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1 Quaternion definition and properties

1.1 Definition of quaternion

One introduction to the quaternion that I find particularly attractive is given by the Cayley-
Dickson construction: If we have two complex numbers A = a + bi and C = c + di, then
constructing Q = A+ Cj and defining k , ij yields a number in the space of quaternions
H,

Q = a+ bi+ cj + dk ∈ H , (1)

where {a, b, c, d} ∈ R, and {i, j, k} are three imaginary unit numbers defined so that

i2 = j2 = k2 = ijk = −1 , (2a)

from which we can derive

ij = −ji = k , jk = −kj = i , ki = −ik = j . (2b)

From (1) we see that we can embed complex numbers, and thus real and imaginary num-
bers, in the quaternion definition, in the sense that real, imaginary and complex numbers
are indeed quaternions,

Q = a ∈ R ⊂ H , Q = bi ∈ I ⊂ H , Q = a+ bi ∈ Z ⊂ H . (3)

Likewise, and for the sake of completeness, we may define numbers in the tri-dimensional
imaginary subspace of H. We refer to them as pure quaternions, and may note Hp = Im(H)
the space of pure quaternions,

Q = bi+ cj + dk ∈ Hp ⊂ H . (4)
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It is noticeable that, while regular complex numbers of unit length z = eiθ can encode
rotations in the 2D plane (with one complex product, x′ = z ·x), “extended complex
numbers” or quaternions of unit length q = e(uxi+uyj+uzk)θ/2 encode rotations in the 3D
space (with a double quaternion product, x′ = q ⊗ x ⊗ q∗, as we explain later in this
document).

CAUTION: Not all quaternion definitions are the same. Some authors write the
products as ib instead of bi, and therefore they get the property k = ji = −ij, which results
in ijk = 1 and a left-handed quaternion. Also, many authors place the real part at the end
position, yielding Q = ia+jb+kc+d. These choices have no fundamental implications but
make the whole formulation different in the details. Please refer to Section 3 for further
explanations and disambiguation.

CAUTION: There are additional conventions that also make the formulation different
in details. They concern the “meaning” or “interpretation” we give to the rotation op-
erators, either rotating vectors or rotating reference frames –which, essentially, constitute
opposite operations. Refer also to Section 3 for further explanations and disambiguation.

NOTE: Among the different conventions exposed above, this document concentrates on
the Hamilton convention, whose most remarkable property is the definition (2). A proper
and grounded disambiguation requires to first develop a significant amount of material;
therefore, this disambiguation is relegated to the aforementioned Section 3.

1.1.1 Alternative representations of the quaternion

The real + imaginary notation {1, i, j, k} is not always convenient for our purposes. Pro-
vided that the algebra (2) is used, a quaternion can be posed as a sum scalar + vector,

Q = qw + qxi+ qyj + qzk ⇔ Q = qw + qv , (5)

where qw is referred to as the real or scalar part, and qv = qxi+ qyj + qzk = (qx, qy, qz) as
the imaginary or vector part.1 It can be also defined as an ordered pair scalar-vector

Q = 〈qw,qv〉 . (6)

We mostly represent a quaternion Q as a 4-vector q ,

q ,

[
qw
qv

]
=


qw
qx
qy
qz

 , (7)

1Our choice for the (w; x; y; z) subscripts notation comes from the fact that we are interested in the
geometric properties of the quaternion in the 3D Cartesian space. Other texts often use alternative
subscripts such as (0; 1; 2; 3) or (1; i; j; k), perhaps better suited for mathematical interpretations.
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which allows us to use matrix algebra for operations involving quaternions. At certain
occasions, we may allow ourselves to mix notations by abusing of the sign “=”. Typical
examples are real quaternions and pure quaternions,

general: q = qw + qv =

[
qw
qv

]
∈ H , real: qw =

[
qw
0v

]
∈ R , pure: qv =

[
0
qv

]
∈ Hp .

(8)

1.2 Main quaternion properties

1.2.1 Sum

The sum is straightforward,

p q =

[
pw
pv

] [
qw
qv

]
=

[
pw qw
pv qv

]
. (9)

By construction, the sum is commutative and associative,

p + q = q + p (10)

p + (q + r) = (p + q) + r . (11)

1.2.2 Product

Denoted by ⊗, the quaternion product requires using the original form (1) and the quater-
nion algebra (2). Writing the result in vector form gives

p⊗ q =


pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx
pwqz + pxqy − pyqx + pzqw

 . (12)

This can be posed also in terms of the scalar and vector parts,

p⊗ q =

[
pwqw − p>v qv

pwqv + qwpv + pv×qv

]
, (13)

where the presence of the cross-product reveals that the quaternion product is not com-
mutative in the general case,

p⊗ q 6= q⊗ p . (14)

Exceptions to this general non-commutativity are limited to the cases where pv×qv = 0,
which happens whenever one quaternion is real, p = pw or q = qw, or when both vector
parts are parallel, pv‖qv. Only in these cases the quaternion product is commutative.
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The quaternion product is however associative,

(p⊗ q)⊗ r = p⊗ (q⊗ r) , (15)

and distributive over the sum,

p⊗ (q + r) = p⊗ q + p⊗ r and (p + q)⊗ r = p⊗ r + q⊗ r . (16)

The product of two quaternions is bi-linear and can be expressed as two equivalent
matrix products, namely

q1 ⊗ q2 = [q1]L q2 and q1 ⊗ q2 = [q2]R q1 , (17)

where [q]L and [q]R are respectively the left- and right- quaternion-product matrices, which
are derived from (12) and (17) by simple inspection,

[q]L =


qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw

 , [q]R =


qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw

 , (18)

or more concisely, from (13) and (17),

[q]L = qw I +

[
0 −q>v
qv [qv]×

]
, [q]R = qw I +

[
0 −q>v
qv − [qv]×

]
. (19)

Here, the skew operator 2 [•]× produces the cross-product matrix,

[a]× ,

 0 −az ay
az 0 −ax
−ay ax 0

 , (20)

which is a skew-symmetric matrix, [a]>× = − [a]×, equivalent to the cross product, i.e.,

[a]× b = a×b , ∀ a,b ∈ R3 . (21)

Finally, since

(q⊗ x)⊗ p = [p]R [q]L x and q⊗ (x⊗ p) = [q]L [p]R x (22)

we have the relation

[p]R [q]L = [q]L [p]R , (23)

that is, left and right quaternion product matrices commute. Further properties of these
matrices are provided in Section 2.8.

Quaternions endowed with the product operation ⊗ form a non-commutative group.
The group’s elements identity, q1 = 1, and inverse, q−1, are explored below.

2The skew-operator can be found in the literature in a number of di�erent names and notations, either
related to the cross operator ×, or to the ‘hat’ operator ^, so that all the forms below are equivalent,

[a]� ≡ [a�] ≡ a× ≡ a� ≡ [a] ≡ â ≡ a^ :
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1.2.3 Identity

The identity quaternion q 1 with respect to the product is such that q 1 ⊗q = q⊗q 1 = q.
It corresponds to the real product identity ‘1’ expressed as a quaternion,

q 1 = 1 =

[
1
0v

]
.

1.2.4 Conjugate

The conjugate of a quaternion is defined by

q∗ , qw − qv =

[
qw
−qv

]
. (24)

This has the properties

q⊗ q∗ = q∗ ⊗ q = q2
w + q2

x + q2
y + q2

z =

[
q2
w + q2

x + q2
y + q2

z

0v

]
, (25)

and

(p⊗ q)∗ = q∗ ⊗ p∗ . (26)

1.2.5 Norm

The norm of a quaternion is defined by

‖q‖ , √q⊗ q∗ =
√

q∗ ⊗ q =
√
q2
w + q2

x + q2
y + q2

z ∈ R . (27)

It has the property

‖p⊗ q‖ = ‖q⊗ p‖ = ‖p‖‖q‖ . (28)

1.2.6 Inverse

The inverse quaternion q−1 is such that the quaternion times its inverse gives the identity,

q⊗ q−1 = q−1 ⊗ q = q 1 . (29)

It can be computed with

q−1 = q∗/‖q‖2 . (30)
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1.2.7 Unit or normalized quaternion

For unit quaternions, ‖q‖ = 1, and therefore

q−1 = q∗ . (31)

When interpreting the unit quaternion as an orientation specification, or as a rotation
operator, this property implies that the inverse rotation can be accomplished with the
conjugate quaternion. Unit quaternions can always be written in the form,

q =

[
cos θ

u sin θ

]
, (32)

where u = uxi+ uyj + uzk is a unit vector and θ is a scalar.
From (28), unit quaternions endowed with the product operation ⊗ form a non com-

mutative group, where the inverse coincides with the conjugate.

1.3 Additional quaternion properties

1.3.1 Quaternion commutator

The quaternion commutator is defined as [p,q] , p⊗ q− q⊗ p. We have from (13),

p⊗ q− q⊗ p = 2 pv×qv . (33)

This has as a trivial consequence,

pv ⊗ qv − qv ⊗ pv = 2 pv×qv . (34)

We will use this property later on.

1.3.2 Product of pure quaternions

Pure quaternions are those with null real or scalar part, Q = qv or q = [0,qv]. We have
from (13),

pv ⊗ qv = −p>v qv + pv×qv =

[
−p>v qv
pv×qv

]
. (35)

This implies

qv ⊗ qv = −q>v qv = −‖qv‖2 , (36)

and for pure unitary quaternions u ∈ Hp, ‖u‖ = 1,

u⊗ u = −1 , (37)

which is analogous to the standard imaginary case, i · i = −1.
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1.3.3 Natural powers of pure quaternions

Let us define qn, n ∈ N, as the n-th power of q using the quaternion product ⊗. Then, if
v is a pure quaternion and we let v = u θ, with θ = ‖v‖ ∈ R and u unitary, we get from
(36) the cyclic pattern

v2 = −θ2 , v3 = −u θ3 , v4 = θ4 , v5 = u θ5 , v6 = −θ6 , · · · (38)

1.3.4 Exponential of pure quaternions

The quaternion exponential is a function on quaternions analogous to the ordinary expo-
nential function. Exactly as in the real exponential case, it is defined as the absolutely
convergent power series,

eq ,
∞∑
k=0

1

k!
qk ∈ H . (39)

Clearly, the exponential of a real quaternion coincides exactly with the ordinary exponential
function.

More interestingly, the exponential of a pure quaternion v = vxi+ vyj + vzk is a new
quaternion defined by,

ev =
∞∑
k=0

1

k!
vk ∈ H . (40)

Letting v = u θ, with θ = ‖v‖ ∈ R and u unitary, and considering (38), we group the
scalar and vector terms in the series,

euθ =

(
1− θ2

2!
+
θ4

4!
+ · · ·

)
+

(
uθ − uθ3

3!
+

uθ5

5!
+ · · ·

)
(41)

and recognize in them, respectively, the series of cos θ and sin θ.3 This results in

ev = eu θ = cos θ + u sin θ =

[
cos θ

u sin θ

]
, (42)

which constitutes a beautiful extension of the Euler formula, eiθ = cos θ + i sin θ, defined
for imaginary numbers. Notice that since ‖ev‖2 = cos2 θ + sin2 θ = 1, the exponential of a
pure quaternion is a unit quaternion. Notice also the property,

e−v = (ev)∗ . (43)

For small angle quaternions we avoid the division by zero in u = v/‖v‖ by express-
ing the Taylor series of sin θ and cos θ and truncating, obtaining varying degrees of the
approximation,

ev ≈
[

1− θ2/2
v
(
1− θ2/6

)] ≈ [1
v

]
−−→
θ→0

[
1
0

]
. (44)

3We remind that cos � = 1− �2=2! + �4=4!− · · · , and sin � = � − �3=3! + �5=5!− · · · .
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1.3.5 Exponential of general quaternions

Due to the non-commutativity property of the quaternion product, we cannot write for
general quaternions p and q that ep+q = epeq. However, commutativity holds when any
of the product members is a scalar, and therefore,

eq = eqw+qv = eqw eqv . (45)

Then, using (42) with uθ = qv we get

eq = eqw
[

cos ‖qv‖
qv

‖qv‖ sin ‖qv‖
]
. (46)

1.3.6 Logarithm of unit quaternions

It is immediate to see that, if ‖q‖ = 1,

log q = log(cos θ + u sin θ) = log(eu θ) = u θ =

[
0

u θ

]
, (47)

that is, the logarithm of a unit quaternion is a pure quaternion. The angle-axis values are
obtained easily by inverting (42),

u = qv/‖qv‖ (48)

θ = arctan(‖qv‖, qw) . (49)

For small angle quaternions, we avoid division by zero by expressing the Taylor series of
arctan(x) and truncating,4 obtaining varying degrees of the approximation,

log(q) = uθ = qv
arctan(‖qv‖, qw)

‖qv‖
≈ qv
qw

(
1− ‖qv‖

2

3q2
w

)
≈ qv −−→

θ→0
0 . (50)

1.3.7 Logarithm of general quaternions

By extension, if q is a general quaternion,

log q = log(‖q‖ q

‖q‖) = log ‖q‖+ log
q

‖q‖ = log ‖q‖+ u θ =

[
log ‖q‖

u θ

]
. (51)

1.3.8 Exponential forms of the type qt

We have, for q ∈ H and t ∈ R,

qt = exp(log(qt)) = exp(t log(q)) . (52)

4We remind that arctanx = x− x3=3 + x5=5− · · · , and arctan(y; x) ≡ arctan(y=x).
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If ‖q‖ = 1, we can write q = [cos θ, u sin θ], thus log(q) = uθ, which gives

qt = exp(tuθ) =

[
cos tθ

u sin tθ

]
. (53)

Because the exponent t has ended up as a linear multiplier of the angle θ, it can be seen
as a linear angular interpolator. We will develop this idea in Section 2.7.

2 Rotations and cross-relations

2.1 The 3D vector rotation formula

x||

x!

x!

x!
"

!

u

x

x! = x→ u u" x

x|| = u u! x

x = x|| + x!

!

Figure 1: Rotation of a vector x, by an angle �, around the axis u. See text for details.

We illustrate in Fig. 1 the rotation, following the right-hand rule, of a general 3D vector
x, by an angle φ, around the axis defined by the unit vector u. This is accomplished by
decomposing the vector x into a part x|| parallel to u, and a part x⊥ orthogonal to u, so
that

x = x|| + x⊥ .

These parts can be computed easily (α is the angle between the vector x and the axis u),

x|| = u (‖x‖ cosα) = u u> x

x⊥ = x− x|| = x− u u> x .

Upon rotation, the parallel part does not rotate,

x′|| = x|| ,

and the orthogonal part experiences a planar rotation in the plane normal to u. That is,
if we create an orthogonal base {e1, e2} of this plane with

e1 = x⊥

e2 = u×x⊥ = u×x ,

12



satisfying ‖e1‖ = ‖e2‖, then x⊥ = e1·1 + e2·0. A rotation of φ rad on this plane produces,

x′⊥ = e1 cosφ+ e2 sinφ ,

which develops as,

x′⊥ = x⊥ cosφ+ (u×x) sinφ .

Adding the parallel part yields the expression of the rotated vector, x′ = x′|| + x′⊥ , which
is known as the vector rotation formula,

x′ = x|| + x⊥ cosφ+ (u× x) sinφ . (54)

2.2 The rotation group SO(3)

In R3, the rotation group SO(3) is the group of rotations around the origin under the
operation of composition. Rotations are linear transformations that preserve vector length
and relative vector orientation (i.e., handedness). Its importance in robotics is that it
represents rotations of rigid bodies in 3D space: a rigid motion requires precisely that
distances, angles and relative orientations within a rigid body be preserved upon motion
—otherwise, if norms, angles or relative orientations are not kept, the body could not be
considered rigid.

Let us then define rotations through an operator that satisfies these properties. A
rotation operator r : R3 → R3; v 7→ r(v) acting on vectors v ∈ R3 can be defined from the
metrics of Euclidean space, constituted by the dot and cross products, as follows.

• Rotation preserves the vector norm,

‖r(v)‖ =
√
〈r(v), r(v)〉 =

√
〈v,v〉 , ‖v‖ , ∀v ∈ R3 . (55a)

• Rotation preserves angles between vectors,

〈r(v), r(w)〉 = 〈v,w〉 = ‖v‖‖w‖ cosα , ∀v,w ∈ R3 . (55b)

• Rotation preserves the relative orientations of vectors,

u× v = w ⇐⇒ r(u)× r(v) = r(w) . (56)

It is easily proved that the first two conditions are equivalent. We can thus define the
rotation group SO(3) as,

SO(3) : {r : R3 → R3 / ∀v,w ∈ R3 , ‖r(v)‖ = ‖v‖ , r(v)×r(w) = r(v×w)} . (57)

The rotation group is typically represented by the set of rotation matrices. However,
quaternions constitute also a good representation of it. The aim of this chapter is to

13



Table 1: The rotation matrix and the quaternion for representing SO(3).

Rotation matrix, R Quaternion, q

Parameters 3× 3 = 9 1 + 3 = 4

Degrees of freedom 3 3

Constraints 9− 3 = 6 4− 3 = 1

Constraints RR> = I ; det(R) = +1 q⊗ q∗ = 1

ODE Ṙ = R [!]× q̇ = 1
2
q⊗ !

Exponential map R = exp([uφ]×) q = exp(uφ/2)

Logarithmic map log(R) = [uφ]× log(q) = uφ/2

Relation to SO(3) Single cover Double cover

Identity I 1

Inverse R> q∗

Composition R1 R2 q1 ⊗ q2

Rotation operator R = I + sinφ [u]× + (1− cosφ) [u]2× q = cosφ/2 + u sinφ/2

Rotation action R x q⊗ x⊗ q∗

Interpolation

Rt = I + sin tφ [u]×+ (1−cos tφ) [u]2× qt = cos tφ/2 + u sin tφ/2

R1(R>1 R2)t q1 ⊗ (q∗1 ⊗ q2)t

q1
sin((1−t)∆θ)

sin(∆θ)
+ q2

sin(t∆θ)
sin(∆θ)

Cross relations

R{q} = (q2
w − q>v qv) I + 2 qvq

>
v + 2 qw [qv]×

R{−q} = R{q} double cover

R{1} = I identity

R{q∗} = R{q}> inverse

R{q1 ⊗ q2} = R{q1}R{q2} composition

R{qt} = R{q}t interpolation
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show that both representations are equally valid. They exhibit a lot of similarities, both
conceptually and algebraically, as the reader will appreciate in Table 1. Perhaps, the
most important difference is that the unit quaternion group constitutes a double cover of
SO(3) (thus technically not being SO(3) itself), something that is not critical in most of
our applications.5 The table is inserted upfront for the sake of a rapid comparison and
evaluation. The rotation matrix and quaternion representations of SO(3) are explored in
the following sections.

2.3 The rotation group and the rotation matrix

The operator r() is linear, since it is defined from the scalar and vector products, which
are linear. It can therefore be represented by a matrix R ∈ R3×3, which produces rotations
to vectors v ∈ R3 through the matrix product,

r(v) = R v . (58)

Injecting it in (55a), using the dot product 〈a,b〉 = a>b and developing we have that for
all v,

(Rv)>(Rv) = v>R>Rv = v>v , (59)

yielding the orthogonality condition on R,

R>R = I = R R> . (60)

The condition above is indeed a condition of orthogonality, since we can observe from it
that, by writing R = [r1, r2, r3] and substituting above, the column vectors ri of R, with
i ∈ {1, 2, 3}, are of unit length and orthogonal to each other,

〈ri, ri〉 = r>i ri = 1

〈ri, rj〉 = r>i rj = 0 , if i 6= j .

