
HAL Id: hal-01122077
https://hal.science/hal-01122077v2

Submitted on 1 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Averaged controllability of parameter dependent
conservative semigroups
Jérôme Lohéac, Enrique Zuazua

To cite this version:
Jérôme Lohéac, Enrique Zuazua. Averaged controllability of parameter dependent conservative semi-
groups. Journal of Differential Equations, 2017, 262 (3), pp.1540 - 1574. �10.1016/j.jde.2016.10.017�.
�hal-01122077v2�

https://hal.science/hal-01122077v2
https://hal.archives-ouvertes.fr


Averaged controllability of parameter

dependent conservative semigroups

Jérôme Lohéac ∗ Enrique Zuazua †‡§¶

Abstract

We consider the problem of averaged controllability for parameter de-
pending (either in a discrete or continuous fashion) control systems, the
aim being to find a control, independent of the unknown parameters, so
that the average of the states is controlled. We do it in the context of
conservative models, both in an abstract setting and also analysing the
specific examples of the wave and Schrödinger equations.

Our first result is of perturbative nature. Assuming the averaging
probability measure to be a small parameter-dependent perturbation (in
a sense that we make precise) of an atomic measure given by a Dirac
mass corresponding to a specific realisation of the system, we show that
the averaged controllability property is achieved whenever the system cor-
responding to the support of the Dirac is controllable.

Similar tools can be employed to obtain averaged versions of the so-
called Ingham inequalities.

Particular attention is devoted to the 1d wave equation in which the
time-periodicity of solutions can be exploited to obtain more precise re-
sults, provided the parameters involved satisfy Diophantine conditions
ensuring the lack of resonances.
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1 Introduction and main results

1.1 Problem formulation

This paper is devoted to analyze the following question: Given a system depend-
ing on a random variable, is it possible to find a control such that the average
or expected value of the output of the system is controlled?

The problem is addressed in the context of the abstract system

ẏζ = Aζyζ +Bζu , (1.1a)

with the parameter dependent initial condition

yζ(0) = yiζ , (1.1b)

where ζ ∈ R is a random variable following a probability law η, Aζ is an operator
on X, the state space, Bζ is a control operator, yζ(t) ∈ X is the parameter
dependent state variable, and u(t) ∈ U is the control variable (independent of
the parameter ζ), U being the control space.

Given T > 0, the problem of exact averaged controllability consists in
analysing whether, for every family of parameter dependent initial conditions
yiζ ∈ X and every final target yf ∈ X, there exists a control u ∈ L2([0, T ], U)
(independent of the parameter ζ) such that:∫

R
yζ(T ) dηζ = yf . (1.2)

One can also address the weaker approximate averaged control problem, in
which, for every ε > 0, one aims to find a control u ∈ L2([0, T ], U) such that:∥∥∥∥∫

R
yζ(T ) dηζ − yf

∥∥∥∥2

X

6 ε . (1.3)

In both (1.2) and (1.3), yζ is the solution of (1.1) with initial Cauchy condition yiζ
and control u.

As we shall see, the averaged controllability properties will significantly de-
pend on the nature of the averaging measure η.

It is easy to see that averaged control problems cannot be handled by classical
methods. Indeed,

d

dt

(∫
R
yζ(t) dηζ

)
=

∫
R
Aζyζ dηζ +

(∫
R
Bζ dηζ

)
u ,

hence, the dynamics of the average is (in general) not governed by an abstract
differential equation.

This paper is devoted to address these questions both in the abstract ver-
sion (1.1), in which the generator of the semi-group Aζ is skew-adjoint, and
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in some particular instances: the one-dimensional wave and Schrödinger equa-
tions. In particular, we will pay attention to the string equation with Dirichlet
boundary control:

ÿζ(t, x) = ζ2∂2
xyζ(t, x) ((t, x) ∈ R∗+ × (0, 1)) , (1.4a)

yζ(t, 0) = u(t) (t ∈ R∗+) , (1.4b)

yζ(t, 1) = 0 (t ∈ R∗+) , (1.4c)

yζ(0, x) = yi,0ζ (x) and ẏζ(0, x) = yi,1ζ (x) (x ∈ (0, 1)) . (1.4d)

1.2 Main results

We address the problem of averaged control analyzing the equivalent one of
averaged observability for the corresponding adjoint system. We do it in two
complementary contexts that we briefly describe below. We first show the sta-
bility of the observability inequality under small enough perturbations, to later
derive a much more specific result for Fourier series, using its periodicity prop-
erties.

Perturbation argument We focus on the case where the uncontrolled dy-
namics, i.e. the one associated with u = 0, is time-conservative. Our results
apply also in a slightly larger context (for instance, involving bounded damp-
ing terms) but, for instance, cannot be applied directly for heat-like equations
because of its time irreversibility.

In order to tackle the averaged controllability problem, we consider a proba-
bility measure of the form η = (1− θ)δζ0 + θη̃, where η̃ is a probability measure
on R and θ ∈ [0, 1] a small parameter so that, in practice, we deal with a small
perturbation of an atomic measure concentrated at ζ0. Our result ensures that,
under suitable smallness conditions, averaged observability holds provided the
realization of the system for ζ = ζ0 is observable.

To be more precise, proving the exact averaged controllability in time T > 0
is equivalent to the averaged observability inequality:∫ T

0

∥∥∥∥∫
R
B∗ζ zζ(t) dηζ

∥∥∥∥2

U

dt > c(T )‖zf‖2X (zf ∈ X) , (1.5)

with c(T ) > 0 independent of zf , zζ being the solution of the adjoint system:

−żζ = A∗ζzζ , zζ(T ) = zf .

We assume that the system is exactly controllable/observable for the parameter
value ζ = ζ0, i.e. there exists cζ0(T ) > 0 such that:∫ T

0

∥∥B∗ζ0zζ0(t)
∥∥2

U
dt > cζ0(T )‖zf‖2X (zf ∈ X) .

3



With this assumption, we prove the existence of θ0 ∈ (0, 1] such that, for every
θ ∈ [0, θ0), (1.5) holds, i.e. the parameter dependent system (1.1) is exactly
controllable in average with respect to the probability measure η.

This result is the core of Theorem 3.1 and can be applied in many situations
such as wave, Schrödinger or plate equations with internal or boundary control,
see § 3.2. In particular, this result can be applied in the context of Ingham
inequalities (see Proposition 3.3), an issue that we discuss now in more detail.

Averaged Ingham inequalities In the context of one-dimensional equations
such as string or Schrödinger equations, the problem of averaged controllability
can be reduced (by duality) to the analysis of averages of non-harmonic Fourier
series and the recovery of its coefficients out of its L2(0, T )-norm.

The results in section 4 are only valid for a system of the form

ẏζ = ς(ζ)Ayζ +Bζu ,

with ς ∈ RR, A, independent of ζ, a skew-adjoint and diagonalisable operator
with eigenvalues (iλn)n∈Z and Bζ a boundary control operator.

To be more precise, the aim in section 4, is to obtain the averaged observ-
ability inequality,∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t dηζ

∣∣∣∣∣
2

dt > c(T )
∑
n∈Z
|an|2 , (1.6)

with c(T ) > 0 independent of a = (an)n or the approximate averaged observ-
ability result,∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t dηζ

∣∣∣∣∣
2

dt = 0 =⇒ (an)n = 0 . (1.7)

Here and in the sequel (λn)n is a sequence of real numbers (independent of ζ),
ς(ζ) ∈ R and Lζ ∈ L(`2). The linear map Lζ is introduced here in order to
tackle partial differential equations with second order derivative in time such
as (1.4). For the particular example of the string equation considered in (1.4),
we have (see Appendix A) ς(ζ) = ζ and Lζ is affine with respect to ζ (see (A.2)).
For first order in time systems, such as the Schrödinger equation, we will have
Lζ = Id.

The analysis of the well-posedness of the control system under consideration
also requires the averaged admissibility inequality,∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t dηζ

∣∣∣∣∣
2

dt 6 C(T )
∑
n∈Z
|an|2 , (1.8)

with C(T ) > 0 independent of a = (an)n.
In the case η = δζ0 , these results are (provided some gap condition is satisfied

for (λn)n and T is large enough) a consequence of Ingham inequality (see, for
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instance, the original paper of A. E. Ingham [14]), that has played an important
role when dealing with one-dimensional control problems.

The inequality (1.6) can be achieved, as described above, by perturbation
arguments (see Proposition 3.3 and Corollary 4.1). But in some specific situ-
ations, more precise results can be obtained, combining periodicity properties
and classical Ingham inequalities.

To show how these arguments can be applied, we consider the particular
cases in which :

1. η is a sum of Dirac masses located at points ζk;

2. the parameters ς(ζk) satisfy a non-resonance condition guaranteeing the
irrationality of one parameter ς(ζk0) with respect to all other ones.

3. there exists γ > 0 such that λn ∈ γZ for every n.

Notice that the 3rd condition is fulfilled for the string or one dimensional Schrödinger
equation but is much stronger than the usual gap condition required for Ingham
inequality to hold.

Under these conditions, in Theorem 4.1 we derive the unique continuation
property (1.7) (see Corollary 4.2) and a weighted Ingham inequality (see corol-
laries 4.3 and 4.4) of the form:

∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t dηζ

∣∣∣∣∣
2

dt > c(T )
∑
n∈Z

ρn|an|2 , (1.9)

where the weights ρn > 0 depend of the Diophantine properties of the parame-
ters ς(ζk). This weighted averaged Ingham inequality allows deriving averaged
controllability results for 1d wave equation (1.4) in weighted spaces, see § 4.3.

1.3 Bibliographical comments

The notion of averaged controllability was introduced in [39] where necessary
and sufficient rank conditions were given in the finite dimensional context.

The works of J. -S. Li et al. [26, 25] on ensemble control are also worth
mentioning. The ensemble control notion is introduced to steer, with a control
independent of the parameter, all the parameter dependent trajectories in an
arbitrary small ball around a desired target.

