; the dashed
boxes show how the nodes are amalgamated into supernodes.

reported in the bottom-right part: dashed boxes show how the nodes can be
amalgamated into supernodes with the corresponding indices denoted by bigger
size numbers. The amalgamated nodes have the same row structure in Rmodulo
a full, diagonal block. It has to be noted that in practical implementations the
amalgamation procedure is based only on information related to the R factor
and, as such, it does not take into account fill-in that may eventually appear in
the H matrix; for example, the amalgamation of the pivots 3 and 4 generates
the h10,3 and h11,3 fill-in coefficients although no extra fill-in appears in the R

factor. The supernode indices are reported on the left part of the figure in order
to show the pivotal columns eliminated within the corresponding supernode
and on the top-right part to show the rows of R produced by the corresponding
supernode factorization.

In order to reduce the operation count of the multifrontal QR factorization,
two optimizations are commonly applied:

1. once a frontal matrix is assembled, its rows are sorted in order of increasing
index of the leftmost nonzero. The number of operations can thus be

4

reduced, as well as the fill-in in the H matrix, by ignoring the zeroes in
the bottom-left part of the frontal matrix;

2. the frontal matrix is completely factorized. Despite the fact that more
Householder vectors have to be computed for each frontal matrix, the
overall number of floating point operations is lower since frontal matrices
are smaller. This is due to the fact that contribution blocks resulting from
the complete factorization of frontal matrices are smaller.

2

3

4 9

c1 c1

c1

������������	�
���

���
	�������	�

5

6

3 4 7

c2 c2 c2

c2 c2

������������	�
���

���
	�������	�

7

8

9

10

11

3 4 7 9

a a

a a a

a a a

a a

a a a

�	������������

���	�������	�

3 4 7 9

7 a � � a

8 a a a �
9 a a � a

5 c2 c2 c2 �
10 a � a

11 a a a

2 c1 � c1
6 c2 c2 �
3 c1

����
�
��	�������	�

3 4 7 9

7 r r r r

8 h r r r

9 h h c c

5 h h h c

10 h h h

11 h h h

2 h h h

6 h h h

3 h

����������	�������	�

� � � �

� � � � �

� � ������

	 � � ����

� � � �

�

�

	

� � �

�

�

�

����
�
��	�������	� ����
�
��	�������	�

� � �

� � � �

� � ����

� � � ��

����������	�������	� ����������	�������	�

� �

�

Figure 2: Assembly and factorization of the frontal matrices associated with
supernodes 1, 2 and 3 in Figure 1. Coefficients from the original matrix are
represented as a, those in the resultingR andH matrices as r and h, respectively,
the fill-in coefficients as dots and the coefficients in the contribution blocks as c
with a subscript to specify the supernode they belong to. Pivotal columns are
shaded in gray.

Figure 2 shows the assembly and factorization operations for the supernodes
1, 2 and 3 in Figure 1 when these optimization techniques (referred to as Strategy
3 in Amestoy et al. [2]) are applied. Note that, because supernodes 1 and 2 are
leaves of the assembly tree, the corresponding assembled frontal matrices only
include coefficients from the matrix A. The contribution blocks resulting from
the factorization of supernodes 1 and 2 are appended to the rows of the input A
matrix associated with supernode 3 in such a way that the resulting, assembled,
frontal matrix has the staircase structure shown in Figure 2 (bottom-middle).
Once the front is assembled, it is factorized as shown in Figure 2 (bottom-right).

A detailed presentation of the multifrontal QR method, including the opti-
mization techniques described above, can be found in Amestoy et al. [2].

5

The multifrontal method can achieve very high efficiency on modern comput-
ing systems because all the computations are arranged as operations on dense
matrices; this reduces the use of indirect addressing and allows the use of ef-
ficient Level-3 BLAS routines which can achieve a considerable fraction of the
peak performance of modern computing systems.

The factorization of a sparse matrix is preceded by a preprocessing phase,
commonly referred to as the analysis phase, where a number of (mostly sym-
bolic) operations are performed on the matrix such as row and column permu-
tations to reduce the amount of fill-in and the determination of the elimination
tree or the symbolic factorization to estimate the amount of memory needed
during the factorization phase. The cost of the analysis phase is O(|A| + |R|)
and can be considered negligible with respect to the matrix factorization.

The rest of this paper is based on the assumption that the analysis phase is
already performed, and thus it only focuses on the factorization; specifically, it
is assumed that a fill-reducing permutation of the input matrix and the corre-
sponding assembly tree have been computed.

3 Fine-grained, asynchronous multithreading

Sparse computations are well known for being hard to parallelize on shared-
memory, multicore systems. This is due to the fact that the efficiency of many
sparse operations, such as the sparse matrix-vector product, is limited by the
speed of the memory system. This is not the case for the multifrontal method;
since computations are performed as operations on dense matrices, a favor-
able ratio between memory accesses and computations can be achieved which
reduces the utilization of the memory system and opens opportunities for mul-
tithreaded, parallel execution. This property, resulting from the use of Level-3
BLAS operations (i.e., matrix-matrix operations), is commonly known as the
surface-to-volume [12] property because, for a problem of size n (the size of a
frontal matrix, for the multifrontal algorithm), n3 operations are performed on
n2 data.

In a multifrontal factorization, parallelism is exploited at two levels:

• tree-level parallelism: computations related to separate branches of the
assembly tree are independent and can be executed in parallel (see Liu [23,
Proposition 10.1]);

• node-level parallelism: if the size of a frontal matrix is big enough, its
factorization can be performed in parallel by multiple threads.

The classical approach to shared-memory parallelization of QR multifrontal
solvers [24, 2, 8] is based on a complete separation of the two sources of con-
currency described above. The node parallelism is delegated to multithreaded
BLAS libraries and only the tree parallelism is handled at the level of the mul-
tifrontal factorization. This is commonly achieved by means of a task queue
where a task corresponds to the assembly and factorization of a front. A new

6

task is pushed into the queue as soon as it is ready to be executed, i.e., as soon
as all the tasks associated with its children have been completed. Threads keep
polling the queue for tasks to perform until all the nodes of the tree have been
processed.