The set of transformations keeping vector norms and angles is for this reason called the
Orthogonal group, denoted O(3). The orthogonal group includes rotations (which are rigid
motions) and reflections (which are not rigid). The notion of group here means essentially
(and informally) that the product of two orthogonal matrices is always an orthogonal
matrix,6 and that each orthogonal matrix admits an inverse. In effect, the orthogonality
condition (60) implies that the inverse rotation is achieved with the transposed matrix,

R−1 = R> . (61)

5The e�ect of the double cover needs to be considered when performing interpolation in the space of
rotations. This is however easy, as we will see in Section 2.7.

6Let Q1 and Q2 be orthogonal, and build Q = Q1 Q2. Then Q>Q = Q>2 Q>1 Q1Q2 = Q>2 IQ2 = I.
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Adding the relative orientations condition (56) guarantees rigid body motion (hence
discarding reflections), and results in one additional constraint on R,7

det(R) = 1 . (62)

Orthogonal matrices with positive unit determinant are commonly referred to as proper
or special. The set of such special orthogonal matrices is a subgroup of O(3) named the
Special Orthogonal group SO(3). Being a group, the product of two rotation matrices is
always a rotation matrix.8

2.3.1 The exponential map

The exponential map (and the logarithmic map, which we see in the next section) is a
powerful mathematical tool for working in the rotational 3D space with ease and rigor. It
represents the entrance door to a corpus of infinitesimal calculus suited for the rotational
space. The exponential map allows us to properly define derivatives, perturbations, and
velocities, and to manipulate them. It is therefore essential in estimation problems in the
space of rotations or orientations.

Rotations constitute rigid motions. This rigidity implies that it is possible to define
a continuous trajectory or path r(t) in SO(3) that continuously rotates the rigid body
from its initial orientation, r(0), to its current orientation, r(t). Being continuous, it is
legitimate to investigate the time-derivatives of such transformations. We do so by deriving
the properties (60) and (62) that we have just seen.

First of all, we notice that it is impossible to continuously escape the unit determinant
condition (62) while satisfying (60), because this would imply a jump of the determinant
from +1 to −1.9 Therefore we only need to investigate the time-derivative of the orthogo-
nality condition (60). This reads

d

dt
(R>R) = Ṙ>R + R>Ṙ = 0 , (63)

which results in

R>Ṙ = −(R>Ṙ)> , (64)

meaning that the matrix R>Ṙ is skew-symmetric (i.e., it is equal to the negative of its
transpose). The set of skew-symmetric 3 × 3 matrices is denoted so(3), and receives the
name of the Lie algebra of SO(3). Skew-symmetric 3× 3 matrices have the form,

[!]× ,

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ; (65)

7Notice that re
ections satisfy |R| = det(R) = −1, and do not form a group since |R1R2| = 1 6= −1.
8See footnote 6 for O(3) and add this for SO(3): let |R1| = |R2| = 1, then |R1R2| = |R1| |R2| = 1.
9Put otherwise: a rotation cannot become a re
ection through a continuous transformation.
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v → R3 [v]! → so(3) R → SO(3)

Exp(á)

exp(á)[á]!

Figure 2: Exponential maps of the rotation matrix.

they have 3 DOF, and correspond to cross-product matrices, as we introduced already in
(20). This establishes a one-to-one mapping ! ∈ R3 ↔ [!]× ∈ so(3). Let us then take a
vector ! = (ωx, ωy, ωz) ∈ R3 and write

R>Ṙ = [!]× . (66)

This leads to the ordinary differential equation (ODE),

Ṙ = R [!]× . (67)

Around the origin, we have R = I and the equation above reduces to Ṙ = [!]×. Thus,
we can interpret the Lie algebra so(3) as the space of the derivatives of r(t) at the origin;
it constitutes the tangent space to SO(3), or the velocity space. Following these facts, we
can very well call ! the vector of instantaneous angular velocities.

If ! is constant, the differential equation above can be time-integrated as

R(t) = R(0) e[!]�t = R(0) e[!t]� (68)

where the exponential e[x]� is defined by its Taylor series, as we see in the following section.
Since R(0) and R(t) are rotation matrices, then clearly e[!t]� = R(0)>R(t) is a rotation
matrix. Defining the vector v , !∆t as the rotation vector encoding the full rotation over
the period ∆t, we have

R = e[v]� . (69)

This is known as the exponential map, an application from so(3) to SO(3),

exp : so(3)→ SO(3) ; [v]× 7→ exp([v]×) = e[v]� . (70)

2.3.2 The capitalized exponential map

The exponential map above is sometimes expressed with some abuse of notation, i.e.,
confounding v ∈ R3 with [v]× ∈ so(3). To avoid possible ambiguities, we opt for writing
this new application R3 → SO(3) with an explicit notation using a capitalized Exp, having
(see Fig. 2)

Exp : R3 → SO(3) ; v 7→ Exp(v) = e[v]� . (71)
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Its relation with the exponential map is trivial,

Exp(v) , exp([v]×) . (72)

In the following sections we’ll see that the vector v, called the rotation vector or the
angle-axis vector, encodes through v = !∆t = φu the angle φ and axis u of rotation.

2.3.3 Rotation matrix and rotation vector: the Rodrigues rotation formula

The rotation matrix is defined from the rotation vector v = φu through the exponential
map (69), with the cross-product matrix [v]× = φ [u]× as defined in (20). The Taylor
expansion of (69) with v = φu reads,

R = eφ[u]� = I + φ [u]× +
1

2
φ2 [u]2× +

1

3!
φ3 [u]3× +

1

4!
φ4 [u]4× + . . . (73)

When applied to unit vectors, u, the matrix [u]× satisfies

[u]2× = uu> − I (74)

[u]3× = − [u]× , (75)

and thus all powers of [u]× can be expressed in terms of [u]× and [u]2× in a cyclic pattern,

[u]4× = − [u]2× [u]5× = [u]× [u]6× = [u]2× [u]7× = − [u]× · · · . (76)

Then, grouping the Taylor series in terms of [u]× and [u]2×, and identifying in them, re-
spectively, the series of sinφ and cosφ, leads to a closed form to obtain the rotation matrix
from the rotation vector, the so called Rodrigues rotation formula,

R = I + sinφ [u]× + (1− cosφ) [u]2× , (77)

which we denote R{v} , Exp(v). This formula admits some variants, e.g., using (74),

R = I cosφ+ [u]× sinφ+ uu>(1− cosφ) . (78)

2.3.4 The logarithmic maps

We define the logarithmic map as the inverse of the exponential map,

log : SO(3)→ so(3) ; R 7→ log(R) = [uφ]× , (79)

with

φ = arccos

(
trace(R)− 1

2

)
(80)

u =
(R−R>)∨

2 sinφ
, (81)
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where •∨ is the inverse of [•]×, that is, ([v]×)∨ = v and [V∨]× = V.
We also define a capitalized version Log, which allows us to recover the rotation vector

v = uφ ∈ R3 directly from the rotation matrix,

Log : SO(3)→ R3 ; R 7→ Log(R) = uφ . (82a)

Its relation with the logarithmic map is trivial,

Log(R) , (log(R))∨ . (83)

2.3.5 The rotation action

Rotating a vector x by an angle φ around the unit axis u is performed with the linear
product

x′ = R x , (84)

where R = Exp(uφ). This can be shown by developing (84), using (77), (74) and (75),

x′ = R x

= (I + sinφ [u]× + (1− cosφ) [u]2×) x

= x + sinφ [u]× x + (1− cosφ) [u]2× x

= x + sinφ(u×x) + (1− cosφ)(uu> − I) x

= x‖ + x⊥ + sinφ(u×x)− (1− cosφ) x⊥

= x‖ + (u×x) sinφ+ x⊥ cosφ ,

(85)

which is precisely the vector rotation formula (54).

2.4 The rotation group and the quaternion

For didactical purposes, we are interested in highlighting the connections between quater-
nions and rotation matrices as representations of the rotation group SO(3). For this, the
well-known formula of the quaternion rotation action, which reads,

r(v) = q⊗ v ⊗ q∗ , (86)

is here taken initially as an hypothesis. This allows us to develop the full quaternion section
with a discourse that retraces the one we used for the rotation matrix. The exactness of
this hypothesis will be proved a little later, in Section 2.4.5, thus validating the approach.

Let us then inject the rotation above into the orthogonality condition (55a), and develop
it using (28) as

‖q⊗ v ⊗ q∗‖ = ‖q‖2‖v‖ = ‖v‖ . (87)
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This yields ‖q‖2 = 1, that is, the unit norm condition on the quaternion, which reads,

q∗ ⊗ q = 1 = q⊗ q∗ . (88)

This condition is akin to the one we encountered for rotation matrices, see (60), which
reads R>R = I = RR>. We encourage the reader to stop at their similarities for a second.

Similarly, we show that the relative orientation condition (56) is satisfied by construc-
tion (we use (34) twice),

r(v)× r(w) = (q⊗ v ⊗ q∗)× (q⊗w ⊗ q∗)

=
1

2

(
(q⊗ v ⊗ q∗)⊗ (q⊗w ⊗ q∗)− (q⊗w ⊗ q∗)⊗ (q⊗ v ⊗ q∗)

)
=

1

2
(q⊗ v ⊗w ⊗ q∗ − q⊗w ⊗ v ⊗ q∗)

=
1

2
(q⊗ (v ⊗w −w ⊗ v)⊗ q∗)

= q⊗ (v ×w)⊗ q∗

= r(v ×w) .

(89)

The set of unit quaternions forms a group under the operation of multiplication. This
group is topologically a 3-sphere, that is, the 3-dimensional surface of the unit sphere of
R4, and is commonly noted as S3.

2.4.1 The exponential map

Let us consider a unit quaternion q ∈ S3, that is, q∗ ⊗ q = 1, and let us proceed as we
did for the orthogonality condition of the rotation matrix, R>R = I. Taking the time
derivative,

d(q∗ ⊗ q)

dt
= q̇∗ ⊗ q + q∗ ⊗ q̇ = 0 , (90)

it follows that

q∗ ⊗ q̇ = −(q̇∗ ⊗ q) = −(q∗ ⊗ q̇)∗ , (91)

which means that q∗ ⊗ q̇ is a pure quaternion (i.e., it is equal to minus its conjugate,
therefore its real part is zero). We thus take a pure quaternion Ω ∈ Hp and write,

q∗ ⊗ q̇ = Ω =

[
0
Ω

]
∈ Hp . (92)

Left-multiplication by q yields the differential equation,

q̇ = q⊗Ω . (93)
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v → R3

Exp(á)

exp(á)Ö2
V → Hp q → S3

Figure 3: Exponential maps of the quaternion.

Around the origin, we have q = 1 and the equation above reduces to q̇ = Ω ∈ Hp. Thus,
the space Hp of pure quaternions constitutes the tangent space, or the Lie Algebra, of the
unit sphere S3 of quaternions. In the quaternion case, however, this space is not directly
the velocity space, but rather the space of the half-velocities, as we will see soon.

If Ω is constant, the differential equation can be integrated as

q(t) = q(0)⊗ e
 t , (94)

where, since q(0) and q(t) are unit quaternions, the exponential e
t is also a unit quaternion
—something we already knew from the quaternion exponential (42). Defining V , Ω∆t
we have

q = eV . (95)

This is again an exponential map: an application from the space of pure quaternions to
the space of rotations represented by unit quaternions,

exp : Hp → S3 ; V 7→ exp(V) = eV (96)

2.4.2 The capitalized exponential map

As we will see, the pure quaternion V in the exponential map (96) encodes, through
V = θu = φu/2, the axis of rotation u and the half of the rotated angle, θ = φ/2. We will
provide ample explanations to this half-angle fact very soon, mainly in Sections 2.4.5, 2.4.6
and 2.8. By now, let it suffice to say that, since the rotation action is accomplished by the
double product x′ = q ⊗ x ⊗ q∗, the vector x experiences a rotation which is ‘twice’ the
one encoded in q, or equivalently, the quaternion q encodes ‘half’ the intended rotation
on x.

In order to express a direct relation between the angle-axis rotation parameters, v =
φu ∈ R3, and the quaternion, we define a capitalized version of the exponential map, which
captures the half-angle effect (see Fig. 3),

Exp : R3 → S3 ; v 7→ Exp(v) = ev/2 (97)

Its relation to the exponential map is trivial,

Exp(v) , exp(v/2) . (98)
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It is also convenient to introduce the vector of angular velocities ! = 2Ω ∈ R3, so that
(93) and (94) become,

q̇ =
1

2
q⊗ ! (99)

q = e!t/2 . (100)

2.4.3 Quaternion and rotation vector

Let v = φu be a rotation vector representing a rotation of φ rad around the axis u. Then,
the exponential map can be developed using an extension of the Euler formula (see (38–42)
for a complete development),

q , Exp(φu) = eφu/2 = cos
φ

2
+ u sin

φ

2
=

[
cos(φ/2)

u sin(φ/2)

]
. (101)

We call this the rotation vector to quaternion conversion formula, and will be denoted in
this document by q = q{v} , Exp(v).

2.4.4 The logarithmic maps

We define the logarithmic map as the inverse of the exponential map,

log : S3 → Hp ; q 7→ log(q) = uθ , (102)

which is of course the definition we gave for the quaternion logarithm in Section 1.3.6.
We also define the capitalized logarithmic map, which directly provides the angle φ and

axis u of rotation in Cartesian 3-space,

Log : S3 → R3 ; q 7→ Log(q) = uφ . (103)

Its relation with the logarithmic map is trivial,

Log(q) , 2 log(q) . (104)

For its implementation we use the 4-quadrant version of arctan(y, x). From (101),

φ = 2 arctan(‖qv‖, qw) (105a)

u = qv/‖qv‖ . (105b)

For small-angle quaternions, (105b) diverges. We then use the a truncated Taylor series
for the arctan() function, getting,

Log(q) = θu ≈ 2
qv
qw

(
1− ‖qv‖

2

3q2
w

)
. (106)
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2.4.5 The rotation action

We are finally in the position of proving our hypothesis (86) for the vector rotation using
quaternions, thus validating all the material presented so far. Rotating a vector x by an
angle φ around the axis u is performed with the double quaternion product, also known
as the sandwich product,

x′ = q⊗ x⊗ q∗ , (107)

where q = Exp(uφ), and where the vector x has been written in quaternion form, that is,

x = xi+ yj + zk =

[
0
x

]
∈ Hp . (108)

To show that this double product does perform the desired vector rotation, we use (13),
(101), and basic vector and trigonometric identities, to develop (107) as follows,

x′ = q⊗ x⊗ q∗

=
(

cos
φ

2
+ u sin

φ

2

)
⊗ (0 + x)⊗

(
cos

φ

2
− u sin

φ

2

)
= x cos2 φ

2
+ (u⊗ x− x⊗ u) sin

φ

2
cos

φ

2
− u⊗ x⊗ u sin2 φ

2

= x cos2 φ

2
+ 2(u×x) sin

φ

2
cos

φ

2
− (x(u>u)− 2u(u>x)) sin2 φ

2

= x(cos2 φ

2
− sin2 φ

2
) + (u×x)(2 sin

φ

2
cos

φ

2
) + u(u>x)(2 sin2 φ

2
)

= x cosφ+ (u×x) sinφ+ u(u>x)(1− cosφ)

= (x− u u>x) cosφ+ (u×x) sinφ+ u u>x

= x⊥ cosφ+ (u×x) sinφ+ x|| ,

(109)

which is precisely the vector rotation formula (54).

2.4.6 The double cover of the manifold of SO(3).

Consider a unit quaternion q. When regarded as a regular 4-vector, the angle θ between
q and the identity quaternion q1 = [1, 0, 0, 0] representing the origin of orientations is,

cos θ = q>1 q = q(1) = qw . (110)

At the same time, the angle φ rotated by the quaternion q on objects in 3D space satisfies

q =

[
qw
qv

]
=

[
cosφ/2

u sinφ/2

]
. (111)
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That is, we have qw = cos θ = cosφ/2, so the angle between a quaternion vector and the
identity in 4D space is half the angle rotated by the quaternion in 3D space,

θ = φ/2 . (112)

We illustrate this double cover in Fig. 4. By the time the angle between the two
quaternion vectors is θ = π/2, the 3D rotation has already achieved φ = π, which is half a
turn. And by the time the quaternion vector has made a half turn, θ = π, the 3D rotation
has completed a full turn. The second half turn of the quaternion vector, π < θ < 2π,
represents a second full turn of the 3D rotation, 2π < φ < 4π, that is, a second cover of
the rotation manifold.

!

!

q

!

!
q1

x!

! = 2"

u

x

Figure 4: Double cover of the rotation manifold. Left: the quaternion q in the unit 3-
sphere de�nes an angle � with the identity quaternion q1. Center: the resulting 3D rotation
x′ = q⊗x⊗q∗ has double angle � than that of the original quaternion. Right: Superposing
the 4D and 3D rotation planes, observe how one turn of the quaternion q over the 3-sphere
(red) represents two turns of the rotated vector x in 3D space (blue).

2.5 Rotation matrix and quaternion

As we have just seen, given a rotation vector v = uφ, the exponential maps for the
unit quaternion and the rotation matrix produce rotation operators q = Exp(uφ) and
R = Exp(uφ) that rotate vectors x exactly the same angle φ around the same axis u.10

That is, if

∀v,x ∈ R3, q = Exp(v), R = Exp(v) (113)

10The obvious notation ambiguity between the exponential maps R = Exp(v) and q = Exp(v) is easily
resolved by the context: at occasions it is just the type of the returned value, R or q; other times it is the
presence or absence of the quaternion product ⊗.
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then,

q⊗ x⊗ q∗ = R x . (114)

As both sides of this identity are linear in x, an expression of the rotation matrix equivalent
to the quaternion is found by developing the left hand side and identifying terms on the
right, yielding the quaternion to rotation matrix formula,

R =

q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z

 , (115)

denoted throughout this document by R = R{q}. The matrix form of the quaternion
product (17–19) provides us with an alternative formula, since

q⊗ x⊗ q∗ = [q∗]R [q]L

[
0
x

]
=

[
0

R x

]
, (116)

which leads after some easy developments to

R = (q2
w − q>v qv) I + 2 qvq

>
v + 2 qw [qv]× . (117)

The rotation matrix R has the following properties with respect to the quaternion,

R{[1, 0, 0, 0]>} = I (118)

R{−q} = R{q} (119)

R{q∗} = R{q}> (120)

R{q1 ⊗ q2} = R{q1}R{q2} , (121)

where we observe that: (118) the identity quaternion encodes the null rotation; (119) a
quaternion and its negative encode the same rotation, defining a double cover of SO(3);
(120) the conjugate quaternion encodes the inverse rotation; and (121) the quaternion
product composes consecutive rotations in the same order as rotation matrices do.

Additionally, we have the property

R{qt} = R{q}t , (122)

which relates the spherical interpolations of the quaternion and rotation matrix over a
running scalar t.

25



2.6 Rotation composition

Quaternion composition is done similarly to rotation matrices, i.e., with appropriate
quaternion- and matrix- products, and in the same order (Fig. 5),

qAC = qAB ⊗ qBC , RAC = RABRBC . (123)

This comes immediately from the associative property of the involved products,

xA = qAB ⊗ xB ⊗ q∗AB xA = RAB xB

= qAB ⊗ (qBC ⊗ xC ⊗ q∗BC)⊗ q∗AB = RAB (RBC xC)

= (qAB ⊗ qBC)⊗ xC ⊗ (q∗BC ⊗ q∗AB) = (RABRBC) xC

= (qAB ⊗ qBC)⊗ xC ⊗ (qAB ⊗ qBC)
∗ = RAC xC .

= qAC ⊗ xC ⊗ q∗AC ,

A

B

C

qAC
qAB

qBC
qAC = qAB → qBC

Figure 5: Rotation composition. In R2, we would simply do �AC = �AB + �BC , with an
operation ‘sum’ that is commutative. In R3 composition satis�es qAC = qAB ⊗ qBC and, in
matrix form, RAC = RABRBC . These operators are not commutative and one must respect
the order strictly |a proper notation helps: ‘AB’ chains with ‘BC’ to create ‘AC’.

