A global uniqueness result for acoustic tomography of moving fluid
Alexey Agaltsov

To cite this version:
<hal-01122389>

HAL Id: hal-01122389
https://hal.archives-ouvertes.fr/hal-01122389
Submitted on 3 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A global uniqueness result for acoustic tomography of moving fluid

A. D. Agaltsov

We consider a model time-harmonic wave equation of acoustic tomography of moving fluid in an open bounded domain in dimension $d \geq 2$. We give global uniqueness theorems for related inverse boundary value problem at fixed frequency.

Keywords: inverse boundary value problems, time-harmonic wave equation, acoustic tomography

Subjects: partial differential equations, mathematical physics

AMS classification: 35R30 (Inverse problems), 35Q35 (PDEs in connection with fluid mechanics)

1 Introduction

Consider the operator

$$L_{A,V} = -\Delta - 2iA(x) \cdot \nabla + V(x),$$

where Δ is the standard Laplacian, $x \in D$, $A \in W^{1,\infty}(D, \mathbb{R}^d)$, $V \in L^\infty(D, \mathbb{R})$, D is an open bounded domain in \mathbb{R}^d ($d \geq 2$). In the present article we study an inverse boundary value problem for the equation $L_{A,V} \psi = 0$ in D.

As in [AN], [RW], [RE] we consider the equation $L_{A,V} \psi = 0$ as a model equation for a time-harmonic ($e^{-i\omega t}$) pressure ψ in moving fluid. In this setting

$$A(x) = \frac{\omega}{c^2(x)} v(x), \quad V(x) = -\frac{\omega^2}{c^2(x)},$$

where v is the fluid velocity vector, c is the sound speed, ω is the frequency.

Suppose that 0 is not a Dirichlet eigenvalue for operator $L_{A,V}$ in D. Then the Dirichlet problem

$$\begin{cases}
L_{A,V} \psi = 0 & \text{in } D, \\
\psi|_{\partial D} = f,
\end{cases}$$

1 Centre de Mathématiques Appliquées, Ecole Polytechnique
Route de Saclay
91128 PALAISEAU Cedex, France
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory
119991 MOSCOW, Russia
email: agalets@gmail.com
is uniquely solvable for $\psi \in H^1(D)$ for any $f \in H^{1/2}(\partial D)$. The Dirichlet-to-Neumann map $\Lambda_{A,V}$ sends $f \in H^{1/2}(\partial D)$ to $\Lambda_{A,V}f \in H^{-1/2}(\partial D)$ defined by the formula

$$\Lambda_{A,V}f = \frac{\partial u}{\partial \nu}|_{\partial D} + i(A \cdot \nu)f,$$

(3)

where ν is the unit exterior normal to ∂D and $\frac{\partial u}{\partial \nu}|_{\partial D} \in H^{-1/2}(\partial D)$ can be defined, in particular, by the following formula:

$$\langle \frac{\partial u}{\partial \nu}|_{\partial D}, u \rangle = \int_D \left(\nabla \psi(x) \nabla \tilde{u}(x) - 2i\tilde{u}(x)A(x)\nabla \psi(x) + \tilde{u}(x)V(x)\psi(x) \right) dx,$$

(4)

for $u \in H^{1/2}(\partial D)$ and arbitrary $\tilde{u} \in H^1(D)$ with $\tilde{u}|_{\partial D} = u$. Note that since ψ satisfies $L_{A,V}\psi = 0$, the right hand side of the above formula doesn't depend on the choice of \tilde{u}.

The inverse boundary value problem for equation $L_{A,V}\psi = 0$ in D consists in finding A, V from $\Lambda_{A,V}$. In the case when coefficients A, V can be complex-valued there is an obstruction to the unique solvability of this problem caused by the gauge invariance of the map $\Lambda_{A,V}$ with respect to the gauge transformations

$$\begin{align*}
A &\rightarrow A + \nabla \varphi, \\
V &\rightarrow V - i\Delta \varphi + (\nabla \varphi)^2 + 2AV\varphi,
\end{align*}$$

where $\varphi \in W^{2,\infty}(D, \mathbb{C})$, $\varphi|_{\partial D} = 0$, see, e.g., [KU] ($d \geq 3$), [GT] ($d = 2$).

However, in the case of real-valued coefficients A, V there is no gauge non-uniqueness as it was observed, for example, in [AN].

In addition, in general case, under some regularity assumptions on ∂D, A and V, the Dirichlet-to-Neumann map $\Lambda_{A,V}$ uniquely determines the two-form dA and the function q in D and the tangential component of A on ∂D, where

$$dA = \sum_{1 \leq k < l \leq d} \left(\frac{\partial A^l}{\partial x_k} - \frac{\partial A^k}{\partial x_l} \right) dx_k \wedge dx_l,$$

(5)

$$q = V + i\nabla \cdot A - A \cdot A,$$

and $A = (A^1, \ldots, A^d)$.