Although this approach works reasonably well for a limited number of cores
or processors, it suffers scalability problems mostly due to two factors:

• separation of tree and node parallelism: the degree of concurrency in
both types of parallelism changes during the bottom-up traversal of the
tree; fronts are relatively small at leaf nodes of the assembly tree and grow
bigger towards the root node. On the other hand, tree parallelism provides
a high level of concurrency at the bottom of the tree and only a little at
the top part where the tree shrinks towards the root node. Since the node
parallelism is delegated to an external multithreaded BLAS library, the
number of threads dedicated to node parallelism and to tree parallelism
has to be fixed before the execution of the factorization. Thus, a thread
configuration that may be optimal for the bottom part of the tree will
result in a poor parallelization of the top part and vice versa. Although
some recent parallel BLAS libraries (for example, Intel MKL) allow to
change the numbers of threads dynamically at run-time, it would require
an accurate performance modeling and a rigid thread-to-front mapping in
order to keep all the cores working at any time. Relying on some specific
BLAS library could, moreover, limit the portability of the code.

• synchronizations: the assembly of a front is an atomic operation. This
inevitably introduces synchronizations that limit the concurrency level in
the multifrontal factorization; most importantly, it is not possible to start
working on a front until all of its children have been fully factorized.

The limitations of the classical approach discussed above can be overcome by
employing a different parallelization technique based on fine granularity parti-
tioning of data and operations combined with a dataflow model for the schedul-
ing of tasks, as described in the following subsections. This approach was already
applied to dense matrix factorizations by Buttari et al. [6] and extended to the
supernodal Cholesky factorization of sparse matrices by Hogg et al. [18].

3.1 Fine-grained computational tasks definition

In order to handle both tree and node parallelism in the same framework, a
block-column partitioning of the fronts is applied as shown in Figure 3 (left)
and five elementary operations defined:

1. activate: the activation of a frontal matrix corresponds to computing its
structure (row/column indices, staircase structure, etc.) and allocating
the memory needed for it;

2. panel: this operation amounts to computing the QR factorization of a
block-column; Figure 3 (middle) shows the data modified when the panel
operation is executed on the first block-column;

7

3. update: updating a block-column with respect to a panel corresponds to
applying to the block-column the Householder reflectors resulting from the
panel reduction; Figure 3 (right) shows the coefficients read and modified
when the third block-column is update’d with respect to the first panel;

4. assemble: for a block-column, assembles the corresponding part of the
contribution block into the parent node (if it exists);

5. clean: stores the coefficients of the R and H factors aside and deallocates
the memory needed for the frontal matrix storage;

�����������	
��
�����	�	� ��	��
���
����	 ������
���
����	

Figure 3: Block-column partitioning of a frontal matrix (left) and panel and
update operations pattern (middle and right, respectively); dark gray coefficients
represent data read by an operation while black coefficients represent written
data.

The multifrontal factorization of a sparse matrix can thus be defined as a
sequence of tasks, each task corresponding to the execution of an elementary
operation of the type described above on a block-column or a front. The tasks
are arranged in a Directed Acyclic Graph (DAG) such that the edges of the
DAG define the dependencies among tasks and thus the relative order in which
they have to be executed. Figure 4 shows the DAG associated with the subtree
defined by supernodes one, two and three for the problem in Figure 1 for the
case where the block-columns have size one2; the dashed boxes surround all the
tasks that are related to a single front.

The dependencies in the DAG are defined according to the following rules
(an example of each of these rules is presented in Figure 4 with labels on the
edges):

• d1: no other elementary operation can be executed on a front or on one
of its block-columns until the front is not activated;

• d2: a block column can be updated with respect to a panel only if the
corresponding panel factorization is completed;

2Figure 4 actually shows the transitive reduction of the DAG, i.e., the direct dependency
between two nodes is not shown in the case where it can be represented implicitly by a path
of length greater than one connecting them.

8

Figure 4: The DAG associated with supernodes 1, 2 and 3 of the problem in
Figure 1; for the panel, update and assemble operations, the corresponding
block-column index is specified. For this example, the block-column size is
chosen to be one.

• d3: the panel operation can be executed on block-column i only if it is
up-to-date with respect to panel i− 1;

• d4: a block-column can be updated with respect to a panel i in its front
only if it is up-to-date with respect to the previous panel i−1 in the same
front;

• d5: a block-column can be assembled into the parent (if it exists) when it
is up-to-date with respect to the last panel factorization to be performed
on the front it belongs to (in this case it is assumed that block-column i is
up-to-date with respect to panel i when the corresponding panel operation
is executed);

• d6: no other elementary operation can be executed on a block-column
until all the corresponding portions of the contribution blocks from the
child nodes have been assembled into it, in which case the block-column
is said to be assembled;

• d7: since the structure of a frontal matrix depends on the structure of
its children, a front can be activated only if all of its children are already
active;

This DAG globally retains the structure of the assembly tree but expresses a
higher degree of concurrency because tasks are defined on a block-column basis

9

instead of a front basis. Moreover, it implicitly represents both tree and node
parallelism which allows to exploit both of them in a consistent way. Finally,
it removes unnecessary dependencies making it possible, for example, to start
working on the assembled block-columns of a front even if the rest of the front is
not yet assembled and, most importantly, even if the children of the front have
not yet been completely factorized.

3.2 Scheduling and execution of tasks

The execution of the tasks in the DAG is controlled by a dataflow model; a task
is dynamically scheduled for execution as soon as all the input operands are
available to it, i.e., when all the tasks on which it depends have finished. The
scheduling of tasks can be guided by a set of rules that prioritize the execution
of a task based on, for example,

• data locality: in order to maximize the reuse of data into the different
level of the memory hierarchy, tasks may be assigned to threads based on
a locality policy [18];

• fan-out: the fan-out of a task in the DAG defines the number of other
tasks that depend on it. Thus, tasks with a higher fan-out should acquire
higher priority since their execution generates more concurrency. In the
case of the QR method described above, panel factorizations are regarded
as higher priority operations over the updates and assemblies.