A comment on notation A proper notation helps determining the right order of the
factors in the composition, especially for compositions of several rotations (see Fig. 5). For
example, let qji (resp. Rji) represent a rotation from situation i to situation j, that is,
xj = qji ⊗ xi ⊗ q∗ji (resp. xj = Rjixi). Then, given a number of rotations represented by
the quaternions qOA,qAB,qBC ,qOX ,qXZ , we just have to chain the indices and get:

qOC = qOA ⊗ qAB ⊗ qBC ROC = ROA RAB RBC ,

and knowing that the opposite rotation corresponds to the conjugate, qji = q∗ij, or the
transpose, Rji = R>ij, we also have

qZA = q∗XZ ⊗ q∗OX ⊗ qOA RZA = R>XZ R>OX ROA

= qZX ⊗ qXO ⊗ qOA = RZX RXO ROA .
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2.7 Spherical linear interpolation (SLERP)

Quaternions are very handy for computing proper orientation interpolations. Given two
orientations represented by quaternions q0 and q1, we want to find a quaternion function
q(t), t ∈ [0, 1], that linearly interpolates from q(0) = q0 to q(1) = q1. This interpolation
is such that, as t evolves from 0 to 1, a body will continuously rotate from orientation q0

to orientation q1, at constant speed along a fixed axis.

Method 1 A first approach uses quaternion algebra, and follows a geometric reasoning
in R3 that should be easily related to the material presented so far. First, compute the
orientation increment ∆q from q0 to q1 such that q1 = q0 ⊗∆q,

∆q = q∗0 ⊗ q1 . (124)

Then obtain the associated rotation vector, ∆� = u∆φ, using the logarithmic map,11

u ∆φ = Log(∆q) . (125)

Finally, keep the rotation axis u and take a linear fraction of the rotation angle, δφ = t∆φ.
Put it in quaternion form through the exponential map, δq = Exp(u δφ), and compose it
with the original quaternion to get the interpolated result,

q(t) = q0 ⊗ Exp(tu ∆φ) . (126)

The whole process can be written as q(t) = q0 ⊗ Exp(tLog(q∗0 ⊗ q1)), which reduces to

q(t) = q0 ⊗ (q∗0 ⊗ q1)t , (127)

and which is usually implemented (see (53)) as,

q(t) = q0 ⊗
[

cos(t∆φ/2)
u sin(t∆φ/2)

]
. (128)

Note: An analogous procedure may be used to define Slerp for rotation matrices, yielding

R(t) = R0 Exp(tLog(R>0 R1)) = R0(R>0 R1)t , (129)

where the matrix exponential Rt can be implemented using Rodrigues (77), leading to

R(t) = R0

(
I + sin(t∆φ) [u]× + (1− cos(t∆φ)) [u]2×

)
. (130)

11We can use here either the maps log() and exp(), or their capitalized forms Log() and Exp(). The
involved factor 2 in the resulting angles is �nally irrelevant as it cancels out in the �nal formula.
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Figure 6: Quaternion interpolation in the unit sphere of R4, and a frontal view of the situation
on the rotation plane � of R4.

Method 2 Other approaches to Slerp can be developed that are independent of the
inners of quaternion algebra, and even independent of the dimension of the space in which
the arc is embedded. In particular, see Fig. 6, we can treat quaternions q0 and q1 as two
unit vectors in the unit sphere, and interpolate in this same space. The interpolated q(t) is
the unit vector that follows at a constant angular speed the shortest spherical path joining
q0 to q1. This path is the planar arc resulting from intersecting the unit sphere with the
plane defined by q0, q1 and the origin (dashed circumference in the figure). For a proof
that these approaches are equivalent to the above, see Dam et al. (1998).

The first of these approaches uses vector algebra and follows literally the ideas above.
Consider q0 and q1 as two unit vectors; the angle12 between them is derived from the scalar
product,

cos(∆θ) = q>0 q1 ∆θ = arccos(q>0 q1) . (131)

We proceed as follows. We identify the plane of rotation, that we name here π, and build
its ortho-normal basis {q0,q⊥}, where q⊥ comes from ortho-normalizing q1 against q0,

q⊥ =
q1 − (q>0 q1)q0∥∥q1 − (q>0 q1)q0

∥∥ , (132)

so that (see Fig. 6 – right)

q1 = q0 cos ∆θ + q⊥ sin ∆θ . (133)

12The angle �� = arccos(q>0 q1) is the angle between the two quaternion vectors in Euclidean 4-space,
not the real rotated angle in 3D space, which from (125) is �� = ‖Log(q�0 ⊗ q1)‖. See Section 2.4.6 for
further details.
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Then, we just need to rotate q0 a fraction of the angle, t∆θ, over the plane π, to yield the
spherical interpolation,

q(t) = q0 cos(t∆θ) + q⊥ sin(t∆θ) . (134)

Method 3 A similar approach, credited to Glenn Davis in Shoemake (1985), draws from
the fact that any point on the great arc joining q0 to q1 must be a linear combination of
its ends (since the three vectors are coplanar). Having computed the angle ∆θ using (131),
we can isolate q⊥ from (133) and inject it in (134). Applying the identity sin(∆θ− t∆θ) =
sin ∆θ cos t∆θ − cos ∆θ sin t∆θ, we obtain the Davis’ formula (see Eberly (2010) for an
alternative derivation),

q(t) = q0
sin((1− t)∆θ)

sin(∆θ)
+ q1

sin(t∆θ)

sin(∆θ)
. (135)

This formula has the benefit of being symmetric: defining the reverse interpolator s = 1− t
yields

q(s) = q1
sin((1− s)∆θ)

sin(∆θ)
+ q0

sin(s∆θ)

sin(∆θ)
.

which is exactly the same formula with the roles of q0 and q1 swapped.
All these quaternion-based SLERP methods require some care to ensure proper interpo-

lation along the shortest path, that is, with rotation angles φ ≤ π. Due to the quaternion
double cover of SO(3) (see Section 2.4.6) only the interpolation between quaternions in
acute angles ∆θ ≤ π/2 is done following the shortest path (Fig. 7). Testing for this situa-
tion and solving it is simple: if cos(∆θ) = q>0 q1 < 0, then replace e.g. q1 by −q1 and start
over.

2.8 Quaternion and isoclinic rotations: explaining the magic

This section provides geometrical insights to the two intriguing questions about quater-
nions, what we call the ‘magic’:

• How is it that the product q⊗ x⊗ q∗ rotates the vector x?

• Why do we need to consider half-angles when constructing the quaternion through
q = ev/2 = [cosφ/2,u sinφ/2]?

We want a geometrical explanation, that is, some rationale that goes beyond the algebraic
demonstration (109) and the double cover facts in Section 2.4.6.

To start, let us reproduce here equation (116) expressing the quaternion rotation action
through the quaternion product matrices [q]L and [q∗]R, defined in (19),

q⊗ x⊗ q∗ = [q∗]R [q]L

[
0
x

]
=

[
0

R x

]
.
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Figure 7: Ensuring Slerp along the shortest path between the orientations represented by q0

and q1. Left: quaternion rotation plane in 4D space, showing initial and �nal orientation
quaternions, and two possible interpolations, q(t) from q0 to q1, and q′(t) from q0 to −q1.
Right: vector rotation plane in 3D space: since q1 = −q1, we have x1 = q1 ⊗ x0 ⊗ q∗1 =
q′1⊗x0⊗q′∗1 , that is, both quaternions produce the same rotation. However, the interpolated
quaternion q(t) produces the vector x(t) which takes the long path from x0 to x1, while the
corrected q′1 = −q1 yields q′(t), producing the vector x′(t) along the shortest path from x0

to x1.

For unit quaternions q, the quaternion product matrices [q]L and [q∗]R satisfy two remark-
able properties,

[q] [q]> = I4 (136)

det([q]) = +1 , (137)

and are therefore elements of SO(4), that is, proper rotation matrices in the R4 space. To
be more specific, they represent a particular type of rotation, named isoclinic rotation, as
we explain hereafter. Thus, according to (116), a quaternion rotation corresponds to two
chained isoclinic rotations in R4.

In order to explain the insights of quaternion rotation, we need to understand isoclinic
rotations in R4. For this, we first need to understand general rotations in R4. And to
understand rotations in R4, we need to go back to R3, whose rotations are in fact planar
rotations. Let us walk all these steps one by one.

Rotations in R3: In R3, let us consider the rotations of a vector x around an arbitrary
axis represented by the vector u —see Fig. 8, and recall Fig. 1. Upon rotation, vectors
parallel to the axis of rotation u do not move, and vectors perpendicular to the axis rotate
in the plane π perpendicular to the axis. For general vectors x, the two components of the
vector in the plane rotate in this plane, while the axial component remains static.
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u

!

x

axis!

Figure 8: Rotation in R3. A rotation of a vector x around an axis u describes a circumference
in a plane orthogonal to the axis. The component of x parallel to the axis does not move,
and is represented by the small red dot on the axis. The sketch on the right illustrates the
radically di�erent behaviors of the rotating point on the plane and axis subspaces.

!1 !2

!2!1

Figure 9: Rotations in R4. Two orthogonal rotations are possible, on two orthogonal planes
�1 and �2. Rotations of a vector x (not drawn) in the plane �1 cause the two components
of the vector parallel to this plane (red dot on �1) to describe a circumference (red circle),
leaving the other two components in �2 unchanged (the red dot). Conversely, rotations in
the plane �2 (blue dot on blue circle in �2) leave the components in �1 unchanged (blue dot).
The sketch on the right better illustrates the situation by resigning to draw unrepresentable
perspectives in R4, which might be misleading.

Rotations in R4: In R4, see Fig. 9, due to the extra dimension, the one-dimensional
axis of rotation in R3 becomes a new two-dimensional plane. This second plane provides
room for a second rotation. Indeed, rotations in R4 encompass two independent rotations
in two orthogonal planes of the 4-space. This means that every 4-vector of each of these
planes rotates in its own plane, and that rotations of general 4-vectors with respect to one
plane leave unaffected the vector components in the other plane. These planes are for this
reason called ‘invariant’.

Isoclinic rotations in R4: Isoclinic rotations (from Greek, iso: “equal”, klinein: “to
incline”) are those rotations in R4 where the angles of rotation in the two invariant planes
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Figure 10: Quaternion rotation in R4. Two chained isoclinic rotations, one left (with equal
half-angles), and one right (with opposing half-angles), produce a pure rotation by the full
angle in only one of the invariant planes.

have the same magnitude. Then, when the two angles have also the same sign,13 we speak
of left-isoclinic rotations. And when they have opposite signs, we speak of right-isoclinic
rotations. A remarkable property of isoclinic rotations, that we had already seen in (23),
is that left- and right- isoclinic rotations commute,

[p]R [q]L = [q]L [p]R . (138)

Quaternion rotations in R4 and R3: Given a unit quaternion q = eu θ/2, representing
a rotation in R3 of an angle θ around the axis u, the matrix [q]L is a left-isoclinic rotation
in R4 corresponding to the left-multiplication by the quaternion q, and [q∗]R is a right-
isoclinic rotation corresponding to the right-multiplication by the quaternion q∗. The
angles of these isoclinic rotations are exactly of magnitude θ/2,14 and the invariant planes
are the same. Then, the rotation expression (116), reproduced once again here,[

0
x′

]
= q⊗ x⊗ q∗ = [q∗]R [q]L

[
0
x

]
,

represents two chained isoclinic rotations to the 4-vector (0,x)>, one left- and one right-,
each by half the desired rotation angle in R3. In one of the invariant planes of R4 (see
Fig. 10), the two half angles cancel out, because they have opposite signs. In the other
plane, they sum up to yield the total rotation angle θ. If we define from (116) the resulting
rotation matrix, R4, one easily realizes that (see also (138)),

R4 , [q∗]R[q]L = [q]L[q∗]R =

[
1 0
0 R

]
, (139)

13Given the two invariant planes, we arbitrarily select their orientations so that we can associate positive
and negative rotation angles in them.

14This can be checked by extracting the eigenvalues of the isoclinic rotation matrices: they are formed
by pairs of conjugate complex numbers with a phase equal to �=2.
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where R is the rotation matrix in R3, which clearly rotates vectors in the R3 subspace of
R4, leaving the fourth dimension unchanged.

This discourse is somewhat beyond the scope of the present document. It is also
incomplete, for it does not provide, beyond the result in (139), an intuition or geometrical
explanation for why we need to do q ⊗ x ⊗ q∗ instead of e.g. q ⊗ x ⊗ q.15 We include it
here just as a means for providing yet another way to interpret rotations by quaternions,
with the hope that the reader grasps more intuition about its mechanisms. The interested
reader is suggested to consult the appropriate literature on isoclinic rotations in R4.

3 Quaternion conventions. My choice.

3.1 Quaternion flavors

There are several ways to determine the quaternion. They are basically related to four
binary choices:

• The order of its elements — real part first or last:

q =

[
qw
qv

]
vs. q =

[
qv
qw

]
. (140)

• The multiplication formula — definition of the quaternion algebra:

ij = −ji = k vs. ji = −ij = k , (141a)

which correspond to different handedness, respectively:

right-handed vs. left-handed . (141b)

This means that, given a rotation axis u, one quaternion qright{u θ} rotates vectors
an angle θ around u using the right hand rule, while the other quaternion qleft{u θ}
uses the left hand rule.

• The function of the rotation operator — rotating frames or rotating vectors:

Passive vs. Active. (142)

• In the passive case, the direction of the operation — local-to-global or global-to-local:

xglobal = q⊗ xlocal ⊗ q∗ vs. xlocal = q⊗ xglobal ⊗ q∗ (143)

15Let it su�ce to say that q⊗ x⊗ q� works for rotations if q is a unit quaternion. In fact, the product
qv⊗x⊗qv produces re
ections (not rotations!) in R3 if qv is a unit pure quaternion. Finally, the product
q⊗ x⊗ q, with q a unit non-pure quaternion, exhibits no remarkable properties.
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Table 2: Hamilton vs. JPL quaternion conventions with respect to the 4 binary choices

Quaternion type Hamilton JPL

1 Components order (qw , qv) (qv , qw)

2
Algebra ij = k ij = −k
Handedness Right-handed Left-handed

3 Function Passive Passive

4

Right-to-left products mean Local-to-Global Global-to-Local

Default notation, q q , qGL q , qLG

Default operation xG = q⊗ xL ⊗ q∗ xL = q⊗ xG ⊗ q∗

This variety of choices leads to 12 different combinations. Historical developments have
favored some conventions over others (Chou, 1992; Yazell, 2009). Today, in the available
literature, we find many quaternion flavors such as the Hamilton, the STS16, the JPL17, the
ISS18, the ESA19, the Engineering, the Robotics, and possibly a lot more denominations.
Many of these forms might be identical, others not, but this fact is rarely explicitly stated,
and many works simply lack a sufficient description of their quaternion with regard to the
four choices above.

These differences impact the respective formulas for rotation, composition, etc., in non-
obvious ways. The formulas are thus not compatible, and we need to make a clear choice
from the very start.

The two most commonly used conventions, which are also the best documented, are
Hamilton (the options on the left in (140–143)) and JPL (the options on the right, with
the exception of (142)). Table 2 shows a summary of their characteristics. JPL is mostly
used in the aerospace domain, while Hamilton is more common to other engineering areas
such as robotics —though this should not be taken as a rule.

My choice, that has been taken as early as in equation (2), is to take the Hamilton
convention, which is right-handed and coincides with many software libraries of widespread
use in robotics, such as Eigen, ROS, Google Ceres, and with a vast amount of literature
on Kalman filtering for attitude estimation using IMUs (Chou, 1992; Kuipers, 1999; Piniés
et al., 2007; Roussillon et al., 2011; Martinelli, 2012, and many others).

The JPL convention is possibly less commonly used, at least in the robotics field. It
is extensively described in (Trawny and Roumeliotis, 2005), a reference work that has an
aim and scope very close to the present one, but that concentrates exclusively in the JPL
convention. The JPL quaternion is used in the JPL literature (obviously) and in key papers
by Li, Mourikis, Roumeliotis, and colleagues (see e.g. (Li and Mourikis, 2012; Li et al.,

16Space Transportation System, commonly known as NASA’s Space Shuttle.
17Jet Propulsion Laboratory.
18International Space Station.
19European Space Agency.
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2014)), which draw from Trawny and Roumeliotis’ document. These works are a primary
source of inspiration when dealing with visual-inertial odometry and SLAM —which is
what we do.

In the rest of this section we analyze these two quaternion conventions with a little
more depth.

3.1.1 Order of the quaternion components

Though not the most fundamental, the most salient difference between Hamilton and JPL
quaternions is in the order of the components, with the scalar part being either in first
(Hamilton) or last (JPL) position. The implications of such change are quite obvious and
should not represent a great challenge of interpretation. In fact, some works with the
quaternion’s real component at the end (e.g., the C++ library Eigen) are still considered
as using the Hamilton convention, as long as the other three aspects are maintained.

We have used the subscripts (w, x, y, z) for the quaternion components for increased
clarity, instead of the other commonly used (0, 1, 2, 3). When changing the order, qw will
always denote the real part, while it is not clear whether q0 would also do —in some
occasions, one might find things such as q = (q1, q2, q3, q0), with q0 real and last, but in the
general case of q = (q0, q1, q2, q3), the real part at the end would be q3.20 When passing
from one convention to the other, we must be careful of formulas involving full 4 × 4 or
3×4 quaternion-related matrices, for their rows and/or columns need to be swapped. This
is not difficult to do, but it might be difficult to detect and therefore prone to error.

Two curiosities about the components’ order are:

• With real part first, the quaternion is naturally interpreted as an extended complex
number, of the familiar form real+imaginary. Some of us are comfortable with this
representation probably because of this.

• With real part last, the quaternion expressed in vector form, q =
[
x, y, z, w

]
∈ H,

has a format absolutely equivalent to the homogeneous vector in the projective 3D
space, p =

[
x, y, z, w

]
∈ P3, where in both cases x, y, z are clearly identified with

the three Cartesian axes. When dealing with geometric problems in 3D, this makes
the algebra for operating on quaternions and homogeneous vectors more uniform,
especially (but not only) if the homogeneous vector is constrained to the unit sphere
‖p‖ = 1.

3.1.2 Specification of the quaternion algebra

The Hamilton convention defines ij = k and therefore,

i2 = j2 = k2 = ijk = −1 , ij = −ji = k , jk = −kj = i , ki = −ik = j , (144)

20See also footnote 1.
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whereas the JPL convention defines ji = k and hence its quaternion algebra becomes,

i2 = j2 = k2 = −ijk = −1 , −ij = ji = k , −jk = kj = i , −ki = ik = j . (145)

Interestingly, these subtle sign changes preserve the basic properties of quaternions
as rotation operators. Mathematically, the key consequence is the change of the sign of
the cross-product in (13), which induces a change in the quaternion handedness (Shuster,
1993): Hamilton uses ij = k and is therefore right-handed, i.e., it turns vectors following
the right-hand rule; JPL uses ji = k and is left-handed (Trawny and Roumeliotis, 2005).
Being left- and right- handed rotations of opposite signs, we can say that their quaternions
qleft and qright are related by,

qleft = q∗right . (146)

3.1.3 Function of the rotation operator

We have seen how to rotate vectors in 3D. This is referred to in (Shuster, 1993) as the
active interpretation, because operators (this affects all rotation operators) actively rotate
vectors,

x′ = qactive ⊗ x⊗ q∗active , x′ = Ractive x . (147)

Another way of seeing the effect of q and R over a vector x is to consider that the
vector is steady but it is us who have rotated our point of view by an amount specified by
q or R. This is called here frame transformation and it is referred to in (Shuster, 1993) as
the passive interpretation, because vectors do not move,

xB = qpassive ⊗ xA ⊗ q∗passive , xB = Rpassive xA , (148)

where A and B are two Cartesian reference frames, and xA and xB are expressions of the
same vector x in these frames. See further down for explanations and proper notations.