In the PDE context, the problem of averaged control was considered in [24]
for two different wave equations by means of a common interior control, using
H-measure techniques. Other situations were also considered in [40], when, for
instance, the solution of a given PDE is perturbed additively by the solution
of another one. Furthermore, in [30], the authors considered one-parameter
families of Schrödinger and heat equations in the multi-dimensional case, with
controls distributed in some interior sub-domain, showing that, depending on
the averaging measure, one can obtain either the controllability results corre-
sponding to time-reversible or parabolic-like equations.
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The present paper is the first contribution for PDEs depending on the un-
known parameter in a rather general manner which are also of application in
the context of boundary control.

The results we obtain for the string equation are related but different to
previous ones on the simultaneous controllability (see [10, § 5.8.2]), a notion
that was first introduced by D. L. Russell in [32] (see also [27, Chapter 5]) and
extensively analyzed in the literature (see [10, 2, 1] and the references therein).

There are several other possible natural paths to extend the results of this
paper. In particular, it would be natural to address similar issues for wave
equations in networks. We refer to the book of R. Dáger and E. Zuazua [10]
and to the papers of I. Joó [17] and J. Valein et al. [31, 37] for some of the
main existing results on the control and stabilization of networks of 1d wave
equations.

Averaged controllability can be seen also as a first step to achieve simultane-
ous controllability. Obviously, the later requires also the control of all possible
parameter dependent states, and not only the control of their average. In the
concluding section, we will show the link between these two notions via penal-
ization, an issue that is treated in more detail in [29]. This procedure, quickly
explained in the concluding remarks, is similar to the one implemented by J.-
L. Lions in [28] in order to link optimal control and approximate controllability
for the heat equation.

1.4 Structure of the paper

The core of this work is devoted to the obtention of averaged observability
inequalities.

Basic notations and assumptions, ensuring that the averages considered in
this paper are well defined, are given in section 2. The proof of the duality result,
between averaged controllability and averaged observability, is given in § 2.2.

In section 3, we use a perturbation argument in order to derive some exact
averaged observability results. These results are applied in §3.2 (to be compared
with [24]) to the averaged controllability of wave equations, with coefficients
depending smoothly of the space variable and simply measurable with respect to
the unknown parameter, and also in the context of non-harmonic Fourier series
(see § 3.3). When analysing this last application, we deduce a first averaged
Ingham inequality which is later used for the toy example (1.4) in § 3.4.

Other averaged Ingham inequalities are given in section 4, when the proba-
bility measure η is a finite sum of atomic masses. More precisely, in § 4.1, we
apply the results of §3.3 to this situation. In §4.2 we prove an approximate aver-
aged observability result, in the particular context of Fourier series expansions,
and a weighted Ingham inequality of type (1.9), with weights depending on Dio-
phantine approximation properties. The results obtained in § 3.3 and section 4
are applied to the string equation with Dirichlet boundary control (1.4) in §4.3.
Connections with simultaneous controllability are also discussed in § 4.3.

We conclude with some remarks and open questions in section 5.
The technical details related to (1.4) are given in Appendix A.
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2 Averaged controllability

2.1 Functional setting and assumptions

In this paragraph, we present some basic notation, the abstract functional set-
ting and the assumptions ensuring that averages are well defined.

Let us introduce two separable Hilbert spaces, namely the state space X and
the control space U , each of them being identified with its dual.

For every ζ ∈ R, consider the operator Aζ on X with domain D(Aζ) and
assume that

(i) Aζ has a non empty resolvent ρ(Aζ);

(ii) Aζ generates a strongly continuous group Tζ on X. Thus, D(Aζ) is a
dense linear subspace of X;

(iii) For almost every ζ ∈ R and every t ∈ R, there exists a constant κ > 0
such that:

‖Tζ(t)‖L(X) 6 κ (t ∈ R , ζ ∈ R) .

For every ζ ∈ R, define Xζ,1 = D(Aζ), the Hilbert space endowed with the
norm:

‖y‖Xζ,1 = ‖(βI −Aζ)y‖X (y ∈ Xζ,1)

and Xζ,−1 the completion of X with respect to the norm:

‖y‖Xζ,−1
= ‖(βI −Aζ)−1y‖X (y ∈ X) ,

where, in the above, we have chosen β ∈ ρ(Aζ). We refer to [35, § 2.10] for
those definitions. Similarly, based on A∗ζ , we define the spaces Xd

ζ,1 and Xd
ζ,−1.

In addition, [35, Propositions 2.10.1 and 2.10.2] ensure that the norms gen-
erated above for different β are equivalent and in particular, the Xζ,1-norm is

equivalent to the graph norm,
√
‖y‖2X + ‖Aζy‖2X . Moreover, Xd

ζ,−1 is the dual
of Xζ,1 with respect to the pivot space X (see [35, Remark 2.10.6]).

Let us also set Aζ and Tζ the extensions of Aζ and Tζ to Xζ,−1, see [35,
Proposition 2.10.4].

Moreover, assume:

(iv) There exists an orthonormal basis (ei)i∈N of X such that for almost every
ζ ∈ R with respect to the measure η, we have ei ∈ D ((Aζ)

∞) for every
i ∈ N.

(v) For every i ∈ N, and every n ∈ N, ζ ∈ R 7→ (Aζ)
nei ∈ X is measurable.

Let us now introduce the control operators. For every ζ ∈ R, we set Bζ ∈
L(U,Xζ,−1) and consider the Cauchy problems (1.1) with ζ ∈ R the random
variable following a given probability law η.
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For every ζ ∈ R, we introduce the input to state map Φζt ∈ L
(
L2(R, U), Xζ,−1

)
,

classically defined by:

Φζtu =

∫ t

0

Tζ(t− s)Bζu(s) ds (t > 0 , u ∈ L2(R+, U)) , (2.1)

so that, the solution of (1.1) is:

yζ(t) = Tζ(t)yiζ + Φζtu (t > 0 , u ∈ L2(R+, U)) . (2.2)

Taking the average of (2.2) with respect to ζ, we obtain (formally):∫
R
yζ(t) dηζ =

∫
R
Tζ(t)yiζ dηζ + Ftu (t > 0 , u ∈ L2(R+, U)) , (2.3)

where we have defined the averaged input to state map:

Ftu =

∫
R

Φζtudηζ (t > 0 , u ∈ L2(R+, U)) . (2.4)

Let us also classically define for every ζ ∈ R the observability map ψζt ∈
L
(
Xd
ζ,1, L

2(R, U)
)

by:

(ψζt z)(s) =

{
B∗ζT∗ζ(s)z if s 6 t ,

0 if s > t
(z ∈ Xd

ζ,1 , t, s > 0) . (2.5)

We also define (formally) the averaged observability map:

(Ψtz)(s) =

∫
R

(ψζt z)(s) dηζ

=


∫
R
B∗ζT∗ζ(s)z dηζ if s 6 t ,

0 if s > t
(z ∈ X , t, s > 0) . (2.6)

Let us set an assumption on Bζ :

(vi) For almost every ζ ∈ R with respect to the measure η, Bζ is admissible
for the semi-group Tζ generated by Aζ .

Consequently, according to [35, Proposition 4.2.2 and Theorem 4.4.3], Φζt (resp.

ψζt ) can be seen as a linear bounded operator from L2([0, t], U) (resp. X) to X
(resp. L2([0, t], U)) for every t > 0 and almost every ζ with respect to the
measure η.

Finally, our last assumption is:

(vii) The parameter dependent initial condition ζ ∈ R 7→ yiζ ∈ X is Bochner-
integrable for the measure η.

8



The consequence of assumption (vii) is that the average of
(
Tζ(t)yiζ

)
ζ

is well

defined in X.

Lemma 2.1. If assumptions (i)–(v) and (vii) are satisfied, then,∫
R
Tζ(t)yiζ dηζ ∈ X (t > 0) .

Proof. According to Bochner Theorem, (see [34, Theorem 1.2, chapter III]), the
fact that ζ 7→ yiζ is Bochner-integrable is equivalent to ζ 7→ yiζ being measurable

and ζ 7→ ‖yiζ‖X integrable, i.e.,∫
R

∥∥yiζ
∥∥
X

dηζ <∞ . (2.7)

We are going to prove here a stronger result which is the Bochner-integrability
of ζ 7→ Tζ(t)yiζ ∈ X. Firstly, we will prove the measurability of ζ 7→ Tζ(t)∗z for
every t ∈ R and every z ∈ X. To this end, let us notice that, according to [35,
Proposition 2.4.2], we have

Tζ(t)∗z = lim
n→∞

(
Id− t

n
A∗ζ

)−n
z (ζ ∈ R , t ∈ R , z ∈ X) .

Let us prove that ζ 7→
(

Id− t
nA
∗
ζ

)−n
z ∈ X is measurable, for every n ∈ N and

every z ∈ X. To this end, we define:

L
(n)
ζ x =

(〈
x,

(
Id− t

n
Aζ

)n
ei

〉
X

)
i∈N
∈ `2(N) (x ∈ X) ,

with ei defined in assumption (iv). So that, for almost every ζ ∈ R,(
Id +

t

n
A∗ζ

)n
x =

∑
i∈N

[
L

(n)
ζ x

]
i
ei (t ∈ R+ , n ∈ N∗) .

According to the assumptions (ii) and (iii), together with [35, Proposition 2.3.1],
we have R∗+ ⊂ ρ(A∗ζ) for almost every ζ. Thus, for almost every ζ, every

t ∈ R∗+ and every n ∈ N∗,
(

Id + t
nA
∗
ζ

)n
is invertible. Consequently, L

(n)
ζ is also

invertible for almost every ζ ∈ R. Moreover, using assumption (v), we deduce

that ζ 7→ L
(n)
ζ is measurable. Consequently, ζ 7→

(
L

(n)
ζ

)−1

is also measurable.

But,(
Id− t

n
A∗ζ

)−n
z =

(
L

(n)
ζ

)−1 (
(〈z, ei〉X)i∈N

)
(z ∈ X , n ∈ N∗ , t ∈ R∗ , ζ ∈ R) ,
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ensures that ζ 7→
(

Id− t
nA
∗
ζ

)−n
z ∈ X is measurable. Finally, ζ 7→ Tζ(t)∗z

being the limit of measurable functions, is also measurable.
Since X is a separated Hilbert space, ζ 7→ Tζ(t)yiζ is almost everywhere

separably valued. This map is also weakly measurable, that is to say, for every
z ∈ X, ζ 7→ 〈Tζ(t)yiζ , z〉 is measurable. In fact, 〈Tζ(t)yiζ , z〉 = 〈yiζ ,Tζ(t)∗z〉
and it is easy to see that the scalar product of two measurable functions is
measurable. Using Pettis Theorem (see [34, Theorem 1.1 of chapter III]), we
conclude that ζ 7→ Tζ(t)yiζ is measurable.