A scheduling technique was developed aiming at optimizing the reuse of
local data in a NUMA system while still prioritizing tasks that have a high
fan-out. Although the multifrontal method is rich in Level-3 BLAS operations
(mostly in the update tasks), there is still a considerable amount of Level-2
BLAS operations (within the panel tasks) and symbolic or memory ones (the
activate, assembly and clean tasks) whose efficiency is limited by the speed of
the memory system. As the number of threads participating to the factorization
increases, the relative cost of these memory-bound operations grows too high
and there are fewer opportunities to hide this cost by overlapping these slow
operations with faster ones. In addition, some frontal matrices, especially at
the bottom of the tree, may be too small to achieve the surface-to-volume effect
in Level-3 BLAS operations. Therefore, in order to improve the scalability, it is
important to perform these memory-bound operations as efficiently as possible
and this can be achieved by executing each of them on the core which is closest
to the data it manipulates. The proposed method is based on a concept of
ownership of a front: the thread that performs the activate operation on a
front becomes its owner and, therefore, becomes the privileged thread to perform
all the subsequent tasks related to that front. By using methods like the “first
touch rule” (memory is placed on the NUMA node which generates the first
reference) or allocation routines which are specific for NUMA architectures [4],
the memory needed for a front can be allocated in the NUMA node which
is closest to its owner thread. At the moment no front-to-thread mapping is

10

performed, and thus the ownership of a front is dynamically set at the moment
when the front is activated.

The scheduling and execution of tasks is implemented through a system of
task queues: each thread is associated with a task queue containing all the
executable tasks (i.e., tasks whose dependencies are already satisfied) related to
the fronts it owns.

The pseudo-code in Figure 5(left) illustrates the main loop executed by all
threads; at each iteration of this loop a thread:

1. checks whether the number of tasks globally available for execution has
fallen below a certain value (which depends, e.g., on the number of threads)
and, if it is the case, it calls the fill queues routine, described below,
which searches for ready tasks and pushes them into the corresponding
local queues;

2. picks a task. This operation consists in popping a task from the thread’s
local queue. In the case where no task is available on the local queue, an
architecture aware work-stealing technique is employed, i.e., the thread
will try to steal a task from queues associated with threads with which
it shares some level of memory (caches or DRAM module on a NUMA
machine) and if still no task is found it will attempt to steal a task from
any other queue. The computer’s architecture can be detected using tools
such as hwloc [4].

3. executes the selected task if the pick task routine has succeeded.

The tasks are pushed into the local queues by the fill queues routine
whose pseudo-code is shown in Figure 5 (right). At every moment, during the
factorization there exists a list of active fronts; the fill queues routine goes
through this list looking for ready tasks on each front. Whenever one such task is
found, it is pushed on the queue associated with the thread that owns the front.
If no task is found related to any of the active fronts, a new ready front (if any)
is scheduled for activation; the search for an activable front follows a postorder
traversal of the assembly tree, which provides a good memory consumption and
temporal locality of data. Because the ownership of such a front is not yet
defined, the activate task is pushed on the queue attached to the thread that
executes the fill queues routine. Simultaneous access to the same front in
the fill queues routine is prevented through the use of locks. An efficient use
of tree-level parallelism makes it hard, if not impossible, to follow a postorder
traversal of the tree which results in an increased memory consumption with
respect to the sequential case [22, 16]. It is important to note that the proposed
scheduling method tries to exploit node-level parallelism as much as possible
and dynamically resorts to tree-level parallelism by activating a new node only
when no more tasks are found on already active fronts. This keeps the tree
traversal as close as possible to the one followed in the sequential execution and
avoids the memory consumption to grow out of control.

Although tasks are always popped from the head of each queue, they can
be pushed either on the head or on the tail which allows to prioritize certain

11

Main loop
mainloop: do

if(n_ready_tasks < ntmin) then

! if the number of threads falls

! below a certain value, fill-up

! the queues

call fill_queues()

end if

tsk = pick_task()

select case(tsk%id)

case(panel)

call execute_panel()

case(update)

call execute_update()

case(assemble)

call execute_assemble()

case(activate)

call execute_activate()

case(clean)

call execute_clean()

case(finish)

exit mainloop

end do

fill queues()

found = .false.

forall (front in active fronts)

! for each active front try to schedule

! ready tasks

found = found .or. push_panels(front)

found = found .or. push_updates(front)

found = found .or. push_assembles(front)

found = found .or. push_clean(front)

end forall

if (found) then

! if tasks were pushed in the previous

! loop return

return

else

! otherwise schedule the activation of

! the next ready front

call push_activate(next ready front)

end if

if (factorization over) call push_finish()

Figure 5: Pseudo-code showing, on the left, the main execution loop and, on
the right, the instructions used to fill the task queues.

tasks. In the implementation described in Section 4, the panel operations are
always pushed on the head because the corresponding nodes in the execution
DAG have higher fan-out.

The size of the search space for the fill queues routine is, thus, propor-
tional to the number of fronts active, at a given moment, during the factoriza-
tion. The size of this search space may become excessively large and, conse-
quently, the relative cost of the fill queues routine excessively high, in some
cases like, for example, when the assembly tree is very large and/or when it has
many nodes of small size. Two techniques are employed in order to keep the
number of active nodes limited during the factorization:

• Logical pruning. As the target of this work are systems with only a
limited number of cores, extremely large assembly trees provide much
more tree-level parallelism than what is really needed. A logical pruning
can thus be applied to simplify the tree: all the subtrees whose relative
computational weight is smaller than a certain threshold are made invisible
to the fill queues routine. When one of the remaining nodes is activated,
all the small subtrees attached to it are processed sequentially by the
same thread that performs the activation. As shown in Figure 6, this
corresponds to identifying a layer in the assembly tree such that all the
subtrees below it will be processed sequentially. This layer has to be as
high as possible in order to reduce the number of potentially active nodes
but low enough to provide a sufficient amount of tree-level parallelism on

12

the top part of the tree.

Figure 6: A graphical representation of how the logical amalgamation and logical
pruning may be applied to an assembly tree.

• Tree reordering. Assuming that the assembly tree is processed sequen-
tially following a postorder traversal, the maximum number of fronts active
at any time in the subtree rooted at node i, Pi is defined as the maximum
of two quantities:

1. nci + 1, where nci is the number of children of node i. This is the
number of active nodes at the moment when i is activated;

2. maxj=1,...,nci(j−1+Pj). This quantity captures the maximum num-
ber of active fronts when the children of node i are being processed.
In fact, at the moment when the peak Pj is reached in the subtree
rooted at the j-th child, all the previous j − 1 children of i are still
active.

In order to minimize the maximum number of active nodes during the
traversal of the assembly tree it is, thus, necessary to minimize, for each
node i, the second quantity, which is achieved by sorting all of its children
j in decreasing order of Pj [22]. The effect of this reordering on an example
tree is illustrated in Figure 7. If the tree is traversed in the order shown
in the left part of the figure, P19 = 10 (the nodes active at the moment
when the peak is reached are highlighted with a thick border); instead,
if the tree is reordered as in the right part of the figure following the
method described above P19 is equal to four. Although no guarantee
is given that a postorder is followed in a parallel factorization, this tree
reordering technique still provides excellent results on every problem that
has been tested so far. Besides, by reducing the number of active nodes,
this reordering also helps in reducing the consumed memory although it
will not be optimal in this sense as the actual size of the frontal matrices is
not taken into account (the reordering technique for memory consumption
minimization is described in Liu and Guermouche et al. [22, 16]).