The active and passive interpretations are governed by operators inverse of each other,
that is,

qactive = q∗passive , Ractive = R>passive .

Both Hamilton and JPL use the passive convention.

Direction cosine matrix A few authors understand the passive operator as not being
a rotation operator, but rather an orientation specification, named the direction cosine
matrix,

C =

cxx cxy czx
cxy cyy czy
cxz cyz czz

 , (149)

where each component cij is the cosine of the angle between the axis i in the source frame
and the axis j in the target frame. We have the identity,

C ≡ Rpassive . (150)
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3.1.4 Direction of the rotation operator

In the passive case, a second source of interpretation is related to the direction in which
the rotation matrix and quaternion operate, either converting from local to global frames,
or from global to local.

Given two Cartesian frames G and L, we identify G and L as being the global and local
frames. “Global” and “local” are relative definitions, i.e., G is global with respect to L,
and L is local with respect to G – in other words, L is a frame specified in the reference
frame G.21 We specify qGL and RGL as being respectively the quaternion and rotation
matrix transforming vectors from frame L to frame G, in the sense that a vector xL in
frame L is expressed in frame G with the quaternion- and matrix- products

xG = qGL ⊗ xL ⊗ q∗GL , xG = RGL xL . (151)

The opposite conversion, from G to L, is done with

xL = qLG ⊗ xG ⊗ q∗LG , xL = RLG xG , (152)

where

qLG = q∗GL , RLG = R>GL . (153)

Hamilton uses local-to-global as the default specification of a frame L expressed in
frame G,

qHamilton , q[with respect to][of ] = q[to][from] = qGL , (154)

while JPL uses the opposite, global-to-local conversion,

qJPL , q[of ][with respect to] = q[to][from] = qLG . (155)

Notice that

qJPL , qLG,left = q∗LG,right = qGL,right , qHamilton , (156)

which is not particularly useful, but illustrates how easy it is to get confused when mixing
conventions. Notice also that we can conclude that qJPL = qHamilton, but this, far from
being a beautiful result, is just the source of great confusion, because the equality is only
present in the quaternion values, but the two quaternions, when employed in formulas,
mean and represent different things.

21Other common denominations for the {global, local} frames are {parent, child} and {world, body}.
The �rst one is convenient when more than two frames are involved in a system (e.g. the frames of each
moving link in a humanoid robot); the second one is convenient for a solid vehicle body (e.g. a plane, a
car) moving in a unique reference frame identi�ed as the world.
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4 Perturbations, derivatives and integrals

4.1 The additive and subtractive operators in SO(3)

In vector spaces Rn, the addition and subtraction operations are performed with the regular
sum ‘+’ and minus ‘−’ operations. In SO(3) this is not possible, but equivalent operators
can be defined for establishing a proper calculus corpus.

We thus define the plus and minus operators, ⊕,	, between elements R ∈ SO(3), and
elements � ∈ R3 of the tangent space at R, as follows.

The plus operator. The ‘plus’ operator ⊕ : SO(3)×R3 → SO(3) produces an element
S of SO(3) which is the result of composing a reference element R of SO(3) with a (often
small) rotation. This rotation is specified by a vector of � ∈ R3 in the vector space tangent
to the SO(3) manifold at the reference element R, that is,

S = R⊕ � , R ◦ Exp(�) R, S ∈ SO(3), � ∈ R3 . (157)

Notice that this operator may be defined for any representation of SO(3). In particular,
for the quaternion and rotation matrix we have,

qS = qR ⊕ � = qR ⊗ Exp(�) (158)

RS = RR ⊕ � = RR ·Exp(�) . (159)

The minus operator. The ‘minus’ operator 	 : SO(3) × SO(3) → R3 is the inverse
of the above. It returns the vectorial angular difference � ∈ R3 between two elements of
SO(3). This difference is expressed in the vector space tangent to the reference element R,

� = S	 R , Log(R−1 ◦ S) R, S ∈ SO(3), � ∈ R3 , (160)

which for the quaternion and rotation matrix reads,

� = qS 	 qR = Log(q∗R ⊗ qS) (161)

� = RS 	RR = Log(R>R RS) . (162)

In both cases, notice that even though the vector difference � is typically supposed
to be small, the definitions above hold for any value of � (up to the first coverage of the
SO(3) manifold, that is, for angles θ < π).

4.2 The four possible derivative definitions

4.2.1 Functions from vector space to vector space

The scalar and vector cases follow the classical definition of the derivative: given a function
f : Rm → Rn, we use {+,−} to define the derivative as

∂f(x)

∂x
, lim

δx→0

f(x + δx)− f(x)

δx
∈ Rn×m (163)
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Euler integration produces linear expressions of the form

f(x + ∆x) ≈ f(x) +
∂f(x)

∂x
∆x ∈ Rn

4.2.2 Functions from SO(3) to SO(3)

Given a function f : SO(3)→ SO(3) with R ∈ SO(3) and a local, small angular variation
� ∈ R3, we use {⊕,	} to define the derivative as

∂f(R)

∂�
, lim

δ�→0

f(R⊕ δ�)	 f(R)

δ�
∈ R3×3 (164)

= lim
δ�→0

Log
(
f−1(R) f(R Exp(δ�))

)
δ�

(165)

Euler integration produces expressions of the form,

f(R⊕∆�) ≈ f(R) ⊕ ∂f(R)

∂�
∆� , f(R) Exp

(
∂f(R)

∂�
∆�

)
∈ SO(3)

4.2.3 Functions from vector space to SO(3)

For the case of a function f : Rm → SO(3), we use ‘+’ for the vector perturbations, and
‘	’ for the SO(3) difference,

∂f(x)

∂x
, lim

δx→0

f(x + δx)	 f(x)

δx
∈ R3×m (166)

= lim
δx→0

Log(f−1(x)f(x + δx))

δx
(167)

Euler integration produces expressions of the form,

f(x + ∆x) ≈ f(x) ⊕ ∂f(x)

∂x
∆x , f(x) Exp

(
∂f(x)

∂x
∆x

)
∈ SO(3)

4.2.4 Functions from SO(3) to vector space

For the case of a function f : SO(3) → Rn, we use ‘⊕’ for the SO(3) perturbations, and
‘−’ for the vector difference,

∂f(R)

∂�
, lim

δ�→0

f(R⊕ δ�)− f(R)

δ�
∈ Rn×3 (168)

= lim
δ�→0

f(R Exp(δ�))− f(R)

δ�
(169)

Euler integration produces expressions of the form,

f(R⊕ δ�) ≈ f(R) +
∂f(R)

∂�
∆� , f(R) + Exp

(
∂f(R)

∂�
∆�

)
∈ SO(3)
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4.3 Useful, and very useful, Jacobians of the rotation

Let us consider a rotation to a vector a, of θ radians around the unit axis u. Let us
express the rotation specification in three equivalent forms, namely � = θu, q = q{�}
and R = R{�}. We are interested in the Jacobians of the rotated result with respect to
different magnitudes.

4.3.1 Jacobian with respect to the vector

The derivative of the rotation of a vector a with respect to this vector is trivial,

∂(q⊗ a⊗ q∗)
∂a

=
∂(R a)

∂a
= R . (170)

4.3.2 Jacobian with respect to the quaternion

On the contrary, the derivative of the rotation with respect to the quaternion q is tricky.
For convenience, we use a lighter notation for the quaternion, q = [w v] = w + v. We
make use of (35), (34), and the identity a× (b× c) = (c× b)× a = (a>c) b− (a>b) c, to
develop the quaternion-based rotation (107) as follows,

a′ = q⊗ a⊗ q∗
= (w + v)⊗ a⊗ (w − v)

= w2a + w(v ⊗ a− a⊗ v)− v ⊗ a⊗ v

= w2a + 2w(v×a)−
[
(−v>a + v×a)⊗ v

]
= w2a + 2w(v×a)−

[
(−v>a) v + (v×a)⊗ v

]
= w2a + 2w(v×a)−

[
(−v>a) v −������

(v×a)>v + (v×a)×v
]

= w2a + 2w(v×a)−
[
(−v>a) v + (v>v) a− (v>a) v

]
= w2a + 2w(v×a) + 2(v>a) v − (v>v) a .

(171)

With this, we can extract the derivatives ∂a′/∂w and ∂a′/∂v,

∂a′

∂w
= 2(wa + v×a) (172)

∂a′

∂v
= −2w [a]× + 2(v>a I + v a>)− 2a v>

= 2(v>a I + v a> − a v> − w [a]×) ,
(173)

yielding

∂(q⊗ a⊗ q∗)
∂q

= 2
[
w a + v×a

∣∣ v>a I3 + v a> − a v> − w [a]×
]
∈ R3×4 . (174)
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Figure 11: The right Jacobian Jr = @��=@�� maps variations �� around the parameter �
into variations �� on the vector space tangent to the manifold at the point Exp�.

4.3.3 Right Jacobian of SO(3)

Let us consider (see Fig. 11) an element R ∈ SO(3) and a rotation vector � ∈ R3 such
that R = Exp(�). When � is altered by an amount δ�, the element R varies. Expressing
the variations of R in the tangent space of SO(3) at R with a rotation vector δ� ∈ R3, we
have that (please see the figure, I am not inventing anything here)

Exp(�)⊕ δ� = Exp(� + δ�) (175)

which might be written also as,

Exp(�) ◦ Exp(δ�) = Exp(� + δ�) , (176)

and even

δ� = Log
(

Exp(�)−1 ◦ Exp(� + δ�)
)

= Exp(� + δ�)	 Exp(�) . (177)

In the limit, the variation of δ� as a function of δ� defines a Jacobian matrix

∂δ�

∂δ�
= lim

δ�→0

δ�

δ�
= lim

δ�→0

Exp(� + δ�)	 Exp(�)

δ�
, (178)

whose expression is a particular case of (166), that is, it is the derivative of the function
f(�) = Exp(�), from R3 to SO(3). This Jacobian matrix is known as the right Jacobian
of SO(3), and is defined as,

Jr(�) ,
∂ Exp(�)

∂�
. (179)
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Its expression is independent of the parametrization used, though it can indeed be expressed
particularly for each parametrization. Using (166) we have,

Jr(�) = lim
δ�→0

Exp(� + δ�)	 Exp(�)

δ�
(180)

= lim
δ�→0

Log(Exp(�)> Exp(� + δ�))

δ�
if using R (181)

= lim
δ�→0

Log(Exp(�)∗ ⊗ Exp(� + δ�))

δ�
if using q . (182)

The right Jacobian and its inverse can be computed in closed form (Chirikjian, 2012,
page 40),

Jr(�) = I− 1− cos ‖�‖
‖�‖2 [�]× +

‖�‖ − sin ‖�‖
‖�‖3 [�]2× (183)

J−1
r (�) = I +

1

2
[�]× +

(
1

‖�‖2 −
1 + cos ‖�‖
2‖�‖ sin ‖�‖

)
[�]2× (184)

The right Jacobian of SO(3) has the following properties, for any � and small δ�,

Exp(� + δ�) ≈ Exp(�) Exp(Jr(�)δ�) (185)

Exp(�) Exp(δ�) ≈ Exp(� + J−1
r (�) δ�) (186)

Log(Exp(�) Exp(δ�)) ≈ � + J−1
r (�) δ� (187)

4.3.4 Jacobian with respect to the rotation vector

The rotation of a vector a′ = R{�} a with respect to the rotation vector � is a function
from R3 to R3. Its derivative with respect to the rotation vector � uses (163) and is
developed from the previous result, using (185),

∂(q⊗ a⊗ q∗)

∂δ�
=
∂(R a)

∂δ�
= lim

δ�→0

R{� + δ�} a−R{�} a

δ�
← (163)

= lim
δ�→0

(R{�}Exp(Jr(�) δ�)−R{�})a
δ�

← (185)

= lim
δ�→0

(R{�}(I + [Jr(�) δ�]×)−R{�})a
δ�

= lim
δ�→0

R{�} [Jr(�) δ�]× a

δ�

= lim
δ�→0
−R{�} [a]× Jr(�) δ�

δ�
= −R{�} [a]× Jr(�) ,

where R{�} , Exp(�). Summarizing,

∂(q⊗ a⊗ q∗)

∂δ�
=
∂(R a)

∂δ�
= −R{�} [a]× Jr(�) . (188)
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4.4 Perturbations, uncertainties, noise

4.4.1 Local perturbations

A perturbed orientation q̃ may be expressed as the composition of the unperturbed orien-
tation q with a small local perturbation ∆qL. Because of the Hamilton convention, this
local perturbation appears at the right hand side of the composition product —we give
also the matrix equivalent for comparison,

q̃ = q⊗∆qL , R̃ = R ∆RL . (189)

These local perturbation ∆qL (or ∆RL) is easily obtained from its equivalent vector form
∆�L = u∆φL, defined in the tangent space, using the exponential map. This gives

q̃L = qL ⊗ Exp(∆�L) , R̃L = RL ·Exp(∆�L) (190)

leading to an expression of the local perturbation

∆�L = Log(q∗L ⊗ q̃L) = Log(R>L ·R̃L) (191)

If the perturbation angle ∆φL is small then the perturbation in quaternion and rotation
matrix forms can be approximated by the Taylor expansions of (101) and (69) up to the
linear terms,

∆qL ≈
[

1
1
2
∆�L

]
, ∆RL ≈ I + [∆�L]× . (192)

Perturbations can therefore be specified in the local vector space ∆�L tangent to the SO(3)
manifold at the actual orientation. It is convenient, for example, to express the covariances
matrix of these perturbations in this vectorial space, that is, with a regular 3×3 covariance
matrix.

4.4.2 Global perturbations

It is possible and indeed interesting to consider globally-defined perturbations, and like-
wise for the related derivatives. Global perturbations appear at the left hand side of the
composition product, namely,

q̃G = Exp(∆�G)⊗ qG , R̃G = Exp(∆�G)·RG (193)

leading to an expression of the global perturbation

∆�G = Log(q̃G ⊗ q∗G) = Log(R̃G ·R>G ) (194)

Again, these perturbations can be specified in the vector space ∆�G tangent to the
SO(3) manifold at the origin.
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4.5 Time derivatives

Expressing the local perturbations in a vector space we can easily develop expressions for
the time-derivatives. Just consider q = q(t) as the original state, q̃ = q(t + ∆t) as the
perturbed state, and apply the definition of the derivative

dq(t)

dt
, lim

∆t→0

q(t+ ∆t)− q(t)

∆t
, (195)

to the above, with

!L(t) ,
d�L(t)

dt
, lim

∆t→0

∆�L
∆t

, (196)

which, being ∆�L a local angular perturbation, corresponds to the angular rates vector in
the local frame defined by q.

The development of the time-derivative of the quaternion follows (an analogous reason-
ing would be used for the rotation matrix)

q̇ , lim
∆t→0

q(t+ ∆t)− q(t)

∆t

= lim
∆t→0

q⊗∆qL − q

∆t

= lim
∆t→0

q⊗
([

1
∆�L/2

]
−
[

1
0

])
∆t

= lim
∆t→0

q⊗
[

0
∆�L/2

]
∆t

=
1

2
q⊗

[
0
!L

]
. (197)

Defining

Ω(!) , [!]R =

[
0 −!>
! − [!]×

]
=


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 , (198)

we get from (197) and (17) (we give also its matrix equivalent)

q̇ =
1

2
Ω(!L) q =

1

2
q⊗ !L , Ṙ = R [!L]× . (199)

These expressions are of course identical to (99) and (67), developed in the framework
of the rotation group SO(3). Here, however, and interestingly, we are able to clearly refer
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the angular rate !L to a particular reference frame, which in this case is the local frame
defined by the orientation q or R. This has been possible now because we have given the
operators q and R a precise geometrical meaning. From this viewpoint, (199) expresses
the evolution of the orientation of a reference frame, when the angular rates are expressed
locally in this frame.

The time-derivatives associated to global perturbations follow from a development anal-
ogous to (197), which results in

q̇ =
1

2
!G ⊗ q , Ṙ = [!G]×R , (200)

where

!G(t) ,
d�G(t)

dt
(201)

is the angular rates vector expressed in the global frame. Eq. (200) expresses the evolution
of the orientation of a reference frame, when the angular rates are expressed in the global
reference frame.

4.5.1 Global-to-local relations

From the previous paragraph, it is worth noticing the following relation between local and
global angular rates,

1

2
!G ⊗ q = q̇ =

1

2
q⊗ !L . (202)

Then, post-multiplying by the conjugate quaternion we have

!G = q⊗ !L ⊗ q∗ = R!L . (203)

Likewise, considering that ∆�R ≈ !∆t for small ∆t, we have that

∆�G = q⊗∆�L ⊗ q∗ = R ∆�L . (204)

That is, we can transform angular rates vectors ! and small angular perturbations ∆� via
frame transformation, using the quaternion or the rotation matrix, as if they were regular
vectors. The same can be seen by posing ! = uω, or ∆� = u∆φ, and noticing that the
rotation axis vector u transforms normally, with

uG = q⊗ uL ⊗ q∗ = R uL . (205)
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4.5.2 Time-derivative of the quaternion product

We use the regular formula for the derivative of the product,

˙(q1 ⊗ q2) = q̇1 ⊗ q2 + q1 ⊗ q̇2 , ˙(R1R2) = Ṙ1R2 + R1Ṙ2 , (206)

but noticing that, since the products are non commutative, we need to respect the order
of the operands strictly. This means that ˙(q2) 6= 2 q⊗ q̇ , as it would be in the scalar case,
but rather

˙(q2) = q̇⊗ q + q⊗ q̇ . (207)

4.5.3 Other useful expressions with the derivative

We can derive an expression for the local rotation rate

!L = 2 q∗ ⊗ q̇ , [!L]× = R> Ṙ . (208)

and the global rotation rate,

!G = 2 q̇⊗ q∗ , [!G]× = Ṙ R> . (209)

4.6 Time-integration of rotation rates

Accumulating rotation over time in quaternion form is done by integrating the differential
equation appropriate to the rotation rate definition, that is, (199) for a local rotation rate
definition, and (200) for a global one. In the cases we are interested in, the angular rates
are measured by local sensors, thus providing local measurements !(tn) at discrete times
tn = n∆t. We concentrate here on this case only, for which we reproduce the differential
equation (199),

q̇(t) =
1

2
q(t)⊗ !(t) . (210)

We develop zeroth- and first- order integration methods (Figs. 12 and 13), all based on
the Taylor series of q(tn + ∆t) around the time t = tn. We note q , q(t) and qn , q(tn),
and the same for !. The Taylor series reads,

qn+1 = qn + q̇n∆t+
1

2!
q̈n∆t2 +

1

3!

...
qn∆t3 +

1

4!

....
q n∆t4 + · · · . (211)

The successive derivatives of qn above are easily obtained by repeatedly applying the
expression of the quaternion derivative, (210), with !̈ = 0. We obtain

q̇n =
1

2
qn!n (212a)

q̈n =
1

22
qn!

2
n +

1

2
qn !̇ (212b)

...
qn =

1

23
qn!

3
n +

1

4
qn !̇ !n +

1

2
q!n !̇ (212c)

q(i≥ 4)
n =

1

2i
qn!

i
n + · · · , (212d)
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Figure 12: Angular velocity approximations for the integral: Red: true velocity. Blue: zero-
th order approximations (bottom to top: forward, midward and backward). Green: �rst
order approximation.

!n!n!1

qn!1 qn+1qn

!n !n+1!n!1

qn!1 qn+1qn

!n !n+1

qn!1 qn+1qn

Figure 13: Integration schemes for two consecutive time steps (gray and black arrow sets),
where variables sharing the same time stamp have been organized in columns. Left: forward
integration. Center: midward and �rst-order integrations. Right: backward integration.

where we have omitted the ⊗ signs for economy of notation, that is, all products and the
powers of ! must be interpreted in terms of the quaternion product.