Finally, using again assumption (iii), we have, ‖Tζ(t)yiζ‖X 6 κ‖yiζ‖X . Con-

sequently, assumption (vii) ensures that ζ 7→ ‖Tζ(t)yiζ‖X is η-integrable.
The conclusion follows from Bochner Theorem.

Remark 2.1. Given t ∈ R+ and y ∈ X, Lemma 2.1 ensures the measurability
of ζ ∈ R 7→ Tζ(t)y ∈ X, under the assumptions (iv) and (v). But there exist
some situations for which these assumptions are not required.

• Assume that the support of η is a finite or countable set. In this case, we
implicitly consider the probability set (Ω,P(Ω), µ), with Ω = supp η and
for every ζ ∈ Ω, µ({ζ}) = η({ζ}). Thus, the measurability of ζ ∈ Ω 7→
Tζ(t)y ∈ X is equivalent to:

{ζ ∈ Ω , Tζ(t)y = Tζ0(t)y} is measurable for every ζ0 ∈ Ω .

This last property is obvious since, for every ζ0 ∈ Ω, the above set is
in P(Ω).

• With fewer restrictions on the measure η, if ζ ∈ R 7→ Tζ(t)y is continuous,
then the measurability is obvious. We refer to [19] and [38] for general
assumptions on the infinitesimal generators Aζ ensuring the continuity of
ζ 7→ Tζ . More precisely, applying [38, Theorem 2.9] in our case, leads to:

Theorem 2.1. [38, Theorem 2.9] Assume that

1. The domain Xζ,1 of Aζ is independent of ζ and set X1 = Xζ,1;

2. The operator ζ ∈ R 7→ Aζ ∈ L(X1, X) is continuous in the genera-
lized sense on R, that is to say:

lim
ζ→ζ0

max {δ(Aζ , Aζ0), δ(Aζ0 , Aζ)} = 0 (ζ0 ∈ R) ,

with δ defined by (2.8).

3. The semigroup Tζ generated by Aζ satisfies a locally stable condition
in R, that is to say, for every ζ0 ∈ R, there exist M0 > 0, ω0 >
0 and ε0 > 0 (depending on ζ0), such that if |ζ − ζ0| < ε0, then
‖Tζ(t)‖L(X) < M0e

ω0t for every t ∈ R+.
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Then, the semigroup Tζ , generated by Aζ is strongly continuous on R.
That is, for every ζ0 ∈ R and y ∈ X,

lim
ζ→ζ0

‖Tζ(t)y − Tζ0(t)y‖X = 0 ,

and, in addition, this convergence is uniform with respect to t ∈ [0, T ],
where T ∈ R∗+ is arbitrary.

In the above Theorem we have used the application δ : L(X1, X)×L(X1, X)→
R which is defined by:

δ(A, Ã) = sup
(y,Ay)∈SA

(
inf

(ỹ,Ãỹ)∈SÃ

(
‖y − ỹ‖2X + ‖Ay − Ãỹ‖2X

))
(A, Ã ∈ L(X1, X)) , (2.8)

with SA =
{

(y, Ay) ∈ X1 ×X , ‖y‖2X + ‖Ay‖2X = 1
}

.

2.2 Averaged admissibility, controllability and observabil-
ity

With the notations and assumptions introduced in the previous paragraph, we
are now in position to define the averaged admissibility, controllability and ob-
servability concepts.

Definition 2.1 (Averaged admissibility). The family of control operators (Bζ)ζ
is said to be admissible in average for the family of semi-groups (Tζ)ζ if there ex-
ists a time T > 0 such that FT ∈ L

(
L2([0, T ], U), X

)
, with FT defined by (2.4).

Let us also introduce the following averaged controllability concepts.

Definition 2.2 (Exact/Approximate averaged controllability). Let T > 0. The
family of pairs (Aζ , Bζ)ζ is said to be exactly (resp. approximatively) controllable
in average in time T if FT

(
L2([0, T ], U)

)
is equal to (resp. dense in) X.

As in classical control theory (see for instance [35, §4.4]), we have the fol-
lowing duality results:

Proposition 2.1. Set T > 0, assume that (vi) is satisfied and, ζ ∈ R 7→ ψζT ∈
L(X,L2([0, T ], U)) is Bochner integrable for the measure η.
Define the time reflection operator:

( RT f)(t) = f(T − t) (0 < t < T , f defined a.e. on [0, T ]) .

Then, the admissibility inequalities hold, i.e. there exists a positive constant
C(T ) such that:

‖FTu‖2X 6 C(T ) ‖u‖2L2([0,T ],U) (u ∈ L2([0, T ], U)) , (2.9a)

‖ΨT z‖2L2([0,T ],U) 6 C(T ) ‖z‖2X (z ∈ X) , (2.9b)
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where FT and ΨT are defined by (2.4) and (2.6) and

C(T ) 6

(∫
R

∥∥ψζT∥∥L(X,L2([0,T ],U))
dηζ

)2

.

In addition, we have,
F∗T = RTΨT , (2.10)

and

1. FT
(
L2([0, T ], U)

)
is dense in X if and only if Ker ΨT = {0};

2. FT
(
L2([0, T ], U)

)
= X if and only if ΨT ∈ L

(
X,L2([0, T ], U)

)
is bounded

from bellow.

Proof. First of all, since for almost every ζ, Bζ is admissible for the semi-

group Tζ , we have (see [35, Proposition 4.4.1]) ΦζT ∈ L(L2([0, T ], U), X), ψζT ∈
L(X,L2([0, T ], U)) and

(
ΦζT
)∗

= RTψ
ζ
T .

Since ζ 7→ ψζT ∈ L(X,L2([0, T ], U)) is Bochner-integrable, we have ΨT ∈
L(X,L2([0, T ], U)) and for every z ∈ X,

‖ΨT z‖L2([0,T ],U) =

∥∥∥∥∫
R
ψζT z dηζ

∥∥∥∥
L2([0,T ],U)

6
∫
R

∥∥ψζT z
∥∥
L2([0,T ],U)

dηζ

6
∫
R

∥∥ψζT∥∥L(X,L2([0,T ],U))
dηζ ‖z‖X .

Thus, there exists a constant C(T ) 6

(∫
R

∥∥ψζT∥∥L(X,L2([0,T ],U))
dηζ

)2

such that

(2.9b) holds.

Since ΦζT =
(
ψζT
)∗

R∗T and RT ∈ L(L2([0, T ], U)) is a unitary operator, it is
obvious that FT ∈ L(L2([0, T ], U), X), FT is given by (2.10) and

‖FT ‖L(L2([0,T ],U),X) = ‖ΨT ‖L(X,L2([0,T ],U)) .

Let us finally prove the last two items.

1. According to [35, Remark 2.8.2], FT
(
L2([0, T ], U)

)
is dense in X if and

only if Ker F∗T = {0}.

2. According to [35, Proposition 12.1.3], FT is onto if and only if F∗T is
bounded from bellow.

We end the proof by considering (2.10), and noticing that RT is isometric.

A major difficulty in order to use Proposition 2.1 is to prove that ζ 7→ ψζT is
Bochner integrable. Let us give a simple case where this is easy to obtain.
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Lemma 2.2. Set η a probability measure and assume Bζ = B ∈ L(U,X) is a
bounded control operator independent of ζ and assumptions (i)–(v) are fulfilled.

Then, for every T > 0, ζ ∈ R 7→ ψζT ∈ L(X,L2([0, T ], U)) is Bochner
integrable for the measure η.

Proof. First of all, since B is a bounded control operator, it is obvious that
ψζT ∈ L(X,L2([0, T ], U)) for every ζ ∈ R.
Using assumption (iii), we have that (see proof of Lemma 2.1) ζ 7→ Tζ(t)∗z ∈
X measurable for every z ∈ X and every t ∈ R∗+. Consequently, since the
control operator B is independent of ζ, we easily obtain that ζ 7→ B∗Tζ(t)∗z is
measurable. In addition, using again assumption (iii), we have ‖B∗Tζ(t)∗z‖U 6
κ‖B∗‖L(X,U)‖z‖X . This ends the proof.

In the next paragraphs, following this general abstract path, we prove admis-
sibility and exact averaged observability results for the corresponding adjoint
systems.

3 An abstract perturbation result

Using the admissibility condition given in the previous section, one can easily
develop a perturbation argument leading to averaged controllability.

3.1 Perturbation argument

Let us prove our general perturbation result.

Theorem 3.1. Set T > 0, let η̃ be a probability measure and ζ0 ∈ R. Assume
that

1. Condition (vi) is satisfied, i.e., for almost every ζ ∈ R, there exists a

positive constant Cζ(T ), Cζ(T ) =
∥∥ψζT∥∥2

L(X,L2([0,T ],U))
, such that:∥∥ψζT z

∥∥2

L2([0,T ],U)
6 Cζ(T )‖z‖2X (z ∈ X) ,

with ψζt defined by (2.5).

2. ζ ∈ R 7→ ψζT ∈ L(X,L2([0, T ], U)) is Bochner-integrable for the measure η̃.

3. The pair (Aζ0 , Bζ0) is exactly controllable in time T , i.e., there exists
cζ0(T ) > 0 such that:

cζ0(T )‖z‖2X 6
∥∥ψζ0T z

∥∥2

L2([0,T ],U)
(z ∈ X) . (3.1)

Set θ0 =

(
1 +

∫
R

√
C̃ζ(T )
cζ0 (T ) dη̃ζ

)−1

. Then for every θ ∈ [0, θ0), (Aζ , Bζ)ζ is

exactly controllable in average in time T with respect to the probability measure η
given by:

η = (1− θ)δζ0 + θη̃ . (3.2)

13



In addition, for every θ ∈ [0, θ0), we have:

cθ(T )‖z‖2X 6 ‖ΨT z‖2L2([0,T ],U) 6 Cθ(T )‖z‖2X (z ∈ X) , (3.3)

with ΨT defined by (2.6), Cθ(T ) > 0 and

cθ(T ) =

(
(1− θ)

√
cζ0(T )− θ

∫
R

√
Cζ(T ) dη̃ζ

)2

.