13

Figure 7: The effect of leaves reordering on the number of active nodes.

Both the tree pruning and reordering are executed during the analysis phase.

3.3 Blocking of dense matrix operations

It is obviously desirable to use blocked operations that rely on Level-3 BLAS
routines in order to achieve a better use of the memory hierarchy and, thus, bet-
ter performance. The use of blocked operations, however, introduces additional
fill-in in the Householder vectors due to the fact that the staircase structure of
the frontal matrices cannot be fully exploited. It can be safely said that it is
always worth paying the extra cost of this additional fill-in because the over-
all performance will be drastically improved by the high efficiency of Level-3
BLAS routines; nonetheless it is important to choose the blocking value that
gives the best compromise between number of operations and efficiency of the
BLAS. This blocking size, which defines the granularity of computations, has
to be chosen with respect to the block-columns size used for partitioning the
frontal matrices, which defines the granularity of parallel tasks.

Figure 8: The effect of internal blocking on the generated fill-in. The light gray
dots show the frontal matrix structure if no blocking of operations is applied
whereas the dark gray dots show the additional fill-in introduced by blocked
operations.

Figure 8 shows as dark gray dots the extra fill-in introduced by the blocking
of operations (denoted as ib for internal blocking) with respect to the partition-

14

5 10 15 20 25 30 35 40 45 50
10

1

10
0

10
1

10
2

10
3

10
4

10
5

5 10 15 20 25 30 35 40 45 50
10

2

10
1

10
0

10
1

10
2

10
3

10
4

Operation count with COLAMDqrm seq. time (sec.) -- AMD Istanbul

matrix matrix

Figure 9: Some details of the 51 matrices in the test set. On the left side, the
operation count obtained with the COLAMD ordering and on the right side the
qrm sequential factorization time (in seconds) on the AMD Istanbul system. In
each graph, matrices are sorted in increasing order of the reported measure.

ing size nb on an example frontal matrix. Details on how to choose these bock
sizes will be provided in Section 4.1.

4 Experimental results

The method discussed in Section 3 was implemented in a software package called
qr mumps3 (or qrm for the sake of brevity). The code is written in Fortran2003
and OpenMP is the technology chosen to implement the multithreading. Al-
though there are many other technologies for multithreaded programming (e.g.,
pThreads, Intel TBB, Cilk or SMPSS), OpenMP offers the best portability since
it is available on any relatively recent system.

The experiments were run on a set of fifty matrices from the UF Sparse
Matrix Collection [10]; they were chosen from the complete set of over and
under-determined problems by excluding those that are rank-deficient (because
qr mumps cannot currently handle them), those that are too small to evaluate
the scalability or that are too big for being factorized on the computer platforms
described below. To these, a large matrix from a meteorology application from
the HIRLAM4 research program was added for a total of 51 test matrices. In
the case of under-determined systems, the transposed matrix is factorized, as it
is commonly done to find the minimum-norm solution of a problem. All of the
results presented below were produced without storing the H matrix in order to
extend the test set to very large matrices that couldn’t otherwise be factorized
on the available computers. Figure 9 shows, for all these matrices, the operation
count obtained when a COLAMD [9] fill-reducing column permutation is applied
and the corresponding qrm sequential factorization time on the AMD system on
the left and the right side, respectively; data are sorted in increasing order in
each subfigure.

3http://buttari.perso.enseeiht.fr/qr_mumps
4http://hirlam.org

15

Mat. name m n nz op. count
(Gflops)

1 image interp 240000 120000 711683 30.2
2 LargeRegFile 2111154 801374 4944201 84.7
3 cont11 l 1468599 1961395 5382999 184.5
4 EternityII E 11077 262144 1572792 544.0
5 degme 185,501 659415 8127528 591.9
6 cat ears 4 4 19020 44448 132888 716.1
7 Hirlam 1385270 452200 2713200 2339.9
8 e18 24617 38602 156466 3399.5
9 flower 7 4 27693 67,593 202218 4261.2

10 Rucci1 1977885 109900 7791168 12768.5
11 sls 1748122 62729 6804304 22716.2
12 TF17 38132 48630 586218 38203.1

Table 1: A subset of the test matrices. The operation count is related to the
matrix factorization with COLAMD column permutation.

Out of these 51 problems, a subset of 12 matrices, described in Table 1, was
selected and analyzed in details in order to highlight the effectiveness of the
proposed algorithms and methods.

Experiments were run on two architectures whose features are listed in Ta-
ble 2:

• AMD Istanbul: this system is equipped with four hexa-core AMD Istan-
bul processors clocked at 2.4 GHz. Each of these CPUs has six cores and
is attached to a DRAM module through two DRAM controllers and the
CPUs are connected to each other through HyperTransport links in a ring
layout. If, say, core 0 on processor 1 needs some data which is located in
the memory attached to processor 0, a request has to be submitted to the
DRAM controllers of processor 0 and, when this request is processed, the
corresponding data is sent through the HyperTransport link. Concurrent
access to the same memory causes conflicts which slow-down the access to
data.

• IBM Power6 p575: one node of the larger Vargas supercomputer in-
stalled at the IDRIS supercomputing institute is equipped with 16 dual-
core Power6 processors clocked at 4.7 GHz. Processors are grouped in sets
of four called MCMs (Multi Chip Module) and each node has four MCMs
for a total of 32 cores. Processors in an MCM are fully connected as well
as MCMs in a node.

All the tests were run with real data in double precision.

16

System AMD Istanbul IBM Power6 p575

total # of cores 24 (6×4) 32 (2×4×4)
freq. 2.4 GHz 4.7 GHz

mem. type NUMA NUMA
compilers Intel 11.1 IBM XL 13.1

BLAS/LAPACK Intel MKL 10.2 IBM ESSL 4.4

Table 2: Test architectures.