In particular, it was shown in [KU] that in dimension $d \geq 3$ the map $\Lambda_{A,V}$ uniquely determines dA and q in D if $A \in L^\infty(D, \mathbb{C}^d)$ and $V \in L^\infty(D, \mathbb{C})$. And in dimension $d = 2$ it was shown in [GT] that if D is a smooth Riemann surface with boundary (in particular, if D is a planar domain with $\partial D \in C^\infty$) then the map $\Lambda_{A,V}$ uniquely determines dA and q provided that $A \in W^{2,p}(D, \mathbb{R}^d)$, $V \in W^{1,p}(D, \mathbb{C})$, $p > 2$.

In addition, concerning the identifiability of tangential components of A on the boundary, it was proved in [BS] that if $\partial D \in C^1$ ($d \geq 3$) or $\partial D \in C^{1,\alpha}$, $\alpha \in (0, 1)$ ($d = 2$) and if $A \in C(D, \mathbb{C}^d)$, $V \in L^\infty(D, \mathbb{C})$ then $\Lambda_{A,V}$ uniquely determines $A - \nu(A \cdot \nu)$ on ∂D, where ν is the unit exterior normal field to ∂D.

In the present article we combine the aforementioned results in order to obtain the following global uniqueness results in the case when coefficients A, V are real-valued.
Theorem 1. Let D be a bounded simply connected domain with path connected boundary in \mathbb{R}^d ($d \geq 3$) with $\partial D \in C^1$. Let $A_1, A_2 \in W^{1,\infty}(D, \mathbb{R}^d)$ and $V_1, V_2 \in L^\infty(D, \mathbb{R})$. If $\Lambda_{A_1, V_1} = \Lambda_{A_2, V_2}$, then $A_1 = A_2, V_1 = V_2$.

Theorem 2. Let D be a bounded simply connected domain in \mathbb{R}^2 with $\partial D \in C^\infty$. Let $A_1, A_2 \in W^{2,p}(D, \mathbb{R}^d)$ and $V_1, V_2 \in W^{1,p}(D, \mathbb{R})$ with $p > 2$. If $\Lambda_{A_1, V_1} = \Lambda_{A_2, V_2}$ then $A_1 = A_2$ and $V_1 = V_2$.

Theorems 1 and 2 are proved in Section 3. In Section 2 we present formulas and equations for finding A, V from $dA, q, A - \nu(A \cdot \nu)|_{\partial D}$.

2 Formulas and equations for finding A, V

In this section we suppose that D is a bounded contractible domain with path connected C^2 boundary in \mathbb{R}^d ($d \geq 2$). By contractibility we mean that there exists $F \in C^2(D \times [0,1], D)$ such that $F_0 \equiv \bar{x}$, $F_1 = \text{id}_D$, where $F_t(x) = F(x, t)$, \bar{x} is some fixed point in D and id_D is the identity mapping on D. We also suppose that $A \in W^{2,\infty}(D, \mathbb{R}^d)$, $V \in L^\infty(D, \mathbb{R})$. Given dA, q as in (5) in D and $A - \nu(A \cdot \nu)$ on ∂D, we can find A, V in the following way:

1. Define $\bar{A} = (\bar{A}^1, \ldots, \bar{A}^d) \in W^{1,\infty}(D, \mathbb{R}^d)$ by the formula
 \[
 \bar{A}^k = \sum_{i < j} \int_0^1 \left(\frac{\partial F^i}{\partial t} \frac{\partial F^j}{\partial x_k} - \frac{\partial F^j}{\partial t} \frac{\partial F^i}{\partial x_k} \right) \left(\frac{\partial A^j}{\partial x_i} \circ F_i - \frac{\partial A^i}{\partial x_j} \circ F_i \right) dt,
 \]
 with $k = 1, \ldots, d$; $A = (A^1, \ldots, A^d)$, $F_i = (F^i_1, \ldots, F^i_d)$ and \circ denotes the composition of maps, i.e. $\frac{\partial A^i}{\partial x_j} \circ F_i(y) = \frac{\partial A^i}{\partial x_j}(F_i(y))$, $y \in D$.

2. Fix $x^0 \in \partial D$. Define $\varphi_0 \in C^1(\partial D)$ by the formula
 \[
 \varphi_0(x) = \sum_{k=1}^d \int_{x^0}^x (A^k_t(y) - \bar{A}_t^k(y)) dy_k, \quad x \in \partial D,
 \]
 where $A_t = A - \nu(A \cdot \nu)$, $\bar{A}_t = \bar{A} - \nu(\bar{A} \cdot \nu)$, $A_t = (A^1_t, \ldots, A^d_t)$, $\bar{A}_t = (\bar{A}^1_t, \ldots, \bar{A}^d_t)$, ν is the unit exterior normal field to ∂D and integration is over an arbitrary C^1 curve on ∂D linking x^0 to x.