Remark 3.1. 1. This result can be applied in many examples such as wave,
Schödinger and plate equations, etc. with boundary or internal controls of
different nature.
However, the proof, which is rather straightforward, is based on a smallness
argument and, hence, it does not cover the results in [24] for the averaged
controllability of two wave equations with internal control, or the ones
in [40] for the additive superposition of wave and heat equations.

2. In Theorem 3.1, we assume that the perturbation measure η̃ is a probabil-
ity measure so that η = (1− θ)δζ0 + θη̃ is a probability measure for every
θ ∈ [0, 1].

Of course, a similar study could have been performed with non probabilistic
measures but we consider probability measures so to guarantee that we are
dealing with ”averages”.

3. In Theorem 3.1, the probability space under consideration is (R,B(R), θη̃+
(1 − θ)δζ0). Thus we consider one-parameter dependent problems. But
similar results could have been obtained for more general probability spaces
(Ω, T , θη̃ + (1 − θ)δζ0), with θ ∈ [0, 1] and ζ0 ∈ Ω, assuming that the σ-
algebra, T , contains {ζ0}. For instance, one could think on d-parameter
depedning problems, using the probability space (Rd,B(Rd), θη̃+(1−θ)δζ0),
with θ ∈ [0, 1] and ζ0 ∈ Rd.

Proof of Theorem 3.1. Using Proposition 2.1, assumptions 1 and 2 ensure the
averaged admissibility of (Bζ)ζ for (Tζ)ζ with respect to the measure η̃. This
together with the admissibility of Bζ0 for Tζ0 (3rd assumption), ensure the
averaged admissibility of (Bζ)ζ for (Tζ)ζ with respect to the measure η given
by (3.2) for every θ ∈ [0, 1].

For every θ ∈ [0, 1] and every z ∈ X, we have:

‖ΨT z‖L2([0,T ],U) =
∥∥∥(1− θ)ψζ0T z + θΨ̃T z

∥∥∥
L2([0,T ],U)

> (1− θ)
∥∥∥ψζ0T z

∥∥∥
L2([0,T ],U)

− θ
∥∥∥Ψ̃T z

∥∥∥
L2([0,T ],U)

,

with ΨT given by (2.6) (with η given by (3.2)) and with Ψ̃T z =

∫
R
ψζT z dη̃ζ .

Thus, from Proposition 2.1 and (3.1), we easily obtain:

‖ΨT z‖L2([0,T ],U) >

(
(1− θ)

√
cζ0(T )− θ

∫
R

√
Cζ(T ) dη̃ζ

)
‖z‖X (z ∈ X) .
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This ends the proof.

3.2 Averaged control of parameter depending Schrödinger
and wave systems

A Schrödinger system
For every ζ ∈ R, let us consider the controlled Schrödinger equation:

ẏζ = i div (aζ(x)∇yζ) + χωu in (0, T )× Ω , (3.4a)

yζ = 0 on (0, T )× ∂Ω , (3.4b)

yζ(0, x) = yiζ(x) (x ∈ Ω) , (3.4c)

where Ω is a bounded and smooth domain of Rd, ω an open subset of Ω, aζ ∈
C∞(Ω,R) is uniformly strictly positive and yiζ ∈ L2(Ω).

Let us explain why the parameter dependent control system (3.4) fits our
abstract setting. To this end, define the control space U = L2(ω,C) and the
state space X = L2(Ω,C), and for every ζ the operator Aζ given by:

D(A) = H2(Ω,C) ∩H1
0 (Ω,C) and Aζy = i div

(
aζ∇y

)
(y ∈ D(A)) ,

and define the control operator B ∈ L(U,X) by:

Bv = χωv v ∈ U .

Notice that D(Aζ) is independent of ζ and set X1 = H2(Ω,C) ∩H1
0 (Ω,C).

It is well known that assumptions (i) and (ii) are satisfied. In addition, for every
ζ ∈ R, it is classical that Aζ is a skew adjoint operator generating a unitary
group Tζ on X. Thus, assumptions (ii) and (iii) (with κ = 1) are fulfilled.
Since aζ ∈ C∞(Ω,R) and aζ do not vanish, it is obvious that C∞0 (Ω,C) ⊂
D ((Aζ)

∞). Thus, assumption (iv) is satisfied. In addition, assuming that ζ 7→
aζ ∈ C∞(Ω,R) is measurable, for every y ∈ C∞0 (Ω,C) and every n ∈ N, we
have that ζ 7→ (Aζ)

ny ∈ X is measurable, i.e. assumption (v) is satisfied.
Since B is a bounded control operator, it is obvious that assumption (vi) is

satisfied and the Bochner integrability of ζ ∈ R 7→ ψζT ∈ L(X,L2([0, T ], U)) is
given by Lemma 2.2.

Applying Theorem 3.1 to this system, we obtain the following:

Proposition 3.1. Let η̃ be a probability measure and assume that

1. ζ ∈ R 7→ aζ ∈ C∞(Ω,R) is measurable and for every ζ ∈ R, inf
x∈Ω

aζ(x) > 0;

2. There exists τ > 0 such that the set (0, τ)×ω satisfies the geometric control
condition (see [3]) for the wave equation (3.5) indexed by ζ = 1.

Then, for every T > 0, there exists θ0(T ) ∈ (0, 1] such that system (3.4)
fulfils the exact averaged control property, in time T , for every θ ∈ [0, θ0(T ))
with measure ηθ = (1− θ)δ1 + θη̃ and for the space X = L2(Ω,C).

Proof. According to the previous remarks, in order to apply Theorem 3.1, we
only need to prove the observability inequality for ζ = 1. This inequality is
obtained by combining [3] and [35, Theorem 6.7.2].
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A wave system
Set a probability measure η̃ on R. For every ζ ∈ R, let us consider the controlled
wave equation:

ÿζ = div (aζ(x)∇yζ) + χωu in (0, T )× Ω , (3.5a)

yζ = 0 on (0, T )× ∂Ω , (3.5b)

yζ(0, x) = yi,0ζ (x) and ẏζ(0, x) = yi,1ζ (x) (x ∈ Ω) , (3.5c)

where Ω is a smooth and bounded domain of Rd, ω an open subset of Ω,
(yi,0ζ , yi,1ζ ) ∈ H1

0 (Ω)×L2(Ω) and aζ ∈ C∞(Ω) is uniformly bounded from below

and above by positive constants independent of ζ and ζ ∈ R 7→ aζ ∈ C∞(Ω)
measurable.

Let us briefly explain how the parameter dependent control system (3.5) fits
in our abstract setting. To this end, we define the control space U = L2(ω) and
the state space X = H1

0 (Ω)× L2(Ω) with the scalar product:〈[
z0

z1

]
,

[
y0

y1

]〉
X

= 〈∇z0,∇y0〉L2(Ω)d + 〈z1, y1〉L2(Ω) .

For every ζ ∈ R, let us define the operator Aζ on L2(Ω) by:

D(Aζ) = H2(Ω) ∩H1
0 (Ω) and Aζf = −div (aζ∇f) (f ∈ D(Aζ))

and let us define the space Xζ,0 = X endowed with the scalar product:〈[
z0

z1

]
,

[
y0

y1

]〉
Xζ,0

= 〈A
1
2

ζ z0,A
1
2

ζ y0〉L2(Ω) + 〈z1, y1〉L2(Ω)

=
〈√

aζ ∇z0,
√
aζ ∇y0

〉
L2(Ω)d

+ 〈z1, y1〉L2(Ω)d .

Since aζ is uniformly bounded from above and below, the X and Xζ,0-norms
are equivalent.
For every ζ ∈ R, let us now define the operator Aζ on X by:

D(Aζ) = H1
0 (Ω)× L2(Ω) and

Aζ

[
z0

z1

]
=

[
0 Id
−Aζ 0

] [
z0

z1

]
=

[
z1

div
(
aζ∇z0

)] (

[
z0

z1

]
∈ D(Aζ)) .

With these definitions, Aζ is skew adjoint on Xζ,0 and generates a unitary
group on Xζ,0. Since the X and Xζ,0-norms are equivalent, the assumptions (ii)

and (iii) (with κ = max
{

1, sup
ζ∈R
‖aζ‖L∞(Ω)

}
) are satisfied.

Let us now define the bounded control operator B ∈ L(U,X), independent
of ζ, by:

Bv =

[
0
χωv

]
(v ∈ U) .
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All in all, the system (3.5) can be expressed in the condensed form:

ẇζ = Aζwζ +Bu , wζ(0) =

[
yi,0ζ
yi,1ζ

]
∈ X ,

where wζ(t) =

[
yζ(t)
ẏζ(t)

]
.

Since we have assumed that ζ 7→ aζ ∈ C∞(Ω) is measurable, a similar
discussion to the one on (3.4) ensures that assumptions (iv) and (v) are satisfied

and the Bochner integrability of ζ ∈ R 7→ ψζT ∈ L(X,L2([0, T ], U)) is guaranteed
by Lemma 2.2.

Applying Theorem 3.1 to this system, we obtain the following:

Proposition 3.2. Set T > 0 and η̃, a probability measure. Assume,

1. ζ ∈ R 7→ aζ ∈ C∞(Ω) is measurable, 0 < inf
x∈Ω ,
ζ∈R

aζ(x) and sup
x∈Ω ,
ζ∈R

aζ(x) <∞;

2. (0, T )×ω satisfies the geometric control condition (see [3]) for the equation
(3.5) indexed by ζ = 1.

Then, there exists θ0 ∈ (0, 1] such that system (3.5) fulfils the exact averaged
control property, in time T , for every θ ∈ [0, θ0) with measure ηθ = (1−θ)δ1+θη̃
and for the space X = H1

0 (Ω)× L2(Ω).

Proof. According to the previous remarks, in order to apply Theorem 3.1, we
only need to prove the observability inequality for ζ = 1. But, from [3], the
geometric control condition for the control system indexed by ζ = 1 ensures
that this system is exactly controllable in time T .