4.1 Choosing the block size

As explained in Section 3.3, the execution time of the factorization operation
depends on the nb and ib parameters which define the granularity of tasks (and
thus the amount of concurrence) and the blocking of dense linear algebra opera-
tions, respectively. The optimal values for these two parameters depend mostly
on the input matrix structure, the architectural features of the underlying com-
puter and the number of working threads. Clearly, small ib values yield lower
fill-in but inefficient BLAS operations and vice versa; on the other hand, small
nb values deliver more parallelism but increase the complexity and the cost of
the scheduling and set an upper bound to the ib parameter which may not be
optimal.

Figure 10 shows how the execution time is affected by different choices of
the two blocking parameters on the Power6 machine for two different matrices.
It can be seen that, for both matrices, smaller nb values are required in order to
achieve the shortest execution time on 32 cores compared to the 16 cores case.

1
4
0

1
5
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

50

60

70

80

90

100

110

120

130

140

150

1
4
0

1
5
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

50

60

70

80

90

100

110

120

130

140

150

1
4
0

1
5
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

50

60

70

80

90

100

110

120

130

140

150

1
4
0

1
5
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

50

60

70

80

90

100

110

120

130

140

150

Figure 10: The effect of the blocking sizes on the factorization time of the e18
and Rucci1 matrices on the Power6 computer.

Although it is very expensive to determine experimentally the optimal values
for nb and ib, Figure 10 as well as experiments conducted on the other test
matrices and architecture confirm that any reasonable (according to common
knowledge on BLAS libraries) choice for the two parameters falls very close to
the optimum. Choosing nb to be a multiple of ib, generally delivers better

17

results.
For all the 51 matrices in the test set and for the two architectures in Ta-

ble 2, the blocking values were chosen among three different combinations, i.e.,
(nb,ib)=(120, 120), (120, 60) or (60, 60) (this last one is not shown in Fig-
ure 10) as those that delivered the shortest factorization time using all the cores
available on the system. All the experimental results presented in the rest of
this section are related to that choice.

4.2 Understanding the memory utilization

As described in Section 3.2, the scheduling of tasks in qrm is based on a method
that aims at maximizing the locality of data in a NUMA environment. The
purpose of this section is to provide an analysis of the effectiveness of this
approach. This analysis was conducted on the AMD system, always using all of
the 24 cores available, with the PAPI [25, 31] tool. Recalling the architectural
characteristics described in Section 4, the efficiency of the scheduling technique
has been evaluated based on three metrics:

• the completion time;

• the amount of data transferred on the HyperTransport links5;

• the number of conflicts on the DRAM controllers6

Experiments were run on all the matrices in the test set and with three
different settings for the memory policy:

• no locality: this is a code variant where the multiple task queues are
replaced with a single one shared by all threads. Tasks are, thus, pushed
and popped from this queue regardless of their affinity with the data
placement in the memory system;

• locality: this corresponds to the scheduling strategy described in Sec-
tion 3.2, i.e., each task is pushed on the queue attached to the thread
which owns the related front;

• round robin: this setting uses the same code variant of the “locality”
one but, in this case, allocated memory pages are interleaved in a round
robin fashion over all the DRAM modules. This is achieved using the
numactl [20] tool with the “-i all” option. Since the code does not
control the placement of data in the memory system, the ownership of
fronts does not make sense anymore and, consequently, the data locality
is completely destroyed.

5This quantity was measured as the number of occurrences of the PAPI
HYPERTRANSPORT LINKx:DATA DWORD SENT event (where x is 0, 1, 2, 3 since each processor has
4 HyperTransport links) which counts the number of double-words transferred over the Hy-
perTransport links.

6This quantity was measured as the number of occurrences of the PAPI
DRAM ACCESSES PAGE:DCTx PAGE CONFLICT event (where x is 0, 1 since each processor has two
DRAM controllers) which counts the number of conflicts occurring on the DRAM controllers.

18

Matrix 4 7 8 9 10 11

Time (sec.)
no. loc. 8.97 28.48 53.38 53.07 157.20 371.78

loc. 7.57 25.77 48.43 48.25 143.48 345.75
r. r. 6.54 22.38 28.90 42.50 113.70 328.40

Dwords on HT (×109)
no. loc. 23.59 65.61 81.40 109.45 371.73 803.27

loc. 11.92 47.30 76.94 90.52 259.89 656.50
r. r. 25.00 72.60 86.13 125.66 378.09 869.87

Conflicts on DCT (×109)
no. loc. 0.26 0.68 0.98 1.07 3.29 7.36

loc. 0.29 0.70 0.92 1.21 4.07 8.14
r. r. 0.24 0.52 0.62 0.79 3.17 6.31

Table 3: Analysis of the memory usage for the matrix factorization on the AMD
system with 24 threads.

Table 3 shows the results of these experiments for a subset of the matrices
in Table 1. It can be seen that the locality aware scheduling strategy described
in Section 3.2 provides better execution times with respect to a naive dynamic
scheduling policy: the improvement may be as high as almost 20% (for the
EternityII E matrix) and quite often around 10%. This can be explained by the
reduced amount of data transferred over the HyperTransport links as shown in
the middle of the table. However, the best execution times are achieved with
the round robin distribution of memory allocations. In this case, the amount
of data transfers is higher than the other two cases since the frontal matrices
are completely scattered over the NUMA nodes; nonetheless, this more even
distribution of data reduces the number of conflicts on the DRAM controllers
(see Table 3 (bottom)) and provides a better use of the memory bandwidth. This
behavior is coherent to what was observed on the HSL MA87 [18] code which uses
a similar approach for the Cholesky factorization of sparse linear systems.

The considerable performance improvement resulting from the interleaved
memory allocation suggests that reducing the memory conflicts may be more
important than minimizing the amount of data transferred over the Hyper-
Transport links. A closer look to the behavior of matrices e18 and flower 7 4
(columns three and four in Table 3) shows, instead, that both these objectives
are very important for the efficiency of the code. The factorization of these two
matrices takes roughly the same time in the “locality” and “no locality” cases
but the memory interleaving provides only a small improvement to the second
matrix due to a bigger increase of the data traffic on the HyperTransport links.