3. Find the unique generalized solution $\varphi \in W^{2,\infty}(D, \mathbb{R})$ to
 \[
 \begin{cases}
 \Delta \varphi = \text{Im} \, q - \nabla \cdot \bar{A} & \text{in } D, \\
 \varphi|_{\partial D} = \varphi_0.
 \end{cases}
 \]

4. Coefficients A, V are given by the following formulas:
 \[
 \begin{aligned}
 A &= \bar{A} + \nabla \varphi, \\
 V &= q - i\Delta \varphi - i\nabla \cdot \bar{A} + \bar{A} \cdot \bar{A} + 2\bar{A} \cdot \nabla \varphi + (\nabla \varphi)^2.
 \end{aligned}
 \]

This algorithm will be justified in Section 4.
3 Proofs of Theorems 1, 2

We will prove Theorems 1 and 2 simultaneously. Let D, A_1, A_2, V_1, V_2 satisfy the conditions of Theorem 1 (resp. Theorem 2) and suppose that $\Lambda_{A_1, V_1} = \Lambda_{A_2, V_2}$.

Using Theorem 1.1 of [BS] we obtain that
\[(A_1 - \nu(A_1 \cdot \nu))|_{\partial D} = (A_2 - \nu(A_2 \cdot \nu))|_{\partial D}, \tag{9}\]
where ν is the unit exterior normal field to ∂D. Using Theorem 1.1 of [KU] (resp. Theorem 1.1 of [GT]) we get
\[dA_1 = dA_2 \text{ in } D, \tag{10}\]
\[q_1 = q_2 \text{ in } D, \tag{11}\]
where
\[dA_j = \sum_{1 \leq k < l \leq d} \left(\frac{\partial A^l_j}{\partial x_k} - \frac{\partial A^k_j}{\partial x_l} \right) dx_k \wedge dx_l, \]
\[q_j = V_j + i \nabla \cdot A_j - A_j \cdot A_j, \]
where $A_j = (A^1_j, \ldots, A^d_j), j = 1, 2$.

Since the domain D is simply connected it follows from (10) that there exists $\varphi \in W^{2,\infty}(D, \mathbb{R})$ such that
\[A_1 - A_2 = \nabla \varphi \text{ in } D. \tag{12}\]

In dimension $d = 2$ it follows from simple connectedness of D and from smoothness of ∂D that ∂D is path connected. Formulas (9), (12) and path connectedness of ∂D imply that φ is constant on ∂D.

Using (11), (12) we obtain that
\[V_1 - V_2 = -i \Delta \varphi - (\nabla \varphi)^2 + 2A_1 \nabla \varphi \text{ in } D. \]
Taking the imaginary part of this equation we obtain the equation $\Delta \varphi = 0$ in D. Since φ is constant on ∂D and $\varphi \in W^{2,\infty}(D)$ it follows that φ is constant in D. Hence $A_1 = A_2$ and $V_1 = V_2$. Theorems 1 and 2 are proved.

4 Justification of the algorithm of Section 2

It follows from formula (6) that $d\tilde{A} = dA$. More precisely, if we denote by F^*dA the pullback of the form dA by the map F and by ι_{∂_t} we denote the interior product with the vector field $\frac{\partial}{\partial t}$ on $\{(x, t) \in D \times [0, 1]\}$, then
\[\sum_{k=1}^d \tilde{A}^k dx_k = \int_0^1 (\iota_{\partial_t} F^*dA) \, dt, \]
and the equality \(d\tilde{A} = dA \) follows from the Cartan magic formula \(\mathcal{L}_{\partial_t} = d \circ \iota_{\partial_t} + \iota_{\partial_t} \circ d \), where \(\mathcal{L}_{\partial_t} \) is the Lie derivative along \(\partial_t \), \(d \) is the exterior derivative on \(\{(x, t) \in D \times [0, 1]\} \) and \(\circ \) denotes the composition of maps.

Hence we can define \(\varphi \in W^{2,\infty}(D, \mathbb{R}) \) by the formula
\[
\varphi(x) = \int_{\tilde{x}}^x \sum_{k=1}^d (A_k - \tilde{A}_k) dx_k, \quad x \in \overline{D},
\]
where \(\tilde{x} \in D \) is some fixed point and integration is over an arbitrary \(C^1 \) curve in \(D \) linking \(\tilde{x} \) to \(x \). Then \(\nabla \varphi = A - \tilde{A} \) in \(\overline{D} \) and this implies that \(\varphi|_{\partial D} \) differs by constant from \(\varphi_0 \) defined in (7). We also obtain from (5) the equation
\[
V = q - i\Delta \varphi - i\nabla \cdot \tilde{A} + \tilde{A} \cdot \tilde{A} + 2\tilde{A} \cdot \nabla \varphi + (\nabla \varphi)^2 \quad \text{in} \quad D.
\]
Taking into account that \(V \) is real-valued and separating the imaginary part in the latter equation we obtain (8). Since \(\text{Im} \ q \) and \(\nabla \cdot \tilde{A} \) belong to \(L^\infty(D, \mathbb{R}) \), the problem (8) is uniquely solvable for \(\varphi \in W^{2,\infty}(D, \mathbb{R}) \). Thus, the algorithm of Section 2 is justified.

5 Acknowledgements

This work was fulfilled within the framework of research carried out under the supervision of Prof. R. G. Novikov.

6 References