4.6.1 Zeroth order integration

Forward integration In the case where the angular rate !n is held constant over the
period [tn, tn+1], we have !̇ = 0 and (211) reduces to,

qn+1 = qn ⊗
(

1 +
1

2
!n∆t+

1

2!

(1

2
!n∆t

)2

+
1

3!

(1

2
!n∆t

)3

+ · · ·
)
, (213)

where we identify the Taylor series (40) of the exponential e!n∆t/2. From (101), this
exponential corresponds to the quaternion representing the incremental rotation ∆θ =
!n∆t,

e!∆t/2 = Exp(!∆t) = q{!∆t} =

[
cos(‖!‖∆t/2)
!
‖!‖ sin(‖!‖∆t/2)

]
,

therefore,

qn+1 = qn ⊗ q{!n∆t} . (214)
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Backward integration We can also consider that the constant velocity over the period
∆t corresponds to !n+1, the velocity measured at the end of the period. This can be
developed in a similar manner with a Taylor expansion of qn around tn+1, leading to

qn+1 ≈ qn ⊗ q{!n+1∆t} . (215)

We want to remark here that this is the typical integration method when the arriving
motion measurements are to be processed in real time, because the integration horizon
corresponds to the last measurement (in this case, tn+1, see Fig. 13). To make this more
salient, we can re-label the time indices to use {n− 1, n} instead of {n, n+ 1}, and write,

qn = qn−1 ⊗ q{!n∆t} . (216)

Midward integration Similarly, if the velocity is considered constant at the median
rate over the period ∆t (which is not necessary the velocity at the midpoint of the period),

! =
!n+1 + !n

2
, (217)

we have,

qn+1 = qn ⊗ q{!∆t} . (218)

4.6.2 First order integration

The angular rate !(t) is now linear with time. Its first derivative is constant, and all
higher ones are zero,

!̇ =
!n+1 − !n

∆t
(219)

!̈ =
...
! = · · · = 0 . (220)

We can write the median rate ! in terms of !n and !̇,

! = !n +
1

2
!̇∆t , (221)

and derive the expression of the powers of !n appearing in the quaternion derivatives
(212), in terms of the more convenient ! and !̇,

!n = ! − 1

2
!̇∆t (222a)

!2
n = !2 − 1

2
! !̇∆t− 1

2
!̇ !∆t+

1

4
!̇2∆t2 (222b)

!3
n = !3 − 3

2
!2 !̇∆t+

3

4
! !̇2∆t2 +

1

8
!̇3∆t3 (222c)

!4
n = !4 + · · · . (222d)
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Injecting them in the quaternion derivatives, and substituting in the Taylor series (211),
we have after proper reordering,

qn+1 = q

(
1 +

1

2
!∆t+

1

2!

(
1

2
!∆t

)2

+
1

3!

(
1

2
!∆t

)3

+ · · ·
)

(223a)

+ q

(
−1

4
!̇ +

1

4
!̇

)
∆t2 (223b)

+ q

(
− 1

16
! !̇ − 1

16
!̇ ! +

1

24
!̇ ! +

1

12
! !̇

)
∆t3 (223c)

+ q

(
· · ·
)

∆t4 + · · · , (223d)

where in (223a) we recognize the exponential series e!∆t/2 = q{!∆t}, (223b) vanishes,
and (223d) represents terms of high multiplicity that we are going to neglect. This yields
after simplification (we recover now the normal ⊗ notation),

qn+1 = qn ⊗ q{!∆t}+
∆t3

48
qn ⊗ (! ⊗ !̇ − !̇ ⊗ !) + · · · . (224)

Substituting !̇ and ! by their definitions (219) and (217) we get,

qn+1 = qn ⊗ q{!∆t}+
∆t2

48
qn ⊗ (!n ⊗ !n+1 − !n+1 ⊗ !n) + · · · , (225)

which is a result equivalent to (Trawny and Roumeliotis, 2005)’s, but using the Hamilton
convention, and the quaternion product form instead of the matrix product form. Finally,
since av ⊗ bv − bv ⊗ av = 2 av×bv, see (34), we have the alternative form,

qn+1 ≈ qn ⊗
(

q{!∆t}+
∆t2

24

[
0

!n× !n+1

])
. (226)

In this expression, the first term of the sum is the midward zeroth order integrator
(218). The second term is a second-order correction that vanishes when !n and !n+1

are collinear,22 i.e., when the axis of rotation has not changed from tn to tn+1.

Case of fixed rotation axis Let us write !(t) = u(t)ω(t) and call u the axis of rotation.
In the case of a constant rotation axis u(t) = u, we have !n× !n+1 = 0 and therefore,

qn+1 = qn ⊗ q{uω∆t} . (227)

22Notice also from (225) that this term would always vanish if the quaternion product were commutative,
which is not.
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This result is in fact interesting for cases not limited to first-order derivatives of !(t). In
effect, if the axis of rotation is constant, the infinitesimal contributions of rotation into the
quaternion commute, i.e.,

exp(uω1 δt1) exp(uω2 δt2) = exp(uω2 δt2) exp(uω1 δt1) = exp(u (ω1δt1 + ω2δt2)) ,

and thus we have the identity,

qn+1 = qn ⊗ exp

(
u

2

∫ tn+1

tn

ω(t) δt

)
(228a)

= qn ⊗ exp(u ∆θn/2) (228b)

= qn ⊗ q{u ∆θn} . (228c)

with ∆θn =
∫ tn+1

tn
ω(t)dt ∈ R the total angle rotated during the interval [tn, tn+1].

Case of varying rotation axis Clearly, the second term of the sum in (226) captures
through !n× !n+1 6= 0 the effect that a varying rotation axis has on the integrated
orientation. For its practical usage, we notice that given usual IMU sampling times ∆t ≤
0.01s, and the usual near-collinearity of !n and !n+1 due to inertia, this second-order term
takes values of the order of 10−6‖!‖2, or easily smaller. Terms with higher multiplicities
of !∆t are even smaller and have been neglected.

Please note also that, while all zeroth-order integrators result in unit quaternions by
construction (because they are computed as the product of two unit quaternions), this is
not the case for the first-order integrator due to the sum in (226). Hence, when using the
first-order integrator, and even if the summed term is small as stated, users should take
care to check the evolution of the quaternion norm over time, and eventually re-normalize
the quaternion if needed, using quaternion updates of the form q ← q/‖q‖. Only if the
constant axis assumption holds, then (227) holds too and this normalization is no longer
necessary.

5 Error-state kinematics for IMU-driven systems

5.1 Motivation

We wish to write the error-estate equations of the kinematics of an inertial system in-
tegrating accelerometer and gyrometer readings with bias and noise, using the Hamilton
quaternion to represent the orientation in space or attitude.

Accelerometer and gyrometer readings come typically from an Inertial Measurement
Unit (IMU). Integrating IMU readings leads to dead-reckoning positioning systems, which
drift with time. Avoiding drift is a matter of fusing this information with absolute position
readings such as GPS or vision.

The error-state Kalman filter (ESKF) is one of the tools we may use for this pur-
pose. Within the Kalman filtering paradigm, these are the most remarkable assets of the
ESKF (Madyastha et al., 2011):
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• The orientation error-state is minimal (i.e., it has the same number of parameters as
degrees of freedom), avoiding issues related to over-parametrization (or redundancy)
and the consequent risk of singularity of the involved covariances matrices, resulting
typically from enforcing constraints.

• The error-state system is always operating close to the origin, and therefore far from
possible parameter singularities, gimbal lock issues, or the like, providing a guarantee
that the linearization validity holds at all times.

• The error-state is always small, meaning that all second-order products are negligible.
This makes the computation of Jacobians very easy and fast. Some Jacobians may
even be constant or equal to available state magnitudes.

• The error dynamics are slow because all the large-signal dynamics have been inte-
grated in the nominal-state. This means that we can apply KF corrections (which
are the only means to observe the errors) at a lower rate than the predictions.

5.2 The error-state Kalman filter explained

In error-state filter formulations, we speak of true-, nominal- and error-state values, the
true-state being expressed as a suitable composition (linear sum, quaternion product or
matrix product) of the nominal- and the error- states. The idea is to consider the nominal-
state as large-signal (integrable in non-linear fashion) and the error-state as small signal
(thus linearly integrable and suitable for linear-Gaussian filtering).

The error-state filter can be explained as follows. On one side, high-frequency IMU data
um is integrated into a nominal-state x. This nominal state does not take into account the
noise terms w and other possible model imperfections. As a consequence, it will accumulate
errors. These errors are collected in the error-state δx and estimated with the Error-State
Kalman Filter (ESKF), this time incorporating all the noise and perturbations. The error-
state consists of small-signal magnitudes, and its evolution function is correctly defined by a
(time-variant) linear dynamic system, with its dynamic, control and measurement matrices
computed from the values of the nominal-state. In parallel with integration of the nominal-
state, the ESKF predicts a Gaussian estimate of the error-state. It only predicts, because
by now no other measurement is available to correct these estimates. The filter correction
is performed at the arrival of information other than IMU (e.g. GPS, vision, etc.), which
is able to render the errors observable and which happens generally at a much lower rate
than the integration phase. This correction provides a posterior Gaussian estimate of the
error-state. After this, the error-state’s mean is injected into the nominal-state, then reset
to zero. The error-state’s covariances matrix is conveniently updated to reflect this reset.
The system goes on like this forever.
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Table 3: All variables in the error-state Kalman �lter.

Magnitude True Nominal Error Composition Measured Noise

Full state (1) xt x δx xt = x⊕ δx
Position pt p δp pt = p + δp

Velocity vt v δv vt = v + δv

Quaternion (2,3) qt q δq qt = q⊗ δq
Rotation matrix (2,3) Rt R δR Rt = R δR

Angles vector (4) δ�
δq = eδ�/2

δR = e[δ�]�

Accelerometer bias abt ab δab abt = ab + δab aw

Gyrometer bias !bt !b δ!b !bt = !b + δ!b !w

Gravity vector gt g δg gt = g + δg

Acceleration at am an

Angular rate !t !m !n

(1) the symbol ⊕ indicates a generic composition

(2) indicates non-minimal representations

(3) see Table 4 for the composition formula in case of globally-defined angular errors

(4) exponentials defined as in (101) and (69, 77)

5.3 System kinematics in continuous time

The definition of all the involved variables is summarized in Table 3. Two important
decisions regarding conventions are worth mentioning:

• The angular rates ! are defined locally with respect to the nominal quaternion. This
allows us to use the gyrometer measurements !m directly, as they provide body-
referenced angular rates.

• The angular error δ� is also defined locally with respect to the nominal orientation.
This is not necessarily the optimal way to proceed, but it corresponds to the choice
in most IMU-integration works —what we could call the classical approach. There
exists evidence (Li and Mourikis, 2012) that a globally-defined angular error has
better properties. This will be explored too in the present document, Section 7, but
most of the developments, examples and algorithms here are based in this locally-
defined angular error.
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5.3.1 The true-state kinematics

The true kinematic equations are

ṗt = vt (229a)

v̇t = at (229b)

q̇t =
1

2
qt ⊗ !t (229c)

ȧbt = aw (229d)

!̇bt = !w (229e)

ġt = 0 (229f)

Here, the true acceleration at and angular rate !t are obtained from an IMU in the form
of noisy sensor readings am and !m in body frame, namely23

am = R>t (at − gt) + abt + an (230)

!m = !t + !bt + !n (231)

with Rt , R{qt}. With this, the true values can be isolated (this means that we have
inverted the measurement equations),

at = Rt(am − abt − an) + gt (232)

!t = !m − !bt − !n. (233)

Substituting above yields the kinematic system

ṗt = vt (234a)

v̇t = Rt(am − abt − an) + gt (234b)

q̇t =
1

2
qt ⊗ (!m − !bt − !n) (234c)

ȧbt = aw (234d)

!̇bt = !w (234e)

ġt = 0 (234f)

23It is common practice to neglect the Earth’s rotation rate !E in the rotational kinematics described
in (231), which would otherwise be !m = !t + R>t !E + !bt + !n. Considering a non-null Earth rotation
rate is, in the vast majority of practical cases, unjusti�ably complicated. However, we notice that when
employing high-end IMU sensors with very small noises and biases, a value of !E = 15�/h ≈ 7:3·10�5 rad/s
might become directly measurable; in such cases, in order to keep the IMU error model valid, the rate !E
should not be neglected in the formulation.
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which we may name ẋt = ft(xt,u,w). This system has state xt, is governed by IMU noisy
readings um, and is perturbed by white Gaussian noise w, all defined by

xt =


pt
vt
qt
abt
!bt
gt

 u =

[
am − an
!m − !n

]
w =

[
aw
!w

]
. (235)

It is to note in the above formulation that the gravity vector gt is going to be estimated
by the filter. It has a constant evolution equation, (234f), as corresponds to a magnitude
that is known to be constant. The system starts at a fixed and arbitrarily known initial
orientation qt(t = 0) = q0, which, being generally not in the horizontal plane, makes the
initial gravity vector generally unknown. For simplicity it is usually taken q0 = (1, 0, 0, 0)
and thus R0 = R{q0} = I. We estimate gt expressed in frame q0, and not qt expressed in
a horizontal frame, so that the initial uncertainty in orientation is transferred to an initial
uncertainty on the gravity direction. We do so to improve linearity: indeed, equation
(234b) is now linear in g, which carries all the uncertainty, and the initial orientation q0 is
known without uncertainty, so that q starts with no uncertainty. Once the gravity vector
is estimated the horizontal plane can be recovered and, if desired, the whole state and
recovered motion trajectories can be re-oriented to reflect the estimated horizontal. See
(Lupton and Sukkarieh, 2009) for further justification. This is of course optional, and the
reader is free to remove all equations related to graviy from the system and adopt a more
classical approach of considering g , (0, 0,−9.8xx), with xx the appropriate decimal digits
of the gravity vector on the site of the experiment, and an uncertain initial orientation q0.

5.3.2 The nominal-state kinematics

The nominal-state kinematics corresponds to the modeled system without noises or per-
turbations,

ṗ = v (236a)

v̇ = R(am − ab) + g (236b)

q̇ =
1

2
q⊗ (!m − !b) (236c)

ȧb = 0 (236d)

!̇b = 0 (236e)

ġ = 0. (236f)

5.3.3 The error-state kinematics

The goal is to determine the linearized dynamics of the error-state. For each state equa-
tion, we write its composition (in Table 3), solving for the error state and simplifying all
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second-order infinitesimals. We give here the full error-state dynamic system and proceed
afterwards with comments and proofs.

˙δp = δv (237a)

˙δv = −R [am − ab]× δ� −Rδab + δg −Ran (237b)

˙δ� = − [!m − !b]× δ� − δ!b − !n (237c)

˙δab = aw (237d)

˙δ!b = !w (237e)

˙δg = 0. (237f)

Equations (237a), (237d), (237e) and (237f), respectively of position, both biases, and
gravity errors, are derived from linear equations and their error-state dynamics is trivial.
As an example, consider the true and nominal position equations (234a) and (236a), their
composition pt = p + δp from Table 3, and solve for ˙δp to obtain (237a).

Equations (237b) and (237c), of velocity and orientation errors, require some non-
trivial manipulations of the non-linear equations (234b) and (234c) to obtain the linearized
dynamics. Their proofs are developed in the following two sections.

Equation (237b): The linear velocity error. We wish to determine ˙δv, the dynamics
of the velocity errors. We start with the following relations

Rt = R(I + [δ�]×) +O(‖δ�‖2) (238)

v̇ = RaB + g, (239)

where (238) is the small-signal approximation of Rt, and in (239) we rewrote (236b) but
introducing aB and δaB, defined as the large- and small-signal accelerations in body frame,

aB , am − ab (240)

δaB , −δab − an (241)

so that we can write the true acceleration in inertial frame as a composition of large- and
small-signal terms,

at = Rt(aB + δaB) + g + δg. (242)

We proceed by writing the expression (234b) of v̇t in two different forms (left and right
developments), where the terms O(‖δ�‖2) have been ignored,

v̇ + ˙δv = v̇t = R(I + [δ�]×)(aB + δaB) + g + δg

RaB + g + ˙δv = = RaB + RδaB + R [δ�]× aB + R [δ�]× δaB + g + δg

This leads after removing RaB + g from left and right to

˙δv = R(δaB + [δ�]× aB) + R [δ�]× δaB + δg (243)
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Eliminating the second order terms and reorganizing some cross-products (with [a]× b =
− [b]× a), we get

˙δv = R(δaB − [aB]× δ�) + δg, (244)

then, recalling (240) and (241),

˙δv = R(− [am − ab]× δ� − δab − an) + δg (245)

which after proper rearranging leads to the dynamics of the linear velocity error,

˙δv = −R [am − ab]× δ� −Rδab + δg −Ran . (246)

To further clean up this expression, we can often times assume that the accelerometer noise
is white, uncorrelated and isotropic24,

E[an] = 0 E[ana
>
n ] = σ2

aI, (247)

that is, the covariance ellipsoid is a sphere centered at the origin, which means that its
mean and covariances matrix are invariant upon rotations (Proof: E[Ran] = RE[an] = 0
and E[(Ran)(Ran)>] = RE[ana

>
n ]R> = Rσ2

aIR
> = σ2

aI). Then we can redefine the
accelerometer noise vector, with absolutely no consequences, according to

an ← Ran (248)

which gives

˙δv = −R [am − ab]× δ� −Rδab + δg − an . (249)

Equation (237c): The orientation error. We wish to determine ˙δ�, the dynamics of
the angular errors. We start with the following relations

q̇t =
1

2
qt ⊗ !t (250)

q̇ =
1

2
q⊗ !, (251)

which are the true- and nominal- definitions of the quaternion derivatives.
As we did with the acceleration, we group large- and small-signal terms in the angular

rate for clarity,

! , !m − !b (252)

δ! , −δ!b − !n, (253)

24This assumption cannot be made in cases where the three XY Z accelerometers are not identical.

56



so that !t can be written with a nominal part and an error part,

!t = ! + δ!. (254)

We proceed by computing q̇t by two different means (left and right developments)

˙(q⊗ δq) = q̇t =
1

2
qt ⊗ !t

q̇⊗ δq + q⊗ ˙δq = =
1

2
q⊗ δq⊗ !t

1

2
q⊗ ! ⊗ δq + q⊗ ˙δq =

simplifying the leading q and isolating ˙δq we obtain[
0
˙δ�

]
= 2 ˙δq = δq⊗ !t − ! ⊗ δq

= [q]R(!t)δq− [q]L(!)δq

=

[
0 −(!t − !)>

(!t − !) − [!t + !]×

] [
1

δ�/2

]
+O(‖δ�‖2)

=

[
0 −δ!>
δ! − [2! + δ!]×

] [
1

δ�/2

]
+O(‖δ�‖2) (255)

which results in one scalar- and one vector- equalities

0 = δ!>δ� +O(|δ�|2) (256a)

˙δ� = δ! − [!]× δ� −
1

2
[δ!]× δ� +O(‖δ�‖2). (256b)

The first equation leads to δ!>δ� = O(‖δ�‖2), which is formed by second-order infinitesi-
mals, not very useful. The second equation yields, after neglecting all second-order terms,

˙δ� = − [!]× δ� + δ! (257)

and finally, recalling (252) and (253), we get the linearized dynamics of the angular error,

˙δ� = − [!m − !b]× δ� − δ!b − !n . (258)

5.4 System kinematics in discrete time

The differential equations above need to be integrated into differences equations to account
for discrete time intervals ∆t > 0. The integration methods may vary. In some cases, one
will be able to use exact closed-form solutions. In other cases, numerical integration of
varying degree of accuracy may be employed. Please refer to the Appendices for pertinent
details on integration methods.