Maximizing the data locality and minimizing the memory conflicts are not
conflicting objectives although it may be rather complicated to achieve both
of them at the same time on a very heterogeneous workload such as a sparse

19

Matrix 1 2 3 5 6 11

none 3.52 385.10 151.40 7.12 9.53 9239.00
reord. 2.89 113.80 140.90 7.01 8.75 1651.00
prune 0.94 17.27 5.52 6.99 9.38 328.50
both 0.84 14.44 5.16 6.83 9.20 326.40

Table 4: The effect of tree pruning and tree reordering on the matrix factoriza-
tion time on the AMD system with 24 threads.

factorization. It has to be noted that in the proposed locality aware scheduling
policy, the placement of data and the ownership of the associated tasks is de-
fined on a front basis. Because the number of fronts becomes smaller than the
number of working threads when the factorization approaches the root front, a
lot of work stealing and memory contention take place on the top part of the
assembly tree where most of the work is done. Further improvements can be ob-
tained by defining the data placement and the tasks affinity on a block-column
basis; despite this would make some operations such as the front assembly much
more complex, it is reasonable to expect that it will allow to more evenly and
efficiently distribute the data and thus improve the locality of reference and
reduce the memory contention at the same time. This is the object of ongoing
work.

4.3 The effect of tree pruning and reordering

The tree reordering and pruning techniques have been evaluated on the test
matrices. For the tree pruning, the initial threshold was set to 0.01 which means
that all the subtrees whose weight is smaller than 1% of the total factorization
workload are pruned off. If the remaining tree does not provide enough tree-
level parallelism, the threshold is divided by 2 and a new pruning is done on the
original assembly tree. More precisely this procedure is iterated until the number
of leaves in the pruned tree is bigger than twice the number of working threads.
Clearly, the optimal values for both the starting threshold and the stopping
criterion depend on the structure of the tree and, therefore, on the specific
input matrix; the values described above were determined experimentally and
were found to work well on the large set of test matrices previously described.

Table 4 shows the experimental results related to a subset of matrices for
which these techniques have proved to be particularly effective. The experiments
show that, when applied separately, these two methods provide considerable
benefits in some specific cases. The tree reordering yields good improvements
on very unbalanced and irregular trees: this is the case of the LargeRegFile and
sls matrices. The tree pruning, proved to be very effective on all the problems
but particularly on those with extremely large trees and extremely small frontal
matrices such as the cont11 l and the sls matrices.

It can be observed that the pruning clearly reduces the need for sorting as

20

well as its effectiveness. Nonetheless on some matrices (see, particularly, the
first three columns in Table 4) the best execution time is achieved when both
techniques are applied. It is important to note that the size of the pruned tree
increases with the number of working threads and, therefore, the improvements
provided by the sorting, when both techniques are applied, are likely to be more
important for higher degrees of parallelism.

4.4 Absolute performance and Scaling

This section shows experimental results aiming at evaluating the efficiency and
scaling of the proposed approach to the parallelization of the multifrontal QR
method.

The qrm code was compared to the SuiteSparseQR [8] (referred to as spqr)
released by Tim Davis in 2009; because the spqr is based on Intel TBB which is
only available for x86 systems, this comparison is only made on the AMD Istan-
bul system. For both packages, the COLAMD matrix permutation was applied
in the analysis phase to reduce the fill-in and equivalent nodes amalgamation
methods were used so that the differences between the produced assembly trees
can be considered negligible. Note that other ordering tools based on nested
dissection (such as METIS [19] or SCOTCH [26]) will produce more balanced
and wider assembly trees which means better tree parallelism. Using such or-
derings will, thus, change the behavior of both packages as well as the outcome
of the comparison; however, it is reasonable to expect that differences will not
be substantial. Both packages are based on the same variant of the multifrontal
method (that includes the two optimization techniques discussed in Section 2)
and, thus, the number of floating point operations done in the factorization
and the number of entries in the resulting factors are comparable. For both
codes, runs were executed with numactl memory interleaving where available
(i.e., only on the AMD Istanbul machine).

Figure 11 shows time and memory profiles [11] for both codes using 24
threads. For any given code, a data point (x, y) on the profile means that
the code is no worse than x times the best of the two codes for y problems.
This means that the (1, y) point gives the number y of problems on which the
associated code was found to be the best. The time profile shows that qrm is
faster than spqr on 43 problems out of 51; the remaining eight problems are very
small, i.e., their factorization takes less than one second. On basically half the
problems in the test set qrm was more than twice as fast as spqr. The memory
profile is more difficult to interpret. Because qrm is based on a much more
eager execution model it is reasonable to expect that it consumes more memory.
Indeed, as explained in Section 3.2, the scheduling method exploits as much as
possible the node parallelism and resorts on tree parallelism, by activating new
nodes, only when needed; this keeps the tree traversal close to the one followed
in the sequential case and limits the memory consumption growth in parallel.
Moreover, the tree reordering technique, as explained in the same section, helps
reducing the memory footprint. As a result, qrm achieves, in general, a smaller
memory consumption than spqr on the 51 test matrices as shown in the memory

21

Figure 11: Time and memory profiles comparing the qrm and spqr factorizations
for the 51 test matrices on the AMD Istanbul system.

profile of Figure 11. Experimental data show that most of the matrices where
qrm has a better memory consumption are relatively small, which may probably
be explained with some overhead in spqr that becomes negligible for bigger
size problems. Note that, in both codes, the memory footprint is defined as the
peak memory consumption reached during the factorization, including the input
matrix and all the allocated memory areas of any type. On bigger problems,
the two codes have a similar memory consumption and no clear winner can be
identified. If the H matrix was kept in memory, which is not the case for the
results reported in Figure 11, the difference between the two codes would be
even smaller because the relative weight of the contribution blocks, responsible
for the increased memory consumption in parallel, would be lower.

Tables 5 and 6 show detailed performance results for a selected subset of
problems. These where chosen to be the biggest ones not belonging to the same
family in the complete test set and correspond to matrices 3-12 in Table 1.
For each architecture, results were measured for number of threads equal to
multiples of the number of cores per NUMA node, i.e., six and eight for the
AMD system and IBM system, respectively.