Remark 3.2. This result holds in the particular case ηθ = (1−θ)δ1 +θδ2 where
two wave equations with different velocities of propagation are averaged.

This case was addressed in [24, Theorem 2.1] where it was proved that the
system satisfies the averaged control property for every θ ∈ [0, 1), assuming,

a1(x) 6= a2(x) (x ∈ ω) . (3.6)

The proof of this result is based on micro-local defect measures and the fact that
the characteristic manifolds of the two wave equations involved are disjoint. This
example shows that the smallness condition we impose on the perturbations is
not sharp.

3.3 Perturbation of Ingham inequalities

In this paragraph, we apply our perturbation result to Ingham inequalities. To
this end, let us first introduce some technical material.

17



Define the Hilbert space of square summable sequences:

`2 =

{
(an)n∈Z ∈ CZ ,

∑
n∈Z
|an|2 <∞

}

and consider a real sequence λ = (λn)n∈Z, which is assumed to satisfy the
following gap condition: there exists γ > 0 such that

inf
(m,n)∈Z2

m6=n

|λm − λn| > γ . (3.7)

When η is the atomic mass located in ζ0, according to Ingham inequali-
ties, (1.8) and (1.6) are valid for T > 1/|ς(ζ0)|γ (with Lζ0 = Id and ς(ζ0) 6= 0).
More precisely, for T > 0,∫ T

0

∣∣∣∣∣∑
n∈Z

ane
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt 6 Cς(ζ0)(T )
∑
n∈Z
|an|2 ((an)n ∈ `2) , (3.8a)

and for T >
1

|ς(ζ0)|γ
,

cς(ζ0)(T )
∑
n∈Z
|an|2 6

∫ T

0

∣∣∣∣∣∑
n∈Z

ane
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt ((an)n ∈ `2) , (3.8b)

where for every ξ ∈ R∗, we have defined:

cξ(T ) =
2

π

(ξγT )2 − 1

(ξγT )2
T and Cξ(T ) =

10T

πmin(1, 2|ξ|γT )
. (3.9)

This classical result can be found in the original paper by A. E. Ingham, [14,
Theorems 1 and 2]. For its relation with control theory, we refer, for instance,
to [15, 21, 22] and the books [10, 35].

Let us now apply our perturbation argument developed in § 3.1 to these
non-harmonic Fourier series.

Proposition 3.3. Let (λn)n∈Z be a sequence of real numbers satisfying the
gap condition (3.7). Let Lζ ∈ L(`2), η̃ a probability measure on R, ς ∈ RR

and ζ0 ∈ R. Assume ς(ζ0) 6= 0 and let T >
1

γ|ς(ζ0)|
.

Assume in addition that ζ 7→ Lζ and ς are measurable, ς(ζ) 6= 0 for almost
every ζ ∈ R with respect to the measure η̃, and∫

R
‖Lζ‖L(`2) dη̃ζ <∞ ,

∫
R

‖Lζ‖L(`2)√
|ς(ζ)|

dη̃ζ <∞,

Lζ0 being bounded from bellow, i.e. there exists Λζ0 > 0 such that:

Λζ0‖a‖`2 6 ‖Lζ0a‖`2 (a ∈ `2) .
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Set

θ0 =

(
1 +

1

Λζ0

√
5(γς(ζ0)T )2

(γς(ζ0)T )2 − 1

∫
R

‖Lζ‖L(`2)

min(1,
√

2γ|ς(ζ)|T )
dη̃ζ

)−1

.

Then for every θ ∈ [0, θ0), there exists cθ(T ) > 0 and Cθ(T ) > 0 such that:

cθ(T )‖a‖2`2 6∫ T

0

∣∣∣∣∣θ
∫
R

∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t dη̃ζ + (1− θ)

∑
n∈Z

[Lζ0a]ne
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt

6 Cθ(T )‖a‖2`2 (a ∈ `2) .

Proof. First of all, we have from (3.8):

∫ T

0

∣∣∣∣∣∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t

∣∣∣∣∣
2

dt 6 ‖Lζ‖2L(`2)Cς(ζ)(T )‖a‖2`2 (a ∈ `2) ,

for every ζ ∈ R and T > 0, and

Λ2
ζ0cς(ζ0)(T )‖a‖2`2 6

∫ T

0

∣∣∣∣∣∑
n∈Z

[Lζ0a]ne
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt (a ∈ `2) ,

for every T > 1/(|ς(ζ0)|γ) and with cς(ζ0)(T ) and Cς(ζ)(T ) defined by (3.9).
We conclude as in the proof of Theorem 3.1.

Remark 3.3. The condition T > 1/(|ς(ζ0)|γ) is only required in view of the
fact that we have employed the classical formulation of Ingham’s inequality.
But, for instance, if the sequence (λn)n∈N∗ is nondecreasing and satisfies the
asymptotic gap condition lim inf

n→∞
λn+1 − λn = +∞ then, employing generalised

versions of Ingham’s inequalities (see [18]), our result can be shown to hold true
for every T > 0.

3.4 Averaged control of parameter depending string sys-
tems

Using Proposition 3.3 together with (A.3) and the duality result, given in
Proposition 2.1, we obtain an averaged controllability result for the string equa-
tion (1.4).

Proposition 3.4. Let ζ0 ∈ R∗ and η̃ be a probability measure on R with:∫
R
|ζ|α dη̃ζ <∞ (α ∈ [ 1

2 , 2]) .
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Set T > 2/|ζ0| and

θ0 =



1 +

√
5T

ζ0
√

(ζ0T )2 − 4

∫
R

|ζ|
∣∣1 + (ζ2 − 1)1(1,∞)(|ζ|)

∣∣ 12
min

(
1,
√
|ζ|T

) dη̃ζ

−1

if 0 < ζ0 < 1 ,1 +

√
5T

ζ2
0

√
(ζ0T )2 − 4

∫
R

|ζ|
∣∣1 + (ζ2 − 1)1(1,∞)(|ζ|)

∣∣ 12
min

(
1,
√
|ζ|T

) dη̃ζ

−1

if ζ0 > 1 .

Then, for every θ ∈ [0, θ0), every target (yf,0, yf,1) ∈ L2(0, 1) × H−1(0, 1)
and every Bochner-integrable initial conditions ζ 7→ (yi,0ζ , yi,1ζ ) ∈ L2(0, 1) ×
H−1(0, 1), there exists a control u ∈ L2(0, T ) so that:

(1−θ)yζ0(T )+θ

∫
R
yζ(T ) dη̃ζ = yf,0 and (1−θ)ẏζ0(T )+θ

∫
R
ẏζ(T ) dη̃ζ = yf,1 ,

where, for every ζ ∈ R, yζ is solution of (1.4).
Moreover, there exists a positive constant Cθ(T ), independent of the initial

and final conditions, such that:

‖u‖2L2(0,T ) 6 Cθ(T )

(∥∥∥∥(1− θ)yi,0ζ0 + θ

∫
R

yi,0ζ dη̃ζ

∥∥∥∥2

L2(0,1)

+

∥∥∥∥(1− θ)yi,1ζ0 + θ

∫
R

yi,1ζ dη̃ζ

∥∥∥∥2

H−1(0,1)

+ ‖yf,0‖2L2(0,1) + ‖yf,1‖2H−1(0,1)

)
.

4 Discrete averages of Ingham inequalities

In § 3.3, we used a perturbation argument to prove, roughly speaking, the sta-
bility of Ingham inequalities when the measure η is a Dirac mass plus a small
enough perturbation. Obviously, there are many other cases of interest that do
not enter on that setting.

In this paragraph we consider another interesting particular case, in which
a finite number of equations are involved. In other words, we address the case
in which the unknown parameter varies on a finite set.

Of course, our perturbation argument can be applied in this case (see §4.1),
but this argument required some smallness assumptions. We will see in § 4.2
that some averaged Ingham inequalities are still valid without this smallness
assumption. In order to handle this case and prove the needed averaged In-
gham inequalities we use a different argument. Instead of arguing through a
perturbation principle, we shall rather use a method inspired by [10] and [40]
whose key tool is to use the fact the solutions of the model under consideration,
for given values of the parameter, are annihilated by a given linear bounded
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operator commuting with all other equations. This is the case for the 1d wave
and Schrödinger equations with Dirichlet boundary conditions, for which the
solutions are time-periodic.

In order to present these cases we consider a sequence (λn)n∈Z satisfying:

λm 6= λn , for m 6= n and λn ∈ γZ (m,n ∈ Z) , (4.1)

with γ > 0. Of course, in this case the Ingham gap condition (3.7) holds. In
order to enforce (4.1), we set λn = µnγ, with µn ∈ Z.

As in § 3.3, we consider an operator Lζ ∈ L(`2) and a function ς ∈ RR, and
define the function f by:

f(t) =

K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t (a ∈ `2 , t > 0) , (4.2)

with K > 0, θk ∈ [0, 1) such that
∑K
k=0 θk = 1, and ζk ∈ R.

Since we are averaging on a finite number of parameters, the inequality (3.8)
ensures, for every T > 0, the existence of a constant C(T ) > 0 such that:

‖f‖2L2(0,T ) 6 C(T )‖a‖2`2 (a ∈ `2) .

4.1 Application of the perturbation result

Let us make precise the statement of Proposition 3.3 for discrete averages.

Corollary 4.1. Let (µn)n∈Z be a sequence of integers and γ > 0.
Let ς ∈ RR, K ∈ N∗ = N \ {0}, k0 ∈ {0, · · · ,K}, and for every k ∈ {0, · · · ,K},
let θk ∈ [0, 1] be the weights (so that

∑K
k=0 θk = 1), ζk ∈ R and Lζk ∈ L(`2).