Integration needs to be done for the following sub-systems:
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1. The nominal state.

2. The error-state.

(a) The deterministic part: state dynamics and control.

(b) The stochastic part: noise and perturbations.

5.4.1 The nominal state kinematics

We can write the differences equations of the nominal-state as

p← p + v ∆t+
1

2
(R(am − ab) + g) ∆t2 (259a)

v← v + (R(am − ab) + g) ∆t (259b)

q← q⊗ q{(!m − !b) ∆t} (259c)

ab ← ab (259d)

!b ← !b (259e)

g← g , (259f)

where x ← f(x, •) stands for a time update of the type xk+1 = f(xk, •k), R , R{q}
is the rotation matrix associated to the current nominal orientation q, and q{v} is the
quaternion associated to the rotation v, according to (101).

We can also use more precise integration, please see the Appendices for more informa-
tion.

5.4.2 The error-state kinematics

The deterministic part is integrated normally (in this case we follow the methods in
App. C.2), and the integration of the stochastic part results in random impulses (see
App. E), thus,

δp← δp + δv ∆t (260a)

δv← δv + (−R [am − ab]× δ� −Rδab + δg)∆t+ vi (260b)

δ� ← R>{(!m − !b)∆t}δ� − δ!b∆t+ �i (260c)

δab ← δab + ai (260d)

δ!b ← δ!b + !i (260e)

δg← δg . (260f)

Here, vi, �i, ai and !i are the random impulses applied to the velocity, orientation
and bias estimates, modeled by white Gaussian processes. Their mean is zero, and their
covariances matrices are obtained by integrating the covariances of an, !n, aw and !w over
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the step time ∆t (see App. E),

Vi = σ2
ãn

∆t2I [m2/s2] (261)

Θi = σ2
!̃n

∆t2I [rad2] (262)

Ai = σ2
aw

∆tI [m2/s4] (263)

Ωi = σ2
!w

∆tI [rad2/s2] (264)

where σãn [m/s2], σ!̃n [rad/s], σaw [m/s2
√
s] and σ!w [rad/s

√
s] are to be determined from

the information in the IMU datasheet, or from experimental measurements.

5.4.3 The error-state Jacobian and perturbation matrices

The Jacobians are obtained by simple inspection of the error-state differences equations in
the previous section.

To write these equations in compact form, we consider the nominal state vector x,
the error state vector δx, the input vector um, and the perturbation impulses vector i, as
follows (see App. E.1 for details and justifications),

x =


p
v
q
ab
!b
g

 , δx =


δp
δv
δ�
δab
δ!b
δg

 , um =

[
am
!m

]
, i =


vi

�i

ai

!i

 (265)

The error-state system is now

δx← f(x, δx,um, i) = Fx(x,um)·δx + Fi ·i, (266)

The ESKF prediction equations are written:

δ̂x← Fx(x,um)·δ̂x (267)

P← Fx P F>x + Fi Qi F
>
i , (268)

where δx ∼ N{δ̂x,P}25; Fx and Fi are the Jacobians of f() with respect to the error and
perturbation vectors; and Qi is the covariances matrix of the perturbation impulses.

The expressions of the Jacobian and covariances matrices above are detailed below. All
state-related values appearing herein are extracted directly from the nominal state.

Fx =
∂f

∂δx

∣∣∣∣
x,um

=


I I∆t 0 0 0 0
0 I −R [am − ab]×∆t −R∆t 0 I∆t
0 0 R>{(!m − !b)∆t} 0 −I∆t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 (269)

25x ∼ N{�;�} means that x is a Gaussian random variable with mean and covariances matrix speci�ed
by � and �.
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Fi =
∂f

∂i

∣∣∣∣
x,um

=


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 , Qi =


Vi 0 0 0
0 Θi 0 0
0 0 Ai 0
0 0 0 Ωi

 . (270)

Please note particularly that Fx is the system’s transition matrix, which can be ap-
proximated to different levels of precision in a number of ways. We showed here one of its
simplest forms (the Euler form). Se Appendices B to D for further reference.

Please note also that, being the mean of the error δx initialized to zero, the linear
equation (267) always returns zero. You should of course skip line (267) in your code. I
recommend that you write it, though, but that you comment it out so that you are sure
you did not forget anything.

And please note, finally, that you should NOT skip the covariance prediction (268)!! In
effect, the term Fi Qi F

>
i is not null and therefore this covariance grows continuously – as

it must be in any prediction step.

6 Fusing IMU with complementary sensory data

At the arrival of other kind of information than IMU, such as GPS or vision, we proceed to
correct the ESKF. In a well-designed system, this should render the IMU biases observable
and allow the ESKF to correctly estimate them. There are a myriad of possibilities, the
most popular ones being GPS + IMU, monocular vision + IMU, and stereo vision +
IMU. In recent years, the combination of visual sensors with IMU has attracted a lot of
attention, and thus generated a lot of scientific activity. These vision + IMU setups are
very interesting for use in GPS-denied environments, and can be implemented on mobile
devices (typically smart phones), but also on UAVs and other small, agile platforms.

While the IMU information has served so far to make predictions to the ESKF, this
other information is used to correct the filter, and thus observe the IMU bias errors. The
correction consists of three steps:

1. observation of the error-state via filter correction,

2. injection of the observed errors into the nominal state, and

3. reset of the error-state.

These steps are developed in the following sections.

6.1 Observation of the error state via filter correction

Suppose as usual that we have a sensor that delivers information that depends on the state,
such as

y = h(xt) + v , (271)
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where h() is a general nonlinear function of the system state (the true state), and v is a
white Gaussian noise with covariance V,

v ∼ N{0,V} . (272)

Our filter is estimating the error state, and therefore the filter correction equations26,

K = PH>(HPH> + V)−1 (273)

δ̂x← K(y − h(x̂t)) (274)

P← (I−KH)P (275)

require the Jacobian matrix H to be defined with respect to the error state δx, and eval-
uated at the best true-state estimate x̂t = x⊕ δ̂x. As the error state mean is zero at this
stage (we have not observed it yet), we have x̂t = x and we can use the nominal error x
as the evaluation point, leading to

H ≡ ∂h

∂δx

∣∣∣∣
x

. (276)

6.1.1 Jacobian computation for the filter correction

The Jacobian above might be computed in a number of ways. The most illustrative one is
by making use of the chain rule,

H ,
∂h

∂δx

∣∣∣∣
x

=
∂h

∂xt

∣∣∣∣
x

∂xt
∂δx

∣∣∣∣
x

= Hx Xδx . (277)

Here, Hx , ∂h
∂xt

∣∣∣
x

is the standard Jacobian of h() with respect to its own argument (i.e.,

the Jacobian one would use in a regular EKF). This first part of the chain rule depends on
the measurement function of the particular sensor used, and is not presented here.

The second part, Xδx , ∂xt

∂δx

∣∣
x
, is the Jacobian of the true state with respect to the

error state. This part can be derived here as it only depends on the ESKF composition of
states. We have the derivatives,

Xδx =



∂(p+δp)
∂δp

∂(v+δv)
∂δv

0
∂(q⊗δq)
∂δ�

∂(ab+δab)
∂δab

0 ∂(!b+δ!b)
∂δ!b

∂(g+δg)
∂δg


(278)

26We give the simplest form of the covariance update, P← (I−KH)P. This form is known to have poor
numerical stability, as its outcome is not guaranteed to be symmetric nor positive de�nite. The reader
is free to use more stable forms such as 1) the symmetric form P ← P −K(HPH> + V)K> and 2) the
symmetric and positive Joseph form P← (I−KH)P(I−KH)> + KVK>.
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which results in all identity 3 × 3 blocks (for example, ∂(p+δp)
∂δp

= I3) except for the 4 × 3

quaternion term Qδ� = ∂(q⊗ δq)/∂δ�. Therefore we have the form,

Xδx ,
∂xt
∂δx

∣∣∣∣
x

=

I6 0 0
0 Qδ� 0
0 0 I9

 (279)

Using the chain rule, equations (17–19), and the limit δq −→
δ�→0

[
1

1
2
δ�

]
, the quaternion

term Qδ� may be derived as follows,

Qδ� ,
∂(q⊗ δq)

∂δ�

∣∣∣∣
q

=
∂(q⊗ δq)

∂δq

∣∣∣∣
q

∂δq

∂δ�

∣∣∣∣
δ̂�=0

=
∂([q]Lδq)

∂δq

∣∣∣∣
q

∂

[
1

1
2
δ�

]
∂δ�

∣∣∣∣∣∣∣∣
δ̂�=0

= [q]L
1

2


0 0 0
1 0 0
0 1 0
0 0 1

 ,

which leads to

Qδ� =
1

2


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

 . (280)

6.2 Injection of the observed error into the nominal state

After the ESKF update, the nominal state gets updated with the observed error state using
the appropriate compositions (sums or quaternion products, see Table 3),

x← x⊕ δ̂x , (281)

that is,

p← p + δ̂p (282a)

v← v + δ̂v (282b)

q← q⊗ q{δ̂�} (282c)

ab ← ab + ˆδab (282d)

!b ← !b + ˆδ!b (282e)

g← g + δ̂g (282f)
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6.3 ESKF reset

After error injection into the nominal state, the error state mean δ̂x gets reset. This is
especially relevant for the orientation part, as the new orientation error will be expressed
locally with respect to the orientation frame of the new nominal state. To make the
ESKF update complete, the covariance of the error needs to be updated according to this
modification.

Let us call the error reset function g(). It is written as follows,

δx← g(δx) = δx	 δ̂x , (283)

where 	 stands for the composition inverse of ⊕. The ESKF error reset operation is thus,

δ̂x← 0 (284)

P← G P G> . (285)

where G is the Jacobian matrix defined by,

G ,
∂g

∂δx

∣∣∣∣
δ̂x

. (286)

Similarly to what happened with the update Jacobian above, this Jacobian is the iden-
tity on all diagonal blocks except in the orientation error. We give here the full expression
and proceed in the following section with the derivation of the orientation error block,

∂δ�+/∂δ� = I−
[

1
2
δ̂�
]
×

,

G =

I6 0 0

0 I−
[

1
2
δ̂�
]
×

0

0 0 I9

 . (287)

In major cases, the error term δ̂� can be neglected, leading simply to a Jacobian
G = I18, and thus to a trivial error reset. This is what most implementations of the ESKF
do. The expression here provided should produce more precise results, which might be of
interest for reducing long-term error drift in odometry systems.

6.3.1 Jacobian of the reset operation with respect to the orientation error

We want to obtain the expression of the new angular error δ�+ with respect to the old
error δ� and the observed error δ̂�. Consider these facts:

• The true orientation does not change on error reset, i.e., q+
t = qt. This gives:

q+ ⊗ δq+ = q⊗ δq . (288)
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• The observed error mean has been injected into the nominal state (see (282c) and
(123)):

q+ = q⊗ δ̂q . (289)

Combining both identities we obtain an expression of δq+,

δq+ = (q+)∗ ⊗ q⊗ δq = (q⊗ δ̂q)∗ ⊗ q⊗ δq = δ̂q
∗ ⊗ δq = [δ̂q

∗
]L · δq . (290)

Considering that δ̂q
∗ ≈

[
1

−1
2
δ̂�

]
, the identity above can be expanded as

[
1

1
2
δ�+

]
=

 1 1
2
δ̂�
>

−1
2
δ̂� I−

[
1
2
δ̂�
]
×

 · [ 1
1
2
δ�

]
+O(‖δ�‖2) , (291)

which gives one scalar- and one vector- equations,

1

4
δ̂�
>
δ� = O(‖δ�‖2) (292a)

δ�+ = −δ̂� +

(
I−

[
1

2
δ̂�

]
×

)
δ� +O(‖δ�‖2) , (292b)

among which the first one is not very informative in that it is only a relation of infinitesi-

mals. One can show from the second equation that δ̂�
+

= 0, which is what we expect from
the reset operation. The Jacobian is obtained by simple inspection,

∂δ�+

∂δ�
= I−

[
1

2
δ̂�

]
×

. (293)

7 The ESKF using global angular errors

We explore in this section the implications of having the angular error defined in the
global reference, as opposed to the local definition we have used so far. We retrace the
development of sections 5 and 6, and particularize the subsections that present changes
with respect to the new definition.

A global definition of the angular error δ� implies a composition on the left hand side,
i.e.,

qt = δq ⊗ q = q{δ�} ⊗ q .

We remark for the sake of completeness that we keep the local definition of the angular
rates vector !, i.e., q̇ = 1

2
q ⊗ ! in continuous time, and therefore q ← q ⊗ q{!∆t}

in discrete time, regardless of the angular error being defined globally. This is so for
convenience, as the measure of the angular rates provided by the gyrometers is in body
frame, that is, local.
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7.1 System kinematics in continuous time

7.1.1 The true- and nominal-state kinematics

True and nominal kinematics do not involve errors and their equations are unchanged.

7.1.2 The error-state kinematics

We start by writing the equations of the error-state kinematics, and proceed afterwards
with comments and proofs.

˙δp = δv (294a)

˙δv = − [R(am − bab)]× δ� −Rδab + δg −Ran (294b)

˙δ� = −Rδ!b −R!n (294c)

˙δab = aw (294d)

˙δ!b = !w (294e)

˙δg = 0 , (294f)

where, again, all equations except those of ˙δv and ˙δ� are trivial. The non-trivial expressions
are developed below.

Equation (294b): The linear velocity error. We wish to determine ˙δv, the dynamics
of the velocity errors. We start with the following relations

Rt = (I + [δ�]×)R +O(‖δ�‖2) (295)

v̇ = RaB + g , (296)

where (295) is the small-signal approximation of Rt using a globally defined error, and in
(296) we introduced aB and δaB as the large- and small- signal accelerations in body frame,
defined in(240) and (241), as we did for the locally-defined case.

We proceed by writing the expression (234b) of v̇t in two different forms (left and right
developments), where the terms O(‖δ�‖2) have been ignored,

v̇ + ˙δv = v̇t = (I + [δ�]×)R(aB + δaB) + g + δg

RaB + g + ˙δv = = RaB + RδaB + [δ�]×RaB + [δ�]×RδaB + g + δg

This leads after removing RaB + g from left and right to

˙δv = RδaB + [δ�]×R(aB + δaB) + δg (297)

Eliminating the second order terms and reorganizing some cross-products (with [a]× b =
− [b]× a), we get

˙δv = RδaB − [RaB]× δ� + δg , (298)
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and finally, recalling (240) and (241) and rearranging, we obtain the expression of the
derivative of the velocity error,

˙δv = − [R(am − ab)]× δ� −Rδab + δg −Ran (299)

Equation (294c): The orientation error. We start by writing the true- and nominal-
definitions of the quaternion derivatives,

q̇t =
1

2
qt ⊗ !t (300)

q̇ =
1

2
q⊗ ! , (301)

and remind that we are using a globally-defined angular error, i.e.,

qt = δq⊗ q . (302)

As we did for the locally-defined error case, we also group large- and small-signal angular
rates (252–253). We proceed by computing q̇t by two different means (left and right
developments),

˙(δq⊗ q) = q̇t =
1

2
qt ⊗ !t

˙δq⊗ q + δq⊗ q̇ = =
1

2
δq⊗ q⊗ !t

˙δq⊗ q +
1

2
δq⊗ q⊗ ! =

Having !t = ! + δ!, this reduces to

˙δq⊗ q =
1

2
δq⊗ q⊗ δ! . (303)

Right-multiplying left and right terms by q∗, and recalling that q ⊗ δ! ⊗ q∗ ≡ Rδ!, we
can further develop as follows,

˙δq =
1

2
δq⊗ q⊗ δ! ⊗ q∗

=
1

2
δq⊗ (Rδ!)

=
1

2
δq⊗ δ!G , (304)

with δ!G , Rδ! the small-signal angular rate expressed in the global frame. Then,[
0
˙δ�

]
= 2 ˙δq = δq⊗ δ!G

= Ω(δ!G) δq

=

[
0 −δ!>G

δ!G − [δ!G]×

] [
1

δ�/2

]
+O(‖δ�‖2) , (305)
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which results in one scalar- and one vector- equalities

0 = δ!>Gδ� +O(|δ�|2) (306a)

˙δ� = δ!G −
1

2
[δ!G]× δ� +O(‖δ�‖2). (306b)

The first equation leads to δ!>Gδ� = O(‖δ�‖2), which is formed by second-order infinitesi-
mals, not very useful. The second equation yields, after neglecting all second-order terms,

˙δ� = δ!G = Rδ! . (307)

Finally, recalling (253), we obtain the linearized dynamics of the global angular error,

˙δ� = −Rδ!b −R!n . (308)

7.2 System kinematics in discrete time

7.2.1 The nominal state

The nominal state equations do not involve errors and are therefore the same as in the
case where the orientation error is defined locally.

7.2.2 The error state

Using Euler integration, we obtain the following set of differences equations,

δp← δp + δv ∆t (309a)

δv← δv + (− [R(am − ab)]× δ� −Rδab + δg)∆t+ vi (309b)

δ� ← δ� −Rδ!b∆t+ �i (309c)

δab ← δab + ai (309d)

δ!b ← δ!b + !i (309e)

δg← δg. (309f)

7.2.3 The error state Jacobian and perturbation matrices

The Transition matrix is obtained by simple inspection of the equations above,

Fx =



I I∆t 0 0 0 0

0 I − [R(am − ab)]×∆t −R∆t 0 I∆t

0 0 I 0 −R∆t 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


. (310)
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We observe three changes with respect to the case with a locally-defined angular error
(compare the boxed terms in the Jacobian above to the ones in (269)); these changes are
summarized in Table 4.

The perturbation Jacobian and the perturbation matrix are unchanged after considering
isotropic noises and the developments of App. E,

Fi =


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 , Qi =


Vi 0 0 0
0 Θi 0 0
0 0 Ai 0
0 0 0 Ωi

 . (311)

7.3 Fusing with complementary sensory data

The fusing equations involving the ESKF machinery vary only slightly when considering
global angular errors. We revise these variations in the error state observation via ESKF
correction, the injection of the error into the nominal state, and the reset step.

7.3.1 Error state observation

The only difference with respect to the local error definition is in the Jacobian block of the
observation function that relates the orientation to the angular error. This new block is
developed below.

Using (17–19) and the first-order approximation δq→
[

1
1
2
δ�

]
, the quaternion term Qδ�

may be derived as follows,

Qδ� ,
∂(δq⊗ q)

∂δ�

∣∣∣∣
q

=
∂(δq⊗ q)

∂δq

∣∣∣∣
q

∂δq

∂δ�

∣∣∣∣
δ̂�=0

(312a)

= [q]R
1

2


0 0 0
1 0 0
0 1 0
0 0 1

 (312b)

=
1

2


−qx −qy −qz
qw qz −qy
−qz qw qx
qy −qx qw

 . (312c)
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7.3.2 Injection of the observed error into the nominal state

The composition x← x⊕ δ̂x of the nominal and error states is depicted as follows,

p← p + δp (313a)

v← v + δv (313b)

q← q{δ̂�} ⊗ q (313c)

ab ← ab + δab (313d)

!b ← !b + δ!b (313e)

g← g + δg . (313f)

where only the equation for the quaternion update has been affected. This is summarized
in Table 4.