The number of threads participating in the factorization in the spqr code is
given by the product of the number of threads that exploit the tree parallelism
times the number of threads in the BLAS routines. For each fixed number
of threads, the best results among all the possible combinations are reported
in Table 5. As discussed in Section 3, this rigid partitioning of threads may
result in suboptimal performance; choosing a total number of threads that is
higher than the number of cores available on the system may yield a better
compromise. This obviously does not provide any benefit to qrm. The last line in
Table 5 shows, for spqr, the factorization times for the best combination of tree

22

AMD Istanbul

Matrix 3 4 5 6 7 8 9 10 11 12

q
r
m

th.
1 48.8 88.5 103.2 134.9 392.0 474.5 774.7 1786 3301 5185
2 33.8 49.2 52.2 65.5 209.9 250.3 357.4 961 1802 2770
4 14.8 24.8 26.5 33.4 106.4 126.3 181.6 495 932 1372
6 12.4 17.6 18.4 22.9 71.9 86.6 124.7 341 655 923
12 6.2 9.8 10.4 12.8 37.8 46.2 65.8 181 421 477
18 5.2 7.9 7.7 9.1 27.3 32.9 48.6 132 341 325
24 4.8 6.5 6.8 8.4 22.4 28.9 42.5 114 327 260

s
p
q
r

th.
1 40.6 99.5 111.0 123.3 406.3 538.3 687.5 2081 4276 5361
2 29.9 63.4 69.1 74.2 238.2 290.1 379.2 1155 2870 2959
4 23.2 44.9 46.6 48.4 148.4 169.0 229.9 738 2001 1659
6 19.1 36.0 38.2 39.6 116.4 128.5 178.7 599 1846 1203
12 14.7 26.3 33.0 32.5 85.7 90.5 131.6 468 1644 770
18 12.5 22.6 28.8 29.1 73.4 78.7 119.1 405 1603 637
24 11.7 20.7 26.2 27.8 68.6 74.1 114.2 372 1389 589
b. 11.7 20.7 26.1 27.4 68.6 74.1 113.9 372 1375 586

Table 5: Factorization times, in seconds, on the AMD Istanbul system for qrm
(top) and spqr (bottom). The first row shows the matrix number.

IBM Power6

Matrix 3 4 5 6 7 8 9 10 11 12

q
r
m

th.
1 36.2 51.9 60.5 75.2 227.3 290.2 426.1 1156 2142 3121
2 24.5 27.6 32.0 38.6 117.2 151.7 192.9 600 1259 1656
4 10.6 14.0 16.0 19.4 57.1 76.5 98.0 304 672 850
8 5.9 7.3 8.2 9.9 28.6 39.3 49.5 155 348 458
16 3.9 4.1 4.7 5.7 15.4 21.3 27.6 84 197 235
24 4.5 3.1 3.7 4.3 11.3 15.5 22.8 62 183 174
32 6.4 2.6 3.3 4.0 9.5 12.9 18.9 52 182 141

Table 6: Factorization times, in seconds, on the Power6 system for qrm. The
first row shows the matrix number.

23

Figure 12: Best, worst and average speedup achieved on matrices 3-12 in Table 1,
for both codes, on both systems for core numbers from one to the maximum
available.

and node parallelism; for example, for the sls matrix (number 11) the shortest
factorization time is achieved by allocating 22 threads to the tree parallelism
and 7 to the BLAS parallelism for a total of 154 threads.

Table 5 shows that the proposed approach clearly outperforms the classical
approach to parallelization of the QR multifrontal method on the AMD system
as qrm achieves speedups of more than three over spqr.

Figure 13: Fraction of the peak performance achieved by qrm compared to the
QR factorization of a dense matrix.

Figure 12 shows the best, worst and average speedup achieved by the two
codes on the AMD Istanbul system and by qrm only on the IBM Power6. The
best cases are the TF17 and the Hirlam matrices on the AMD and IBM systems,
respectively, whereas the worst are the sls and cont11 l ones, respectively; the
best and worst case matrices are the same for qrm and spqr. Figure 13 shows

24

the fraction of the peak performance achieved by qrm on the two systems in the
best and worst cases which correspond to the TF17 and cont11 l (number 12 and
3 in Table 1) matrices, respectively. The absolute performance and scalability
of qrm is compared to that of the matrix multiply operation (DGEMM) and the
QR factorization (DGEQRF) of square dense matrices of size 40,000 which is big
enough to achieve asymptotic performance using any number of cores on the
target machines.

The experimental results reported above show that qrm achieves a good
scalability up to 24 cores, the best speedup being more than 19 for the TF17
matrix on the AMD system. The scalability of the qrm code tends to level-off
past 24 threads. A closer analysis of the execution profiles shows that this may
be due to a lack of parallelism explained by the fact that panel operations, which
lie on the DAG’s critical path, are extremely inefficient. This problem becomes
more evident when frontal matrices tend to be “tall and skinny” (i.e., having
many more rows than columns) and thus the relative cost of panel operations is
even higher; this is, for example, the case of the sls matrix on which qrm achieves
a poor scalability and absolute performance, although still doing better than
spqr. It has to be noted that DGEQRF performance in Figure 13 is related to the
factorization of a square matrix; when run on strongly overdetermined matrices
the DGEQRF routine achieves a very poor absolute performance and scaling as
well.

Two techniques may be used to overcome this limitation and are the object
of ongoing research work:

• 2D node parallelism: following the methods presented Buttari et al. [6]
and Hadri et al. [17], a 2D partitioning could be applied to frontal ma-
trices; this delivers finer granularity and thus better parallelism although
it requires more logic to correctly handle the assembly operations and to
keep track of the status of the global factorization.

• tree preprocessing: the method proposed by Hadri et al. [17] for the
QR factorization of tall and skinny dense matrices relies on the idea of
parallelizing the computations according to a tree reduction pattern. This
idea can be easily adapted to the multifrontal QR factorization of sparse
matrices, where the concept of tree is already present.

For example, the assembly tree in Figure 14 (left) could be rearranged
into the tree in Figure 14 (right) which provides more tree parallelism and
makes the root front less overdetermined. It has to be noted that the two
intermediate nodes that appear in the assembly tree on the right, do not
receive any coefficient from the original matrix in the assembly operation
and do not provide any coefficient to the global R factor. Because the
staircase structure of frontal matrices is exploited, no additional floating
point operations are introduced by this modification which is completely
transparent to the factorization phase and only involves some symbolic
operations during the problem analysis.

25

Figure 14: Fronts splitting in order to increase parallelism.