Assume for every k ∈ {0, · · · ,K}, ς(ζk) 6= 0 and assume Lζk0 is bounded from
below, i.e. there exists Λζk0 > 0 such that:

Λζk0 ‖a‖`2 6 ‖Lζk0a‖`2 (a ∈ `2) . (4.3)

Then, if

T >
1

γ|ς(ζk0)|
and θk0 >

Θk0

1 + Θk0

,

with

Θk0 =
1

Λζk0

√
5(γς(ζk0)T )2

(γς(ζk0)T )2 − 1

K∑
k=0
k 6=k0

θk
‖Lζk‖L(`2)

min(1,
√

2γ|ς(ζk)|T )
,

there exist two constants, ck0(T ) > 0 and Ck0(T ) > 0, such that:

ck0(T )‖a‖2`2 6
∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπγµnς(ζk)t

∣∣∣∣∣
2

dt 6 Ck0(T )‖a‖2`2 ,

for every a ∈ `2.
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Remark 4.1. We have shown that averaged versions of Ingham’s inequalities
hold true under a suitable smallness condition on the perturbing measures. On
one hand, this is necessary in some sense as the example below shows but, on
the other hand, with some more assumptions, this assumption is not needed as
we will see in § 4.2.

Consider the case Lζ = Id, γ = 1, µn = n, ζ0 = 1, ζ1 = 2, ς(ζ) = ζ and the
measure η = (1−θ)δζ0 +θδζ1 . The assumption (4.3) of the above corollary holds
for k0 = 0 and k0 = 1. Consequently, for every T > 1, there exist θ0

0, θ
1
0 ∈ [0, 1)

such that if θ ∈ [0, θ0
0) ∪ (1− θ1

0, 1], there exist two nonnegative constants cθ(T )
and Cθ(T ) such that:

cθ(T )‖a‖2`2 6
∫ T

0

∣∣∣∣∣∑
n∈Z

an
(
(1− θ)e2iπnt + θe4iπnt

)∣∣∣∣∣
2

dt 6 Cθ(T )‖a‖2`2 (a ∈ `2) .

The closeness condition on θ, θ close enough to 0 or close enough to 1, is
necessary. In particular, for θ = 1/2, no such c

1
2 (T ) > 0 exists. Indeed, setting:

f(t) =
∑
n∈Z

an
(

1
2e

2iπnt + 1
2e

4iπnt
)

(t ∈ [0, T ]) ,

with an =

{
(−1)k if n = 2k and k ∈ {0, · · · , N} ,
0 otherwise,

(n ∈ Z) ,

where N ∈ N∗ is given, we obtain,

f(t) =
(−1)N

2
e4iπ2N+1t (t ∈ [0, T ]) .

Thus, for every T > 0,
∫ T

0
|f(t)|2 dt = T/4, whereas, ‖a‖`2 =

√
N + 1.

Letting N go to infinity we see that no Ingham inequality can hold whatever
T > 0 is.

4.2 A time-periodicity argument

Let us start with an Ingham type inequality which is valid with little hypothesis
on the coefficients ς(ζk).

Theorem 4.1. Let (µn)n∈Z be a sequence of integers and γ > 0.
Let ς ∈ RR, K ∈ N∗, and for every k ∈ {0, · · · ,K}, let θk ∈ [0, 1] be the weights

(so that
∑K
k=0 θk = 1) and ζk ∈ R. Assume for every k ∈ {0, · · · ,K}, ς(ζk) 6= 0.

Then, if

T >
1

γ

K∑
k=0

1

|ς(ζk)|
,

there exists a constant c(T ) > 0, independent of the sequences (akn)n ∈ `2, such
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that:

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

akne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt

> θ2
0c(T )

∑
n∈Z
|a0
n|2

K∏
l=1

sin2

(
πµn

ς(ζ0)

ς(ζl)

)
. (4.4)

Remark 4.2. Inequality (4.4) is similar to [10, (5.87), p. 139] which can be
applied to the simultaneous control of finitely many strings (see § 5.8.2 of that
book).

Proof. First of all, by changing γς(ζk) in ζk, we can assume without loss of
generality that γ = 1 and ς(ζ) = ζ.
Given (akn)n ∈ `2 for each k ∈ {0, · · · ,K}, we define the function f by:

f(t) =

K∑
k=0

θk
∑
n∈Z

akne
2iπµnζkt (t ∈ R) .

We have:

f(t+ |ζK |−1)− f(t) =

K−1∑
k=0

θk
∑
n∈Z

akn

(
e

2iπµn
ζk
|ζK | − 1

)
e2iπµnζkt (t ∈ R) .

Iterating this argument, we obtain:

F0(t) = θ0

∑
n∈Z

a0
n

K−1∏
l=0

(
e

2iπµn
ζ0

|ζK−l| − 1

)
e2iπµnζ0t (t ∈ R) ,

where F0 is defined recursively by:

FK(t) = f(t) ,
Fk−1(t) = Fk(t+ |ζk|−1)− Fk(t) (1 6 k 6 K) .

(t ∈ R) . (4.5)

For any τ > 0, we can apply the classical Ingham inequality [14, Theorem 1] to
deduce the existence of a constant cτ (depending only on τ and ζ0) such that:∫ 1

ζ0
+τ

0

|F0(t)|2 dt > cτ θ
2
0

∑
n∈Z

∣∣a0
n

∣∣2 K−1∏
l=0

∣∣∣∣e2iπµn
ζ0

|ζK−l| − 1

∣∣∣∣2 . (4.6)

Independently, we have:∫ 1
|ζ0|

+τ

0

|F0(t)|2 dt =

∫ 1
|ζ0|

+τ

0

∣∣F1(t+ |ζ1|−1)− F1(t)
∣∣2 dt

6 2

∫ 1
|ζ0|

+ 1
|ζ1|

+τ

0

|F1(t)|2 dt (τ > 0)
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and by iteration,

‖F0‖2L2(0, 1
|ζ0|

+τ) 6 2K‖f‖2
L2(0, τ+

∑K
k=0 |ζk|−1) (τ > 0) . (4.7)

We end the proof by combining (4.6) and (4.7).

With some more conditions on the parameters ς(ζk), the following unique
continuation property can be easily obtained from (4.4).

Corollary 4.2. Let (µn)n∈Z be a sequence of integers and γ > 0.
Let ς ∈ RR, K ∈ N∗, and for every k ∈ {0, · · · ,K}, let θk ∈ [0, 1] be the weights

(so that
∑K
k=0 θk = 1), (an)n ∈ `2, ζk ∈ R and Lζk ∈ L(`2).

Assume θ0 6= 0, Lζ0 is bounded from below, ς(ζ0) 6= 0 and

ς(ζ0)−1ς(ζk) 6∈ Q (k ∈ {1, · · · ,K}) . (4.8)

Then, for every T >
1

γ

K∑
k=0

1

|ς(ζk)|
,

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt = 0 ⇐⇒ ∀n ∈ Z , an = 0.

Proof. Set a ∈ `2 and assume

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt = 0.

Set ak = Lζka. We have from Theorem 4.1, (4.4):

0 = θ2
0c(T )

∑
n∈Z
|[Lζ0a]n|2

K∏
l=1

sin2

(
πµn

ς(ζ0)

ς(ζl)

)
,

with c(T ) > 0. Since θ0 6= 0 and ς(ζ0)−1ς(ζk) 6∈ Q for every k ∈ {1, · · · ,K},
we obtain [Lζ0a]n = 0 for every n ∈ Z. We conclude with Lζ0 bounded from
below.

In Corollary 4.2, we have presented a unique continuation result. However,
with some more restrictive conditions on the parameters ς(ζk), we can obtain
an observability inequality.

Corollary 4.3. Assume that the conditions of Corollary 4.2 are satisfied and,
let ε > 0 such that, in addition, for every α > 0, there exists Λζ0,α > 0 such
that: ∑

n∈Z

|[Lζ0a]n|2

|µn|2α
> Λ2

ζ0,α

∑
n∈Z

|an|2

|µn|2α
(a ∈ `2) (4.9)
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and assume, ς(ζ0)−1ς(ζk) ∈ Bε for every k ∈ {1, · · · ,K}, with Bε defined, as
in [6, p. 120] (see also [10, Proposition A.5] or Proposition 4.1).

Then, for every T >
1

γ

K∑
k=0

1

|ς(ζk)|
, there exists a constant Cε(T ) > 0 such

that:∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt > Cε(T )
∑
n∈Z

|an|2

|µn|2K(1+ε)
(a ∈ `2) .

Proof. The proof follows directly from (4.4) and [6, p. 120].

Proposition 4.1 (J. W. S. Cassles [6]). For every ε > 0 there exists a set
Bε ⊂ R such that the Lebesgue measure of R \ Bε is equal to zero, and a
constant ρε > 0 for which, if ζ ∈ Bε then,

min
r∈Z
|r −mζ| > ρε

m1+ε
(m ∈ N∗) .

Corollary 4.4. Assume that the conditions of Corollary 4.2 hold and, further-
more, that for every α > 0, there exists Λζ0,α > 0 such that (4.9) holds. Assume
in addition that ς(ζ0)−1ς(ζ1), · · · , ς(ζ0)−1ς(ζK) are algebraic and ς(ζ0), · · · , ς(ζK)
are Q-linearly independent.

Then for every

T >
1

γ

K∑
k=0

1

|ς(ζk)|

and every ε > 0, there exists Cε(T ) > 0 such that:

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt > Cε(T )
∑
n∈Z

|an|2

|µn|2(1+ε)
(a ∈ `2) .

Proof. The proof follows directly from (4.4) and [33, Theorem 1] (see also [10,
Theorem A.7 and p. 209]).

Remark 4.3. Let us compare Corollary 4.1 with the Corollaries 4.3 and 4.4.
In Corollary 4.1, no irrationality condition is needed and the observability in-
equality holds in the classical `2-norm whereas in Corollaries 4.3 and 4.4, an
irrationality condition is required and the observation inequality is valid only for
coefficients which are in some subspace of `2. In addition, the minimal obser-
vation time required for the observability inequality in Corollaries 4.3 and 4.4
is larger than the one required in Corollary 4.1. But to obtain the observation
inequality of Corollary 4.1, we need some weight θk0 to be close enough to 1.

In conclusion, Corollaries 4.3 and 4.4, become relevant when none of the
weights θk is close enough to 1.
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4.3 Application to the string equation

Using the technical results in Appendix A together with the results of this
section, we obtain the following consequences for the average controllability of
finite combinations of the string equation (1.4).

From Corollary 4.2 we can derive an approximate averaged controllability
results.

Proposition 4.2. Let K ∈ N∗, and for every k ∈ {0, · · · ,K}, define the weight

θk ∈ (0, 1) (so that
∑K
k=0 θk = 1) and the parameter ζk ∈ R∗ and assume:

ζ−1
0 ζk 6∈ Q (k ∈ {1, · · · ,K}) .