7.3.3 ESKF reset

The ESKF error mean is reset, and the covariance updated, according to,

δ̂x← 0 (314)

P← GPG> (315)

with the Jacobian

G =

I6 0 0

0 I +
[

ˆ1
2
δ�
]
×

0

0 0 I9

 (316)

whose non-trivial term is developed as follows. Our goal is to obtain the expression of the
new angular error δ�+ with respect to the old error δ�. We consider these facts:

• The true orientation does not change on error reset, i.e., q+
t ≡ qt. This gives:

δq+ ⊗ q+ = δq⊗ q . (317)

• The observed error mean has been injected into the nominal state (see (282c) and
(123)):

q+ = δ̂q⊗ q . (318)

Combining both identities we obtain an expression of the new orientation error with
respect to the old one and the observed error δ̂q,

δq+ = δq⊗ δ̂q∗ = [δ̂q
∗
]R · δq . (319)

Considering that δ̂q
∗ ≈

[
1

−1
2
δ̂�

]
, the identity above can be expanded as

[
1

1
2
δ�+

]
=

 1 1
2
δ̂�
>

−1
2
δ̂� I +

[
1
2
δ̂�
]
×

 · [ 1
1
2
δ�

]
+O(‖δ�‖2) (320)
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Table 4: Algorithm modi�cations related to the de�nition of the orientation errors.

Context Item local angular error global angular error

Error composition qt qt = q⊗ δq qt = δq⊗ q

Euler integration

∂δv+/∂δ� −R [am − ab]×∆t − [R(am − ab)]×∆t

∂δ�+/∂δ� R>{(!m − !b)∆t} I

∂δ�+/∂δ!b −I∆t −R∆t

Error observation Qδ�
1
2



−qx −qy −qz
qw −qz qy

qz qw −qx
−qy qx qw


1
2



−qx −qy −qz
qw qz −qy
−qz qw qx

qy −qx qw


Error injection q← q⊗ q{δ̂�} q← q{δ̂�} ⊗ q

Error reset ∂δ�+/∂δ� I−
[

1
2
δ̂�
]
×

I +
[

1
2
δ̂�
]
×

which gives one scalar- and one vector- equations,

1

4
δ̂�
>
δ� = O(‖δ�‖2) (321a)

δ�+ = −δ̂� +

(
I +

[
1

2
δ̂�

]
×

)
δ� +O(‖δ�‖2) (321b)

among which the first one is not very informative in that it is only a relation of infinitesi-

mals. One can show from the second equation that δ̂�
+

= 0, which is what we expect from
the reset operation. The Jacobian is obtained by simple inspection,

∂δ�+

∂δ�
= I +

[
1

2
δ̂�

]
×

. (322)

The difference with respect to the local error case is summarized in Table 4.

A Runge-Kutta numerical integration methods

We aim at integrating nonlinear differential equations of the form

ẋ = f(t,x) (323)
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over a limited time interval ∆t, in order to convert them to a differences equation, i.e.,

x(t+ ∆t) = x(t) +

∫ t+∆t

t

f(τ,x(τ))dτ , (324)

or equivalently, if we assume that tn = n∆t and xn , x(tn),

xn+1 = xn +

∫ (n+1)∆t

n∆t

f(τ,x(τ))dτ . (325)

One of the most utilized family of methods is the Runge-Kutta methods (from now on,
RK). These methods use several iterations to estimate the derivative over the interval, and
then use this derivative to integrate over the step ∆t.

In the sections that follow, several RK methods are presented, from the simplest one
to the most general one, and are named according to their most common name.

NOTE: All the material here is taken from the Runge-Kutta method entry in the English
Wikipedia.

A.1 The Euler method

The Euler method assumes that the derivative f(·) is constant over the interval, and
therefore

xn+1 = xn + ∆t·f(tn,xn) . (326)

Put as a general RK method, this corresponds to a single-stage method, which can be
depicted as follows. Compute the derivative at the initial point,

k1 = f(tn,xn) , (327)

and use it to compute the integrated value at the end point,

xn+1 = xn + ∆t·k1 . (328)

A.2 The midpoint method

The midpoint method assumes that the derivative is the one at the midpoint of the interval,
and makes one iteration to compute the value of x at this midpoint, i.e.,

xn+1 = xn + ∆t·f
(
tn +

1

2
∆t , xn +

1

2
∆t·f(tn,xn)

)
. (329)

The midpoint method can be explained as a two-step method as follows. First, use the
Euler method to integrate until the midpoint, using k1 as defined previously,

k1 = f(tn,xn) (330)

x(tn + 1
2
∆t) = xn +

1

2
∆t·k1 . (331)
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Then use this value to evaluate the derivative at the midpoint, k2, leading to the integration

k2 = f(tn + 1
2
∆t , x(tn + 1

2
∆t)) (332)

xn+1 = xn + ∆t·k2 . (333)

A.3 The RK4 method

This is usually referred to as simply the Runge-Kutta method. It assumes evaluation values
for f() at the start, midpoint and end of the interval. And it uses four stages or iterations
to compute the integral, with four derivatives, k1 . . . k4, that are obtained sequentially.
These derivatives, or slopes, are then weight-averaged to obtain the 4th-order estimate of
the derivative in the interval.

The RK4 method is better specified as a small algorithm than a one-step formula like
the two methods above. The RK4 integration step is,

xn+1 = xn +
∆t

6

(
k1 + 2k2 + 2k3 + k4

)
, (334)

that is, the increment is computed by assuming a slope which is the weighted average of
the slopes k1, k2, k3, k4, with

k1 = f(tn,xn) (335)

k2 = f
(
tn +

1

2
∆t , xn +

∆t

2
k1

)
(336)

k3 = f
(
tn +

1

2
∆t , xn +

∆t

2
k2

)
(337)

k4 = f
(
tn + ∆t , xn + ∆t·k3

)
. (338)

The different slopes have the following interpretation:

• k1 is the slope at the beginning of the interval, using xn , (Euler’s method);

• k2 is the slope at the midpoint of the interval, using xn+ 1
2
∆t·k1, (midpoint method);

• k3 is again the slope at the midpoint, but now using xn + 1
2
∆t·k2;

• k4 is the slope at the end of the interval, using xn + ∆t·k3.

A.4 General Runge-Kutta method

More elaborated RK methods are possible. They aim at either reduce the error and/or
increase stability. They take the general form

xn+1 = xn + ∆t
s∑
i=1

biki , (339)
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where

ki = f
(
tn + ∆t·ci,xn + ∆t

s∑
j=1

aijkj

)
, (340)

that is, the number of iterations (the order of the method) is s, the averaging weights are
defined by bi, the evaluation time instants by ci, and the slopes ki are determined using the
values aij. Depending on the structure of the terms aij, one can have explicit or implicit
RK methods.

• In explicit methods, all ki are computed sequentially, i.e., using only previously
computed values. This implies that the matrix [aij] is lower triangular with zero
diagonal entries (i.e., aij = 0 for j ≥ i). Euler, midpoint and RK4 methods are
explicit.

• Implicit methods have a full [aij] matrix and require the solution of a linear set of
equations to determine all ki. They are therefore costlier to compute, but they are
able to improve on accuracy and stability with respect to explicit methods.

Please refer to specialized documentation for more detailed information.

B Closed-form integration methods

In many cases it is possible to arrive to a closed-form expression for the integration step.
We consider now the case of a first-order linear differential equation,

ẋ(t) = A·x(t) , (341)

that is, the relation is linear and constant over the interval. In such cases, the integration
over the interval [tn, tn + ∆t] results in

xn+1 = eA·∆txn = Φxn , (342)

where Φ is known as the transition matrix. The Taylor expansion of this transition matrix
is

Φ = eA·∆t = I + A∆t+
1

2
A2∆t2 +

1

3!
A3∆t3 + · · · =

∞∑
k=0

1

k!
Ak∆tk . (343)

When writing this series for known instances of A, it is sometimes possible to identify
known series in the result. This allows writing the resulting integration in closed form. A
few examples follow.
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B.1 Integration of the angular error

For example, consider the angular error dynamics without bias and noise (a cleaned version
of Eq. (237c)),

˙δ� = − [!]× δ� (344)

Its transition matrix can be written as a Taylor series,

Φ = e−[!]�∆t (345)

= I− [!]×∆t+
1

2
[!]2×∆t2 − 1

3!
[!]3×∆t3 +

1

4!
[!]4×∆t4 − . . . (346)

Now defining !∆t , u∆θ, the unitary axis of rotation and the rotated angle, and applying
(75), we can group terms and get

Φ = I− [u]×∆θ +
1

2
[u]2×∆θ2 − 1

3!
[u]3×∆θ3 +

1

4!
[y]4×∆θ4 − . . .

= I− [u]×

(
∆θ − ∆θ3

3!
+

∆θ5

5!
− · · ·

)
+ [u]2×

(
∆θ2

2!
− ∆θ4

4!
+

∆θ6

6!
− · · ·

)
= I− [u]× sin ∆θ + [u]2× (1− cos ∆θ) , (347)

which is a closed-form solution.

This solution corresponds to a rotation matrix, Φ = R{−u∆θ} = R{!∆t}>, according
to the Rodrigues rotation formula (77), a result that could be obtained by direct inspection
of (345) and recalling (69). Let us therefore write this as the final closed-form result,

Φ = R{!∆t}> . (348)

B.2 Simplified IMU example

Consider the simplified, IMU driven system with error-state dynamics governed by,

˙δp = δv (349a)

˙δv = −R [a]× δ� (349b)

˙δ� = − [!]× δ� , (349c)

where (a,!) are the IMU readings, and we have obviated gravity and sensor biases. This
system is defined by the state vector and the dynamic matrix,

x =

δpδv
δ�

 A =

0 Pv 0
0 0 V�

0 0 Θ�

 . (350)
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with

Pv = I (351)

V� = −R [a]× (352)

Θ� = − [!]× (353)

Its integration with a step time ∆t is xn+1 = e(A∆t) ·xn = Φ·xn. The transition matrix
Φ admits a Taylor development (343), in increasing powers of A∆t. We can write a few
powers of A to get an illustration of their general form,

A=

0 Pv 0
0 0 V�

0 0 Θ�

,A2 =

0 0 PvV�

0 0 V�Θ�

0 0 Θ2
�

,A3 =

0 0 PvV�Θ�

0 0 V�Θ
2
�

0 0 Θ3
�

,A4 =

0 0 PvV�Θ
2
�

0 0 V�Θ
3
�

0 0 Θ4
�

, (354)

from which it is now visible that, for k > 1,

Ak>1 =

0 0 PvV�Θ
k−2
�

0 0 V�Θ
k−1
�

0 0 Θk
�

 (355)

We can observe that the terms in the increasing powers of A have a fixed part and an
increasing power of Θ�. These powers can lead to closed form solutions, as in the previous
section.

Let us partition the matrix Φ as follows,

Φ =

I Φpv Φp�

0 I Φv�

0 0 Φ��

 , (356)

and let us advance step by step, exploring all the non-zero blocks of Φ one by one.

Trivial diagonal terms Starting by the two upper terms in the diagonal, they are the
identity as shown.

Rotational diagonal term Next is the rotational diagonal term Φ��, relating the new
angular error to the old angular error. Writing the full Taylor series for this term leads to

Φ�� =
∞∑
k=0

1

k!
Θk
�∆t

k =
∞∑
k=0

1

k!
[−!]k×∆tk , (357)

which corresponds, as we have seen in the previous section, to our well-known rotation
matrix,

Φ�� = R{!∆t}> . (358)
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Position-vs-velocity term The simplest off-diagonal term is Φpv, which is

Φpv = Pv∆t = I∆t . (359)

Velocity-vs-angle term Let us now move to the term Φv,�, by writing its series,

Φv� = V�∆t+
1

2
V�Θ�∆t

2 +
1

3!
V�Θ

2
�∆t

3 + · · · (360)

Φv� = ∆tV�(I +
1

2
Θ�∆t+

1

3!
Θ2
�∆t

2 + · · · ) (361)

which reduces to

Φv� = ∆tV�

(
I +

∑
k≥1

(Θ�∆t)
k

(k + 1)!

)
(362)

At this point we have two options. We can truncate the series at the first significant
term, obtaining Φv� = V�∆t, but this would not be a closed-form. See next section for
results using this simplified method. Alternatively, let us factor V� out and write

Φv� = V�Σ1 (363)

with

Σ1 = I∆t+
1

2
Θ�∆t

2 +
1

3!
Θ2
�∆t

3 + · · · . (364)

The series Σ1 ressembles the series we wrote for Φ��, (357), with two exceptions:

• The powers of Θ� in Σ1 do not match with the rational coefficients 1
k!

and with the
powers of ∆t. In fact, we remark here that the subindex ”1” in Σ1 denotes the fact
that one power of Θ� is missing in each of the members.

• Some terms at the start of the series are missing. Again, the subindex ”1” indicates
that one such term is missing.

The first issue may be solved by applying (75) to (353), which yields the identity

Θ� =
[!]3×

‖!‖2 =
−Θ3

�

‖!‖2 . (365)

This expression allows us to increase the exponents of Θ� in the series by two, and write,
if ! 6= 0,

Σ1 = I∆t− Θ�

‖!‖2

(
1

2
Θ2
�∆t

2 +
1

3!
Θ3
�∆t

3 + . . .

)
, (366)

and Σ1 = I∆t otherwise. All the powers in the new series match with the correct coeffi-
cients. Of course, and as indicated before, some terms are missing. This second issue can
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be solved by adding and substracting the missing terms, and substituting the full series by
its closed form. We obtain

Σ1 = I∆t− Θ�

‖!‖2

(
R{!∆t}> − I−Θ�∆t

)
, (367)

which is a closed-form solution valid if ! 6= 0. Therefore we can finally write

Φv� =


−R [a]×∆t ! → 0

−R [a]×

(
I∆t+

[!]×

‖!‖2

(
R{!∆t}> − I + [!]×∆t

))
! 6= 0

(368a)

(368b)

Position-vs-angle term Let us finally board the term Φp�. Its Taylor series is,

Φp� =
1

2
PvV�∆t

2 +
1

3!
PvV�Θ�∆t

3 +
1

4!
PvV�Θ

2
�∆t

4 + · · · (369)

We factor out the constant terms and get,

Φp� = PvV� Σ2 , (370)

with

Σ2 =
1

2
I∆t2 +

1

3!
Θ�∆t

3 +
1

4!
Θ2
�∆t

4 + · · · . (371)

where we note the subindex ”2” in Σ2 admits the following interpretation:

• Two powers of Θ� are missing in each term of the series,

• The first two terms of the series are missing.

Again, we use (365) to increase the exponents of Θ�, yielding

Σ2 =
1

2
I∆t2 − 1

‖!‖2

(
1

3!
Θ3
�∆t

3 +
1

4!
Θ4
�∆t

4 + · · ·
)
. (372)

We substitute the incomplete series by its closed form,

Σ2 =
1

2
I∆t2 − 1

‖!‖2

(
R{!∆t}> − I−Θ�∆t−

1

2
Θ2
�∆t

2

)
, (373)

which leads to the final result

Φp� =


−R [a]×

∆t2

2
! → 0

−R [a]×

(
1

2
I∆t2 − 1

‖!‖2

(
R{!∆t}> −

2∑
k=0

(− [!]×∆t)k

k!

))
ω 6= 0

(374a)

(374b)
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B.3 Full IMU example

In order to give means to generalize the methods exposed in the simplified IMU example,
we need to examine the full IMU case from a little closer.

Consider the full IMU system (237), which can be posed as

˙δx = Aδx + Bw , (375)

whose discrete-time integration requires the transition matrix

Φ =
∞∑
k=0

1

k!
Ak∆tk = I + A∆t+

1

2
A2∆t2 + . . . , (376)

which we wish to compute. The dynamic matrix A is block-sparse, and its blocks can be
easily determined by examining the original equations (237),

A =


0 Pv 0 0 0 0
0 0 V� Va 0 Vg

0 0 Θ� 0 Θ! 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (377)

As we did before, let us write a few powers of A,

A2 =


0 0 PvV� PvVa 0 PvVg

0 0 V�Θ� 0 V�Θ! 0
0 0 Θ2

� 0 Θ�Θ! 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



A3 =


0 0 PvV�Θ� 0 PvV�Θ! 0
0 0 V�Θ

2
� 0 V�Θ�Θ! 0

0 0 Θ3
� 0 Θ2

�Θ! 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



A4 =


0 0 PvV�Θ

2
� 0 PvV�Θ�Θ! 0

0 0 V�Θ
3
� 0 V�Θ

2
�Θ! 0

0 0 Θ4
� 0 Θ3

�Θ! 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Basically, we observe the following,
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• The only term in the diagonal of A, the rotational term Θ�, propagates right and
up in the sequence of powers Ak. All terms not affected by this propagation vanish.
This propagation afects the structure of the sequence {Ak} in the three following
aspects:

• The sparsity of the powers of A is stabilized after the 3rd power. That is to say, there
are no more non-zero blocks appearing or vanishing for powers of A higher than 3.

• The upper-left 3×3 block, corresponding to the simplified IMU model in the previous
example, has not changed with respect to that example. Therefore, its closed-form
solution developed before holds.

• The terms related to the gyrometer bias error (those of the fifth column) introduce
a similar series of powers of Θ�, which can be solved with the same techniques we
used in the simplified example.

We are interested at this point in finding a generalized method to board the construction
of the closed-form elements of the transition matrix Φ. Let us recall the remarks we made
about the series Σ1 and Σ2,

• The subindex coincides with the lacking powers of Θ� in each of the members of the
series.

• The subindex coincides with the number of terms missing at the beginning of the
series.

Taking care of these properties, let us introduce the series Σn(X, y), defined by27

Σn(X, y) ,
∞∑
k=n

1

k!
Xk−nyk =

∞∑
k=0

1

(k + n)!
Xky k+n = yn

∞∑
k=0

1

(k + n)!
Xkyk (378)

in which the sum starts at term n and the terms lack n powers of the matrix X. It follows
immediately that Σ1 and Σ2 respond to

Σn = Σn(Θ�,∆t) , (379)

and that Σ0 = R{!∆t}>. We can now write the transition matrix (376) as a function of
these series,

Φ =


I Pv∆t PvV�Σ2

1
2
PvVa∆t2 PvV�Σ3�!

1
2
PvVg∆t2

0 I V�Σ1 Va∆t V�Σ2�! Vg∆t
0 0 Σ0 0 Σ1�! 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 . (380)

27Note that, being X a square matrix that is not necessarily invertible (as it is the case for X = ��),
we are not allowed to rearrange the de�nition of �n with �n = X�n

∑1
k=n

1
k! (yX)k.
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Our problem has now derived to the problem of finding a general, closed-form expression
for Σn. Let us observe the closed-form results we have obtained so far,

Σ0 = R{!∆t}> (381)

Σ1 = I∆t− Θ�

‖!‖2

(
R{!∆t}> − I−Θ�∆t

)
(382)

Σ2 =
1

2
I∆t2 − 1

‖!‖2

(
R{!∆t}> − I−Θ�∆t−

1

2
Θ2
�∆t

2

)
. (383)

In order to develop Σ3, we need to apply the identity (365) twice (because we lack three
powers, and each application of (365) increases this number by only two), getting

Σ3 =
1

3!
I∆t3 +

Θ�

‖!‖4

(
1

4!
Θ4
�∆t

4 +
1

5!
Θ5
�∆t

5 + . . .

)
, (384)

which leads to

Σ3 =
1

3!
I∆t3 +

Θ�

‖!‖4

(
R{!∆t}> − I−Θ�∆t−

1

2
Θ2
�∆t

2 − 1

3!
Θ3
�∆t

3

)
. (385)

By careful inspection of the series Σ0 . . .Σ3, we can now derive a general, closed-form
expression for Σn, as follows,

Σn =



1

n!
I∆tn ! → 0

R{!∆t}> n = 0

1

n!
I∆tn − (−1)

n+1
2 [!]×

‖!‖n+1

(
R{!∆t}> −

n∑
k=0

(− [!]×∆t)k

k!

)
n odd

1

n!
I∆tn +

(−1)
n
2

‖!‖n
(

R{!∆t}> −
n∑
k=0

(− [!]×∆t)k

k!