5 Summary

A novel approach to the parallelization of the multifrontal QR factorization of a
sparse matrix has been presented. A fine grained partitioning is applied to the
frontal matrices and computational tasks are defined as the sequential execution
of an elementary operation on a data partition. The tasks are arranged into a
DAG where the edges define the dependencies among them and, thus, the order
in which they have to be executed. This DAG globally retains the shape of the
classical assembly tree in the multifrontal method but exposes the concurrency
in both the tree and node types of parallelism allowing for a consistent use
of the two. Following a dataflow execution model, the tasks in the DAG can
be scheduled dynamically depending on different policies. The scheduling of
tasks is done according to a technique which aims at minimizing the transfer of
data between NUMA nodes of large multicore systems and experimental results
were presented which prove its effectiveness. Nonetheless, through a low-level
performance profiling based on the PAPI tool, it has been shown that minimizing
the conflicts on the memory system is more important that maximizing the data
locality although both play an important role in the scalability of a parallel,
multithreaded code; a possible way of achieving both these objectives based on
a finer data placement was suggested (this is currently under investigation). Two
techniques to reduce the size of the scheduling search space have been described.
Finally, experimental results have been presented on two different architectures
for 51 test matrices to prove the efficiency of the proposed approach. These
results show that an actual implementation of the proposed methods achieves
good scalability and good absolute performance up to 32 cores outperforming
by a factor of up to three the best equivalent software currently available. The
causes of poor efficiency on some of the test cases have been identified and
possible solutions have been presented which are the object of ongoing research
work.

26

Acknowledgments

I wish to express my gratitude to the members of the MUMPS team for the
countless advices they gave me on the implementation of multifrontal methods
and to Chiara Puglisi for sharing with me her deep knowledge of the sparse QR
factorization techniques.

I also wish to thank Dan Terpstra for helping me with using the PAPI tool
and interpreting the results it gave.

This work was performed using HPC resources from GENCI-IDRIS
(Grant x2012065063).

27

References

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. MUMPS: a
general purpose distributed memory sparse solver. In A. H. Gebremedhin,
F. Manne, R. Moe, and T. Sørevik, editors, Proceedings of PARA2000, the
Fifth International Workshop on Applied Parallel Computing, Bergen, June
18-21, pages 122–131. Springer-Verlag, 2000. Lecture Notes in Computer
Science 1947.

[2] P. R. Amestoy, I. S. Duff, and C. Puglisi. Multifrontal QR factorization in
a multiprocessor environment. Int. Journal of Num. Linear Alg. and Appl.,
3(4):275–300, 1996.

[3] Å. Björck. Numerical methods for Least Squares Problems. SIAM, Philadel-
phia, 1996.

[4] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst. hwloc: A generic framework for
managing hardware affinities in hpc application. In Parallel, Distributed
and Network-Based Processing (PDP), 2010 18th Euromicro International
Conference, pages 180 –186, feb. 2010.

[5] A. Buttari. Fine granularity sparse qr factorization for multicore based
systems. In Proceedings of the 10th international conference on Applied
Parallel and Scientific Computing - Volume 2, PARA’10, pages 226–236,
Berlin, Heidelberg, 2012. Springer-Verlag.

[6] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled
linear algebra algorithms for multicore architectures. Parallel Comput.,
35(1):38–53, 2009.

[7] T. A. Davis. Algorithm 832: UMFPACK V4.3 — an unsymmetric-
pattern multifrontal method. ACM Transactions on Mathematical Soft-
ware, 30(2):196–199, 2004.

[8] T. A. Davis. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded
rank-revealing sparse QR factorization. ACM Trans. Math. Softw.,
38(1):8:1–8:22, December 2011.

[9] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column ap-
proximate minimum degree ordering algorithm. ACM Trans. Math. Softw.,
30(3):353–376, September 2004.

[10] T. A. Davis and Y. Hu. The university of Florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[11] E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91:201–213, 2002.

28

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Nu-
merical Linear Algebra for High-Performance Computers. SIAM Press,
Philadelphia, 1998.

[13] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse
symmetric linear systems. ACM Transactions on Mathematical Software,
9:302–325, 1983.

[14] A. George and J. W. H. Liu. Householder reflections versus Givens rotations
in sparse orthogonal decomposition. Linear Algebra and its Applications,
88/89:223–238, 1987.

[15] J. A. George and M. T. Heath. Solution of sparse linear least squares prob-
lems using Givens rotations. Linear Algebra and its Applications, 34:69–83,
1980.

[16] A. Guermouche, J.-Y. L’Excellent, and G. Utard. Impact of reordering on
the memory of a multifrontal solver. Parallel Computing, 29(9):1191–1218,
2003.

[17] B. Hadri, H. Ltaief, A. Agullo, and J. Dongarra. Tile QR factorization
with parallel panel processing for multicore architectures. In IPDPS, pages
1–10. IEEE, 2010.

[18] J. Hogg, J. K. Reid, and J. A. Scott. A DAG-based sparse Cholesky solver
for multicore architectures. Technical Report RAL-TR-2009-004, Ruther-
ford Appleton Laboratory, 2009.

[19] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20:359–392, Decem-
ber 1998.

[20] A. Kleen. An NUMA API for Linux. Technical report, SUSE Labs, 2004.

[21] J. W. H. Liu. On general row merging schemes for sparse Givens transfor-
mations. SIAM J. Sci. Stat. Comput., 7:1190–1211, 1986.

[22] J. W. H. Liu. On the storage requirement in the out-of-core multifrontal
method for sparse factorization. ACM Transactions on Mathematical Soft-
ware, 12:127–148, 1986.

[23] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM
Journal on Matrix Analysis and Applications, 11:134–172, 1990.

[24] P. Matstoms. Parallel sparse QR factorization on shared memory architec-
tures. Technical Report LiTH-MAT-R-1993-18, Department of Mathemat-
ics, 1993.

[25] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable interface
to hardware performance counters, 1999. Proceedings of Department of
Defense HPCMP Users Group Conference.

29

[26] F. Pellegrini and Jean Roman. Scotch: A Software Package for Static
Mapping by Dual Recursive Bipartitioning of Process and Architecture
Graphs. In Proceedings of HPCN’96, Brussels, LNCS 1067, pages 493–498,
April 1996.

[27] J. R. Rice. PARVEC workshop on very large least squares problems and
supercomputers. Technical Report CSD-TR 464, Purdue University, IN.,
1983.

[28] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM
Transactions on Mathematical Software, 8:256–276, 1982.

[29] R. Schreiber and C. Van Loan. A storage-efficient WY representation for
products of Householder transformations. SIAM J. Sci. Stat. Comput.,
10:52–57, 1989.

[30] J. Silc, B. Robic, and T. Ungerer. Asynchrony in parallel computing: From
dataflow to multithreading. Journal of Parallel and Distributed Computing
Practices, 1:1–33, 1998.

[31] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting performance
data with PAPI-C. Tools for High Performance Computing, pages pp. 157–
173, 2009.

30