Then for every T > 2

K∑
k=0

1

|ζk|
, every ε > 0, every target (yf,0, yf,1) ∈

L2(0, 1)×H−1(0, 1) and every initial conditions (yi,0ζk , y
i,1
ζk

) ∈ L2(0, 1)×H−1(0, 1),

there exists a control u ∈ L2(0, T ) for which we have:∥∥∥∥∥yf,0 −
K∑
k=0

θkyζk(T )

∥∥∥∥∥
2

L2(0,1)

6 ε and

∥∥∥∥∥yf,1 −
K∑
k=0

θkẏζk(T )

∥∥∥∥∥
2

H−1(0,1)

6 ε ,

where for every ζ ∈ R∗, yζ solves (1.4).
Moreover, there exists a constant Cε(T ) > 0 independent of the initial and

final conditions such that:

‖u‖2L2(0,T ) 6 Cε(T )

∥∥∥∥∥
K∑
k=0

θkyi,0ζk

∥∥∥∥∥
2

L2(0,1)

+

∥∥∥∥∥
K∑
k=0

θkyi,1ζk

∥∥∥∥∥
2

H−1(0,1)

+‖yf,0‖2L2(0,1) + ‖yf,1‖2H−1(0,1)

)
.

Now using Diophantine approximations, see Corollary 4.4, we obtain:

Proposition 4.3. Let ε > 0 and let K ∈ N∗, θk and ζk be defined by Proposi-
tion 4.2 and assume, ζ0, · · · , ζK are Q-linearly independent and

ζ−1
0 ζ1, · · · , ζ−1

0 ζK are algebraic. (4.10)

For every α ∈ R, set:

Xα =

{
ϕ : x ∈ (0, 1) 7→

∞∑
n=1

an sin(nπx) ,
∑
n∈N∗

n2α|an|2 <∞

}
, (4.11)

Then, if (yi,0ζ0 , y
i,1
ζ0

), · · · , (yi,0ζK , y
i,1
ζK

), (yf,0, yf,1) ∈ X1+ε ×Xε, for every T >

2

K∑
k=0

1

|ζk|
there exists a control u ∈ L2(0, T ) such that for every k ∈ {1, · · · ,K},

the solution yζk of (1.4) (with parameter ζ = ζk) satisfy:

K∑
k=0

θkyζk(T ) = yf,0 and

K∑
k=0

θkẏk(T ) = yf,1 .
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A similar result could have been obtained from Corollary 4.3.
Let us also notice that applying directly [10, Corollary 5.43], we obtain the

following exact simultaneous controllability result:

Proposition 4.4. Let ε > 0, K ∈ N∗ and ζk ∈ R∗ for every k ∈ {0, · · · ,K}
and assume, ζ0, · · · , ζK are Q-linearly independent and

ζ−1
k ζl is algebraic for every k, l ∈ {0, · · · ,K} . (4.12)

Let (yi,0ζk , y
i,1
ζk

) and choose final conditions (yf,0, yf,1) satisfying the assumption
given in Proposition 4.3.

Then, for every T > 2

K∑
k=0

1

|ζk|
there exists a control u ∈ L2(0, T ) such that:

yζk(T ) = yf,0 and ẏζk(T ) = yf,1 (k ∈ {0, · · · ,K}) .

This result ensures that all the parameter dependent trajectories, and, con-
sequently, their average, can be steered to a prescribed target with an input
independent of the parameter.

Remark 4.4. As expected, the assumption (4.10) needed to obtain averaged
controllability is weaker than (4.12), the assumption needed for simultaneous
controllability.

5 Concluding remarks

The aim of this article was to give a systematic result, based on perturba-
tion arguments, on the averaged controllability and observability of parameter-
dependent families of equations, mainly in the context of time-reversible groups
of isometries.

Let us summarise the main results on the averaged control for the sys-
tem (1.4), with two string equations, one parametrised by ζ0 = 1 and the other
one by ζ1 =

√
2, with averaging measure:

ηθ = (1− θ)δζ0 + θδζ1 . (5.1)

The following holds:

• From Corollary 4.1 (see also Proposition 3.4),

– if T > 2, the system (1.4) is controllable in average with averaging

measure ηθ for θ ∈
[

0,
(

1 + 2
√

5T√
T 2−4

)−1
)

;

– if T >
√

2, the system (1.4) is controllable in average with averaging

measure ηθ for θ ∈
(

1−
(

1 +
√

5T
2
√

2T 2−4

)−1

, 1

]
;
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• From Proposition 4.3, if T > 2
(

1 +
√

2
2

)
, the system (1.4) is controllable

in average with averaging measure ηθ in some weighted space for θ ∈ [0, 1].

This leads to the time-dependent set of parameters θ for which we have averaged
controllability, see Figure 1 below.

0

1

2

3

5

0 0.8 1

Exact averaged controllability Exact averaged controllability

in a weighted space

1
1+2
√

5
0.6

√
5

2
√

2+
√

5

4

2 +
√

2

√
2

T

θ

Figure 1: Time dependent set of parameters θ for which averaged controllability
holds, for two strings driven by the system (1.4) with parameters ζ0 = 1 and
ζ1 =

√
2 and averaging measure ηθ given by (5.1).

There are several interesting open problems that arise in the context of
averaged controllability. This is so even for the one dimensional case, where
Fourier series representations can be used. Let us point out some of them:

• In §3.1, we gave an averaged observability inequality. However, this result
only holds when the measure is the sum of a Dirac mass and a small
enough perturbation measure. But it would be natural to consider more
general cases as well.

In the case Lζ = Id and ς(ζ) = ζ, the issues we discussed in the pre-
vious paragraph on the averages of non-harmonic Fourier series can be
recast in terms of the property of Riesz sequence stability of the family
{t 7→ η̂(−λnt)}n (η̂ being the Fourier-Stieltjes transform of the density of
probability η), in the closed subspace of L2(0, T ) they generate. This is
so since the observation map is:∫

R

∑
n∈Z

ane
2iπλnζt dηζ =

∑
n∈Z

anη̂(−λnt) (t ∈ R) .

This problem is related to frame theory. However, even if the literature
on this subject is huge (see for instance [16, 4, 9, 11, 12, 8, 5, 23]), the
results we needed did not seem to be available.
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One of the simplest case to be considered is when ηε is given by dηεζ =
1
2ε1[1−ε,1+ε](ζ) dζ for ε > 0. Then, (ηε)ε>0 converges in the sense of
measures to the Dirac mass δ1 when ε goes to 0. Assuming that the
sequence (λn)n satisfies the Ingham gap condition (3.7) for some γ > 0,
we know from [14] that a constant c(T ) > 0 such that:∫ T

0

∣∣∣∣∣∑
n∈Z

ane
2iπλnt

∣∣∣∣∣
2

dt > c(T )
∑
n∈Z
|an|2 (T >

1

γ
, (an)n∈Z ∈ `2)

exists. It is then natural to wonder if there exists ε0 > 0 such that for
every ε < ε0, we have:∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

ane
2iπλnζt dηεζ

∣∣∣∣∣
2

dt

> cε(T )
∑
n∈Z
|an|2 (T >

1

γ
, (an)n∈Z ∈ `2) (5.2)

and if it is so, whether cε(T ) converges to c(T ) as ε tends to 0?

A way to prove this result is to bound the quantity:∣∣∣∣∣∣
∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

ane
2iπλnζt dηεζ

∣∣∣∣∣
2

−

∣∣∣∣∣∑
n∈Z

ane
2iπλnt

∣∣∣∣∣
2
 dt

∣∣∣∣∣∣ .
One can get the upper bound:

εT 2C

√∑
n∈Z
|λn||an|2

√∑
n∈Z
|an|2 ,

which goes to 0 as ε tends to 0, but does not ensure inequality (5.2) to
hold.

One can also proceed with a direct computation and, in this case, from
section 4 one can derive a weighted averaged Ingham inequality when the
eigenvalues λn satisfy (4.1). Indeed, let us consider a measure η given by
dηζ = 1

ζ1−ζ0 1[ζ0,ζ1](ζ) dζ for ζ0 < ζ1 and ζ0, ζ1 6= 0. Writing λn = γµn
with µn ∈ Z∗, we obtain:∫

R

∑
n∈Z

ane
2iπλnζt dηζ =

1

2iπγ(ζ1 − ζ0)t

∑
n∈Z

an
µn

(
e2iπγζ1µnt − e2iπγζ0µnt

)
,

from which we deduce:∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

ane
2iπλnζt dηζ

∣∣∣∣∣
2

dt

>
1

(2πγ)2(ζ1 − ζ0)2T 2

∫ T

0

∣∣∣∣∣∑
n∈Z

an
µn

(
e2iπγζ1µnt − e2iπγζ0µnt

)∣∣∣∣∣
2

dt .
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Now, assuming T > 1
γ

(
1
ζ0

+ 1
ζ1

)
and ζ−1

0 ζ1 6∈ Q, we obtain the unique

continuation from Corollary 4.2 and, under the assumption of Corollary 4.3
or 4.4 on ζ0 and ζ1, we end up with a weighted Ingham inequality.

• When dealing with the control system (3.5), in [24], the condition (3.6)
was required to ensure averaged controllability. However, according to
Proposition 3.2 (see Remark 3.2), this condition is not needed under a
suitable smallness assumption on the averaging measure.
The optimality of assumption (3.6) without smallness assumptions needs
further clarification.

• The results derived in section 4 need λn ∈ γZ to be a sequence of in-
tegers. But the unique continuation property, Corollary 4.2, could have
been obtained directly from [13, Corollary 2.3.5]. This result still holds in
the general case where (λn)n satisfies (3.7) and assuming that the values
ς(ζk)λn 6= ς(ζl)λm for k 6= l or n 6= m.
In addition, results similar to corollaries 4.3 and 4.4 could have been ob-
tained from [20]. More precisely, assume that the sequence (λn)n satisfies
the Ingham gap condition (3.7), and that ς(ζk)λn 6= ς(ζl)λm for k 6= l
or n 6= m. Let us now consider the increasing sequence (Λn)n such that
{Λn , n ∈ Z} = {ς(ζk)λm , m ∈ Z , k ∈ {0, · · · ,K}}. Then for every
n ∈ Z, we have Λn+K+1 − Λn > γmin {|ς(ζk)| , k ∈ {0, · · · ,K}}. Thus,
[20, Theorem 4] applies and leads to a weighted averaged Ingham inequal-
ity valid for every

T >
K + 1

γmin{|ς(ζ0)|, · · · , |ς(ζK)|}
.