)
n even

(386a)

(386b)

(386c)

(386d)

The final result for the transition matrix Φ follows immediately by substituting the
appropriate values of Σn, n ∈ {0, 1, 2, 3}, in the corresponding positions of (380).

It might be worth noticing that the series now appearing in these new expressions of
Σn have a finite number of terms, and thus that they can be effectively computed. That
is to say, the expression of Σn is a closed form as long as n <∞, which is always the case.
For the current example, we have n ≤ 3 as can be observed in (380).

C Approximate methods using truncated series

In the previous section, we have devised closed-form expressions for the transition matrix
of complex, IMU-driven dynamic systems written in their linearized, error-state form ˙δx =
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Aδx. Closed form expressions may always be of interest, but it is unclear up to which point
we should be worried about high order errors and their impact on the performance of real
algorithms. This remark is particularly relevant in systems where IMU integration errors
are observed (and thus compensated for) at relatively high rates, such as visual-inertial or
GPS-inertial fusion schemes.

In this section we devise methods for approximating the transition matrix. They start
from the same assumption that the transition matrix can be expressed as a Taylor series,
and then truncate these series at the most significant terms. This truncation can be done
system-wise, or block-wise.

C.1 System-wise truncation

C.1.1 First order truncation: the finite differences method

A typical, widely used integration method for systems of the type

ẋ = f(t,x)

is based on the finite-differences method for the computation of the derivative, i.e.,

ẋ , lim
δt→0

x(t+ δt)− x(t)

δt
≈ xn+1 − xn

∆t
. (387)

This leads immediately to
xn+1 ≈ xn + ∆t f(tn,xn) , (388)

which is precisely the Euler method. Linearization of the function f() at the beginning of
the integration interval leads to

xn+1 ≈ xn + ∆tA xn , (389a)

where A , ∂f
∂x

(tn,xn) is a Jacobian matrix. This is strictly equivalent to writing the
exponential solution to the linearized differential equation and truncating the series at the
linear term (i.e., the following relation is identical to the previous one),

xn+1 = eA∆txn ≈ (I + ∆tA) xn . (389b)

This means that the Euler method (App. A.1), the finite-differences method, and the first-
order system-wise Taylor truncation method, are all the same. We get the approximate
transition matrix,

Φ ≈ I + ∆tA . (390)

For the simplified IMU example of Section B.2, the finite-differences method results in
the approximated transition matrix

Φ ≈

I I∆t 0
0 I −R [a]×∆t
0 0 I− [!∆t]×

 . (391)
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However, we already know from Section B.1 that the rotational term has a compact, closed-
form solution, Φ�� = R(!∆t)>. It is convenient to re-write the transition matrix according
to it,

Φ ≈

I I∆t 0
0 I −R [a]×∆t
0 0 R{!∆t}>

 . (392)

C.1.2 N-th order truncation

Truncating at higher orders will increase the precision of the approximated transition
matrix. A particularly interesting order of truncation is that which exploits the sparsity of
the result to its maximum. In other words, the order after which no new non-zero terms
appear.

For the simplified IMU example of Section B.2, this order is 2, resulting in

Φ ≈ I + A∆t+
1

2
A2∆t2 =

I I∆t −1
2
R [a]×∆t2

0 I −R [a]× (I− 1
2

[!]×∆t)∆t
0 0 R{!∆t}>

 . (393)

In the full IMU example of Section B.3, the is order 3, resulting in

Φ ≈ I + A∆t+
1

2
A2∆t2 +

1

6
A3∆t3 , (394)

whose full form is not given here for space reasons. The reader may consult the expressions
of A, A2 and A3 in Section B.3.

C.2 Block-wise truncation

A fairly good approximation to the closed forms previously explained results from trun-
cating the Taylor series of each block of the transition matrix at the first significant term.
That is, instead of truncating the series in full powers of A, as we have just made above, we
regard each block individually. Therefore, truncation needs to be analyzed in a per-block
basis. We explore it with two examples.

For the simplified IMU example of Section B.2, we had series Σ1 and Σ2, which we can
truncate as follows

Σ1 = I∆t+
1

2
Θ�∆t

2 + · · · ≈ I∆t

Σ2 =
1

2
I∆t2 +

1

3!
Θ�∆t

3+ · · · ≈ 1

2
I∆t2 .

(395)

(396)

This leads to the approximate transition matrix

Φ ≈

I I∆t −1
2
R [a]×∆t2

0 I −R [a]×∆t
0 0 R(!∆t)>

 , (397)
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which is more accurate than the one in the system-wide first-order truncation above (be-
cause of the upper-right term which has now appeared), yet it remains easy to obtain and
compute, especially when compared to the closed forms developed in Section B. Again,
observe that we have taken the closed-form for the lowest term, i.e., Φ�� = R(!∆t)>.

In the general case, it suffices to approximate each Σn except Σ0 by the first term of
its series, i.e.,

Σ0 = R{!∆t}> , Σn>0 ≈
1

n!
I∆tn . (398)

For the full IMU example, feeding the previous Σn into (380) yields the approximated
transition matrix,

Φ ≈


I I∆t −1

2
R [a]×∆t2 −1

2
R∆t2 1

3!
R [a]×∆t3 1

2
I∆t2

0 I −R [a]×∆t −R∆t 1
2
R [a]×∆t2 I∆t

0 0 R{!∆t}> 0 −I∆t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 (399)

with (see (237))
a = am − ab , ! = !m − !b , R = R{q} ,

and where we have substituted the matrix blocks by their appropriate values (see also
(237)),

Pv = I , V� = −R [a]× , Va = −R , Vg = I , Θ� = − [!]× , Θ! = −I

A slight simplification of this method is to limit each block in the matrix to a certain
maximum order n. For n = 1 we have,

Φ ≈


I I∆t 0 0 0 0
0 I −R [a]×∆t −R∆t 0 I∆t
0 0 R{!∆t}> 0 −I∆t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 , (400)

which is the Euler method, whereas for n = 2,

Φ ≈


I I∆t −1

2
R [a]×∆t2 −1

2
R∆t2 0 1

2
I∆t2

0 I −R [a]×∆t −R∆t 1
2
R [a]×∆t2 I∆t

0 0 R{!∆t}> 0 −I∆t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 . (401)

For n ≥ 3 we have the full form (399).
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D The transition matrix via Runge-Kutta integration

Still another way to approximate the transition matrix is to use Runge-Kutta integra-
tion. This might be necessary in cases where the dynamic matrix A cannot be considered
constant along the integration interval, i.e.,

ẋ(t) = A(t)x(t) . (402)

Let us rewrite the following two relations defining the same system in continuous- and
discrete-time. They involve the dynamic matrix A and the transition matrix Φ,

ẋ(t) = A(t)·x(t) (403)

x(tn + τ) = Φ(tn + τ |tn)·x(tn) . (404)

These equations allow us to develop ẋ(tn + τ) in two ways as follows (left and right devel-
opments, please note the tiny dots indicating the time-derivatives),

˙(Φ(tn + τ |tn)x(tn)) = ẋ(tn + τ) = A(tn + τ)x(tn + τ)

Φ̇(tn + τ |tn)x(tn) + Φ(tn + τ |tn)ẋ(tn) = = A(tn + τ)Φ(tn + τ |tn)x(tn)

Φ̇(tn + τ |tn)x(tn) = (405)

Here, (405) comes from noticing that ẋ(tn) = ẋn = 0, because it is a sampled value. Then,

Φ̇(tn + τ |tn) = A(tn + τ)Φ(tn + τ |tn) (406)

which is the same ODE as (403), now applied to the transition matrix instead of the state
vector. Mind that, because of the identity x(tn) = Φtn|tnx(tn), the transition matrix at the
beginning of the interval, t = tn, is always the identity,

Φtn|tn = I . (407)

Using RK4 with f(t,Φ(t)) = A(t)Φ(t), we have

Φ , Φ(tn + ∆t|tn) = I +
∆t

6
(K1 + 2K2 + 2K3 + K4) (408)

with

K1 = A(tn) (409)

K2 = A
(
tn +

1

2
∆t
)(

I +
∆t

2
K1

)
(410)

K3 = A
(
tn +

1

2
∆t
)(

I +
∆t

2
K2

)
(411)

K4 = A
(
tn + ∆t

)(
I + ∆t·K3

)
. (412)
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D.1 Error-state example

Let us consider the error-state Kalman filter for the non-linear, time-varying system

ẋt(t) = f(t,xt(t),u(t)) (413)

where xt denotes the true state, and u is a control input. This true state is a composition,
denoted by ⊕, of a nominal state x and the error state δx,

xt(t) = x(t)⊕ δx(t) (414)

where the error-state dynamics admits a linear form which is time-varying depending on
the nominal state x and the control u, i.e.,

˙δx = A(x(t),u(t))·δx (415)

that is, the error-state dynamic matrix in (402) has the form A(t) = A(x(t),u(t)). The
dynamics of the error-state transition matrix can be written,

Φ̇(tn + τ |tn) = A(x(t),u(t))·Φ(tn + τ |tn) . (416)

In order to RK-integrate this equation, we need the values of x(t) and u(t) at the RK
evaluation points, which for RK4 are {tn, tn + ∆t/2, tn + ∆t}. Starting by the easy ones,
the control inputs u(t) at the evaluation points can be obtained by linear interpolation of
the current and last measurements,

u(tn) = un (417)

u(tn + ∆t/2) =
un + un+1

2
(418)

u(tn + ∆t) = un+1 (419)

The nominal state dynamics should be integrated using the best integration practicable.
For example, using RK4 integration we have,

k1 = f(xn,un)

k2 = f(xn +
∆t

2
k1,

un + un+1

2
)

k3 = f(xn +
∆t

2
k2,

un + un+1

2
)

k4 = f(xn + ∆tk3,un+1)

k = (k1 + 2k2 + 2k3 + k4)/6 ,

which gives us the estimates at the evaluation points,

x(tn) = xn (420)

x(tn + ∆t/2) = xn +
∆t

2
k (421)

x(tn + ∆t) = xn + ∆tk . (422)
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We notice here that x(tn + ∆t/2) = xn+xn+1

2
, the same linear interpolation we used for the

control. This should not be surprising given the linear nature of the RK update.
Whichever the way we obtained the nominal state values, we can now compute the

RK4 matrices for the integration of the transition matrix,

K1 = A(xn,un)

K2 = A
(
xn +

∆t

2
k,

un + un+1

2

)(
I +

∆t

2
K1

)
K3 = A

(
xn +

∆t

2
k,

un + un+1

2

)(
I +

∆t

2
K2

)
K4 = A

(
xn + ∆tk,un+1

)(
I + ∆tK3

)
K = (K1 + 2K2 + 2K3 + K4)/6

which finally lead to,

Φ , Φtn+∆t|tn = I + ∆tK (423)

E Integration of random noise and perturbations

We aim now at giving appropriate methods for the integration of random variables within
dynamic systems. Of course, we cannot integrate unknown random values, but we can
integrate their variances and covariances for the sake of uncertainty propagation. This is
needed in order to establish the covariances matrices in estimators for systems that are of
continuous nature (and specified in continuous time) but estimated in a discrete manner.

Consider the continuous-time dynamic system,

ẋ = f(x,u,w) , (424)

where x is the state vector, u is a vector of control signals containing noise ũ, so that the
control measurements are um = u + ũ, and w is a vector of random perturbations. Both
noise and perturbations are assumed white Gaussian processes, specified by,

ũ ∼ N{0,Uc} , wc ∼ N{0,Wc} , (425)

where the super-index •c indicates a continuous-time uncertainty specification, which we
want to integrate.

There exists an important difference between the natures of the noise levels in the
control signals, ũ, and the random perturbations, w:

• On discretization, the control signals are sampled at the time instants n∆t, having
um,n , um(n∆t) = u(n∆t) + ũ(n∆t). The measured part is obviously considered
constant over the integration interval, i.e., um(t) = um,n, and therefore the noise
level at the sampling time n∆t is also held constant,

ũ(t) = ũ(n∆t) = ũn, n∆t < t < (n+ 1)∆t . (426)
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• The perturbations w are never sampled.

As a consequence, the integration over ∆t of these two stochastic processes differs. Let
us examine it.

The continuous-time error-state dynamics (424) can be linearized to

˙δx = Aδx + Bũ + Cw , (427)

with

A ,
∂f

∂δx

∣∣∣∣
x,um

, B ,
∂f

∂ũ

∣∣∣∣
x,um

, C ,
∂f

∂w

∣∣∣∣
x,um

, (428)

and integrated over the sampling period ∆t, giving,

δxn+1 = δxn +

∫ (n+1)∆t

n∆t

(Aδx(τ) + Bũ(τ) + Cwc(τ)) dτ (429)

= δxn +

∫ (n+1)∆t

n∆t

Aδx(τ)dτ +

∫ (n+1)∆t

n∆t

Bũ(τ)dτ +

∫ (n+1)∆t

n∆t

Cwc(τ)dτ (430)

which has three terms of very different nature. They can be integrated as follows:

1. From App. B we know that the dynamic part is integrated giving the transition
matrix,

δxn +

∫ (n+1)∆t

n∆t

Aδx(τ)dτ = Φ·δxn (431)

where Φ = eA∆t can be computed in closed-form or approximated at different levels
of accuracy.

2. From (426) we have ∫ (n+1)∆t

n∆t

Bũ(τ)dτ = B∆tũn (432)

which means that the measurement noise, once sampled, is integrated in a determin-
istic manner because its behavior inside the integration interval is known.

3. From Probability Theory we know that the integration of continuous white Gaussian
noise over a period ∆t produces a discrete white Gaussian impulse wn described by

wn ,
∫ (n+1)∆t

n∆t

w(τ)dτ , wn ∼ N{0,W} , with W = Wc∆t (433)

We obsereve that, contrary to the measurement noise just above, the perturbation
does not have a deterministic behavior inside the integration interval, and hence it
must be integrated stochastically.
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Table 5: E�ect of integration on system and covariances matrices.

Description Continuous time t Discrete time n∆t

state ẋ = f c(x,u,w) xn+1 = f(xn,un,wn)

error-state ˙δx = Aδx + Bũ + Cw δxn+1 = Fxδxn + Fuũn + Fwwn

system matrix A Fx = Φ = eA∆t

control matrix B Fu = B∆t

perturbation matrix C Fw = C

control covariance Uc U = Uc

perturbation covariance Wc W = Wc∆t

Therefore, the discrete-time, error-state dynamic system can be written as

δxn+1 = Fxδxn + Fuũn + Fwwn (434)

with transition, control and perturbation matrices given by

Fx = Φ = eA∆t , Fu = B∆t , Fw = C , (435)

with noise and perturbation levels defined by

ũn ∼ N{0,U} , wn ∼ N{0,W} (436)

with
U = Uc , W = Wc∆t . (437)

These results are summarized in Table 5. The prediction stage of an EKF would
propagate the error state’s mean and covariances matrix according to

δ̂xn+1 = Fxδ̂xn (438)

Pn+1 = FxPnF
>
x + FuUF>u + FwWF>w

= eA∆tPn(eA∆t)> + ∆t2BUcB> + ∆tCWcC> (439)

It is important and illustrative here to observe the different effects of the integration
interval, ∆t, on the three terms of the covariance update (439): the dynamic error term is
exponential, the measurement error term is quadratic, and the perturbation error term is
linear.
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E.1 Noise and perturbation impulses

One is oftentimes confronted (for example when reusing existing code or when interpreting
other authors’ documents) with EKF prediction equations of a simpler form than those
that we used here, namely,

Pn+1 = FxPnF
>
x + Q . (440)

This corresponds to the general discrete-time dynamic system,

δxn+1 = Fxδxn + i (441)

where
i ∼ N{0,Q} (442)

is a vector of random (white, Gaussian) impulses that are directly added to the state vector
at time tn+1. The matrix Q is simply considered the impulses covariances matrix. From
what we have seen, we should compute this covariances matrix as follows,

Q = ∆t2 B Uc B> + ∆tC Wc C> . (443)

In the case where the impulses do not affect the full state, as it is often the case, the
matrix Q is not full-diagonal and may contain a significant amount of zeros. One can then
write the equivalent form

δxn+1 = Fx δxn + Fi i (444)

with
i ∼ N{0,Qi} , (445)

where the matrix Fi simply maps each individual impulse to the part of the state vector
it affects to. The associated covariance Qi is then smaller and full-diagonal. Please refer
to the next section for an example. In such case the ESKF time-update becomes

δ̂xn+1 = Fx δ̂xn (446)

Pn+1 = Fx Pn F>x + Fi Qi F
>
i . (447)

Obviously, all these forms are equivalent, as it can be seen in the following double
identity for the general perturbation Q,

Fi Qi F
>
i = Q = ∆t2 B Uc B> + ∆tC Wc C> . (448)

E.2 Full IMU example

We study the construction of an error-state Kalman filter for an IMU. The error-state
system is defined in (237) and involves a nominal state x, an error-state δx, a noisy control
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signal um = u + ũ and a perturbation w, specified by,

x =


p
v
q
ab
!b
g

 , δx =


δp
δv
δ�
δab
δ!b
δg

 , um =

[
am
!m

]
, ũ =

[
ã
!̃

]
, w =

[
aw
!w

]
(449)

In a model of an IMU like the one we are considering throughout this document, the
control noise corresponds to the additive noise in the IMU measurements. The perturba-
tions affect the biases, thus producing their random-walk behavior. The dynamic, control
and perturbation matrices are (see (427), (377) and (237)),

A =


0 Pv 0 0 0 0
0 0 V� Va 0 Vg

0 0 Θ� 0 Θ! 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , B =


0 0
−R 0

0 −I
0 0
0 0
0 0

 , C =


0 0
0 0
0 0
I 0
0 I
0 0

 (450)

In the regular case of IMUs with accelerometer and gyrometer triplets of the same kind
on the three axes, noise and perturbations are isotropic. Their standard deviations are
specified as scalars as follows

σã [m/s2] , σ!̃ [rad/s] , σaw [m/s2
√
s] , σ!w [rad/s

√
s] (451)

and their covariances matrices are purely diagonal, giving

Uc =

[
σ2

ãI 0
0 σ2

!̃I

]
, Wc =

[
σ2

aw
I 0

0 σ2
!w

I

]
. (452)

The system evolves with sampled measures at intervals ∆t, following (434–437), where
the transition matrix Fx = Φ can be computed in a number of ways – see previous appen-
dices.

E.2.1 Noise and perturbation impulses

In the case of a perturbation specification in the form of impulses i, we can re-define our
system as follows,

δxn+1 = Fx(xn,um)·δxn + Fi ·i (453)

with the nominal-state, error-state, control, and impulses vectors defined by,

x =


p
v
q
ab
!b
g

 , δx =


δp
δv
δ�
δab
δ!b
δg

 , um =

[
am
!m

]
, i =


vi

�i

ai

!i

 , (454)
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the transition and perturbations matrices defined by,

Fx = Φ = eA∆t , Fi =


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 , (455)

and the impulses variances specified by

i ∼ N{0,Qi} , Qi =


σ2

ã∆t2I 0
σ2
!̃∆t2I

σ2
aw

∆tI
0 σ2

!w
∆tI

 . (456)

The trivial specification of Fi may appear surprising given especially that of B in (450).
What happens is that the errors are defined isotropic in Qi, and therefore −Rσ2I(−R)> =
σ2I and −Iσ2I(−I)> = σ2I, leading to the expression given for Fi. This is not possible
when considering non-isotropic IMUs, where a proper Jacobian Fi =

[
B C

]
should be used

together with a proper specification of Qi.

We can of course use full-state perturbation impulses,

δxn+1 = Fx(xn,um)·δxn + i (457)

with

i =


0
vi

�i

ai

!i

0

 , i ∼ N{0,Q} , Q =


0
σ2

ã∆t2I 0
σ2
!̃∆t2I

σ2
aw

∆tI
0 σ2

!w
∆tI

0

 . (458)

Bye bye.
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