Notice that this minimal time is greater than
∑K
k=0

1
γ|ς(ζk)| , the one ob-

tained in corollaries 4.3 and 4.4, but under stronger assumptions on the
sequence (λn)n.
In addition, the results given in [13] and [20] ensure simultaneous observ-
ability. Thus, it would be interesting to see how the assumption given
in these two works could be weakened in order to only ensure averaged
observability.

In the proof of Theorem 4.1, we strongly need that the sequence (λn)n
satisfies (4.1) and, even for λn = n+ ε(n) with ε(n) = o(1), the technique
of proof fails. It would be worth exploring whether some improvements
could be obtained with a perturbation argument, combined with the ideas
of [7] and in particular with Ulrich’s result [36].

The analysis of all these examples could contribute to achieve sharp results
for the averaged controllability of finitely many string equations.

• Let us conclude this paper with a general remark linking averaged control-
lability and simultaneous controllability. The aim is to find controls inde-
pendent of the parameter performing well for all values of the parameters.
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With this goal, a first and natural choice was to control the average of the
parameter dependent outputs. Of course, the best we could expect is a
control, independent of the values of the unknown parameters, steering all
parameter dependent trajectories to a common fixed target, i.e. looking
to simultaneous controllability. But this is unfeasible in general.

There exists a natural link between the control of the average and the
stronger notion of simultaneous control. This link can be made through
penalisation and optimal control.

More precisely, for every κ > 0, let us consider the following optimal
control problem:

min Jκ(u) :=
1

2
‖u‖2L2([0,T ],U) + κ

∫
R

∥∥yζ(T )− yf
∥∥2

X
dηζ∫

R
yζ(T ) dηζ = yf ,

ẏζ = Aζyζ +Bζu , yζ(0) = yiζ .

Under the property of averaged controllability, the minimiser uκ exists for
every κ > 0.

For κ = 0 this leads the averaged control of minimal norm as we considered
here. But, as κ increases, the control, other than ensuring the averaged
controllability property, also forces the reduction of the variance of the
output.

It can also be proved that, if, in addition, Jκ(uκ) is uniformly bounded,
then up to a subsequence, (uκ)κ is weakly convergent to a simultaneous
control u∞ solution of:∣∣∣∣∣ yζ(T ) = yf (ζ ∈ R η-a.e.) ,

ẏζ = Aζyζ +Bζu , yζ(0) = yi .

This issue is analysed in [29], where this idea is discussed in detail in the
finite-dimensional control context.
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Appendix A Averaged controllability for a pa-
rameter dependent string equation

Let us briefly describe how the string equation with Dirichlet boundary con-
trol (1.4) enters in the abstract formalism introduced in section 2.

The PDE under consideration being second order in time, it is more conve-
nient to assume that the parameter ζ enters quadratically in (1.4a). In addition,
one can assume ζ ∈ R+ or equivalently, that the averaging measure η satisfies
supp η ⊂ R+.

For the abstract tools introduced here, we refer to [35, Sections 10.9 and 11.6]
for further details.

Let us introduce the one dimensional Dirichlet-Laplacian operator, A0:

D(A0) = H2(0, 1) ∩H1
0 (0, 1) and A0f = −∂2

xf (f ∈ D(A0))

and the Hilbert spaces H = L2(0, 1), H1 = D(A), H 1
2

= H1
0 (0, 1) and H−1

(resp. H− 1
2
) the dual space of H1 (resp. H 1

2
) with respect to the pivot space

H. Then A0 can be seen as a unitary operator from H1 to H, H1/2 to H−1/2

and H to H−1.
We remind that the Dirichlet-Laplacian operator A0 can be diagonalized in

an orthonormal basis (ϕn)n∈N∗ of L2(0, 1). More precisely, we have:

ϕn(x) =
√

2 sin(nπx) and A0ϕn = (nπ)2ϕn (x ∈ [0, 1] , n ∈ N∗) . (A.1)

Define the state space X = H×H− 1
2
, the control space U = R, the operator

A =

[
0 Id
−A0 0

]
with domain D(A) = H 1

2
×H := X1 and the control operator

B =

[
0

A0D

]
∈ L(U,X−1), withD the Dirichlet map, see [35, Proposition 10.6.1].

We have A∗ = −A and B∗
[
z0

z1

]
= ∂x

(
A−1

0 z1
)

(0). Denote by T the semi-group

generated by A. It is classical that B is an admissible control operator for T.
Now, define fζ(s, x) = yζ(

s
ζ , x). The function fζ is solution of:

f̈ζ(s, x) = ∂2
xfζ(s, x) ((s, x) ∈ R∗+ × (0, 1)) ,

fζ(s, 0) = u( sζ ) (s ∈ R∗+) ,

fζ(s, 1) = 0 (t ∈ R∗+) ,

fζ(0, x) = yi,0ζ (x) and ḟζ(0, x) = 1
ζ yi,1ζ (x) (x ∈ (0, 1)) .

Setting Iζ =

[
Id 0
0 ζId

]
and Fζ(s) =

[
fζ(s)

ḟζ(s)

]
= I−1

ζ

[
yζ(

s
ζ )

ẏζ(
s
ζ )

]
, Fζ is solution of:

Ḟζ = AFζ +Bu( ·ζ ) , Fζ(0) = I−1
ζ

[
yi,0ζ
yi,1ζ

]
.
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Using Duhamel formula, we obtain:

Fζ(ζT ) = T(ζT )I−1
ζ

[
yi,0ζ
yi,1ζ

]
+

∫ ζT

0

T(ζT − s)Bu( sζ ) ds

= T(ζT )I−1
ζ

[
yi,0ζ
yi,1ζ

]
+

∫ T

0

T(ζ(T − t)) ζBu(t) dt

and hence,[
yζ(T )
ẏζ(T )

]
= IζT(ζT )I−1

ζ

[
yi,0ζ
yi,1ζ

]
+

∫ T

0

IζT(ζ(T − t))I−1
ζ ζ2Bu(t) dt .

Consequently, the averaged input to state map is defined by:

FTu =

∫
R

∫ T

0

IζT(ζ(T − t))I−1
ζ ζ2Bu(t) dtdηζ (u ∈ L2(0, T ))

and the averaged observability map is:(
ΨT

[
z0

z1

])
(t) =

∫
R
ζ2B∗I−1

ζ T(−ζt)Iζ
[
z0

z1

]
dηζ

=

∫
R
ζB∗T(−ζt)

[
z0

ζz1

]
dηζ (

[
z0

z1

]
∈ X1 , t ∈ (0, T )) .

Let zζ be the solution of:

z̈ζ = ζ2∂2
xzζ ,

0 = zζ(t, 0) = zζ(t, 1) (t > 0)

with initial conditions:

zζ(0, ·) = z0 and żζ(0, ·) = −ζ2z1 .

Thus, T(−ζt)
[

z0

ζz1

]
=

[
zζ(t)
−1
ζ żζ(t)

]
and hence,

(
ΨT

[
z0

z1

])
(t) = −

∫
R
∂x
(
A−1

0 żζ(t, ·)
)

(0) ζdηζ ,

Expanding the initial conditions z0 =
∑
αnϕn and z1 =

∑
βnϕn on the

eigenvector basis {ϕn}n of A0 defined by (A.1) leads to:

zζ(t, x) =
∑
n∈N∗

(
αn cos(nπζt)− ζ βn

nπ
sin(nπζt)

)
ϕn(x) .
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Thus, the observation operator is:(
ΨT

[
z0

z1

])
(t) = −

√
2

∫
R

∞∑
n=0

(
αn sin(nπζt) + ζ

βn
nπ

cos(nπζt)

)
ζdηζ

=
−
√

2

2

∫
R

(∑
n∈N∗

(
−iαn + ζ

βn
nπ

)
einπζt

+
∑
n∈N∗

(
iαn + ζ

βn
nπ

)
e−inπζt

)
ζdηζ .

Notice that

∥∥∥∥[z0

z1

]∥∥∥∥2

X

=
∑
n∈N∗

(
α2
n +

β2
n

(nπ)2

)
. Finally, setting for every n ∈ Z∗,

λn =
n

2
, an =

αn if n > 0 ,
β−n
nπ

if n < 0
and

[Lζa]n =

{
−
√

2
2 (−ian + ζa−n) ζ if n > 0 ,
−
√

2
2 (ia−n + ζan) ζ if n < 0 ,

(a ∈ `2(Z∗) , ζ ∈ R) , (A.2)

the observation operator is

∫
R

∑
n∈Z∗

[Lζa]ne
2iπλnζt dηζ .

Let us notice that:

ζ2
(
1 + (ζ2 − 1)1[0,1](|ζ|)

) ∑
n∈Z∗

|an|2

|n|2α

6
∑
n∈Z∗

|[Lζa]n|2

|n|2α
6 ζ2

(
1 + (ζ2 − 1)1(1,∞)(|ζ|)

) ∑
n∈Z∗

|an|2

|n|2α

(ζ ∈ R , α ∈ R) , (A.3)

These last inequalities ensure that for every ζ ∈ R∗, and every α > 0, Lζ is a
linear continuous operator bounded from below in any of the spaces

`2−α(Z∗) =

{
a ∈ RZ∗ ,

∑
n∈Z∗

|an|2

|n|2α
<∞

}
(α ∈ R) .

The reason for introducing this real parameter α and these spaces `2−α, will make
sense in corollaries 4.3 and 4.4 and in Proposition 4.3, in particular, regarding
the definition of the spaces Xα, given by relation (4.11). More precisely, for α >
0, Xα corresponds to α-differentiable functions and this space can be identified
to the subspace `2α(Z∗) of `2(Z∗). In order to prove the controllability in Xα,
we will prove the observability in X−α, the dual space of Xα with pivot space
L2(0, 1). Finally, the space X−α can be identified to the space `2−α introduced
here.
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