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1 Game Theory and Learning
Techniques for Self-Organization in
Small Cell Networks

1.1 Small Cell Networks

The tremendous increase of bandwidth craving mobile applications (e.g., video

streaming, video chatting, and online game) has posed enormous challenges to

the design of future wireless networks. Deploying small cells (e.g., pico, micro,

and femto) has been shown to be an efficient and cost effective solution to support

this constantly rising demand since the smaller cell size can provide higher link

quality and more efficient spatial reuse [1]. Small cells could also deliver some

other benefits such as offloading the macro network traffic, providing service to

coverage holes and the regions with poor signal reception (e.g., macro cell edges).

Following this trend, the evolving 5G networks [2] are expected to be composed

of hundreds of interconnected heterogeneous small cells.

  

 

 

 

 

 

 

 

 

 

 

Macro Base Station   

Micro Base Station   Pico Base Station   

Femto Base Station   

Figure 1.1 A heterogeneous network.

Fig. 1.1 gives an illustration of a heterogeneous network (HetNet) where a

macrocell is underlaid with different types of small cells. Different from the cau-

tiously planned traditional network, the architecture of a HetNet is more random

and unpredictable due to the increased density of small cells and their impromptu

way of deployment. In this case, the manual intervention and centralized control

used in traditional network management will be highly inefficient, time consum-

ing, and expensive, and therefore, will be not applicable for dense heterogeneous

small cell networks. Instead, self-organization has been proposed as an essen-

tial feature for future small cell networks [3, 4].

The motivations for enabling self-organization in small cell networks are ex-

plained below.
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• Numerous network devices with different characteristics are expected to be

interconnected in future wireless networks. Also, these devices are expected

to have ‘plug and play ’ capability. Therefore, the initial pre-operational

configuration has to be done with minimum expertise involvement.

• With the emergence of the small cells, the spatio-temporal dynamics of the

networks has become more unpredictable than legacy systems due to the

unplanned nature of the small cell deployment. Therefore, intelligent adap-

tation of the network nodes is necessary. That is, the self-organizing small

cells need to learn from the environment and adapt with the network dy-

namics to achieve the desired performance.

• Improper or uncoordinated power and spectrum allocation paradigms can

lead the small cells to cause severe inter-tier and intra-tier interference.

Therefore, resource allocation is a key issue for interference management

in heterogeneous small cell networks. Centralized control will be highly

inefficient and time consuming for a dense network due to the high com-

putational power and the huge amount of information exchange required.

Instead, small cell base stations (SBSs) should be capable of taking indi-

vidual decisions on resource allocation with local interactions.

• Self-organization of the network will also prevent possible human mistakes in

configuration and network management which can drastically degrade the

performance of the network and can result the extensively long recovery

times. Also, enabling self-organization could reduce a considerable amount

of operational and capital expenditure (OPEX/CAPEX).

The Small Cell Forum, which is an organization who supports and pro-

motes the wide-scale adoption of small cell technologies claims that small

cells are the first commercial example of a self-organizing network in prac-

tice [5].

There are ongoing projects which develops the self-organizing paradigms

for small cell networks involving both academia and industry. BeFemto

(Broadband evolved Femto network) is one such project which focuses on

developing femtocell technologies for LTE-A systems [6]. They also plan

to provide guidelines for standardization of the next generation femto-

cell technologies. SOCRATES (Self-Optimization and self-ConfiguRATion

in wirelEss networkS) also target on developing self-organizing paradigms

for small cell networks in 3GPP LTE interface [7, 8]. SOCRATES project

was partnered by several leading telecommunication companies in Europe

including Nokia Siemens Networks (in Poland and Germany), Vodafone

(United Kingdom) and Ericsson AB (Sweden). The End-to-End Efficiency

(E3) [9, 10] works on integrating the heterogeneous network infrastructures

into a scalable and efficient cognitive framework with self-organizing capa-

bilities. In addition to that they also focus on research, regulation, and

standardization perspectives of cognitive radio networks.
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1.2 Self-Organization

The concept of self-organization is not new and can be widely observed in many

natural systems and phenomena (e.g., collective behaviors of ants and social in-

sects, flocks of cranes, generation of laser light, and planetary systems). Extensive

efforts have been taken by researchers to model the self-organizing behaviour of

natural systems mathematically and these models can be borrowed and adapted

to develop self-organizing algorithms for artificial systems [11]. First, it is essen-

tial to understand the basic properties, requirements, and design concepts of a

self-organizing system.

As self-organization is a concept being used in many different fields, the term

has been defined in many different ways based on the context. A globally accepted

precise and concise definition of self-organizing networks (SONs) has not yet been

presented. However, in the area of wireless communication, the standardization

of technical specifications for self-organizing LTE and LTE-A networks has been

initiated by the 3rd Generation Partnership Project (3GPP) in Release 8 and

Release 9 [12, 13] and Next Generation Mobile Networks (NGMN) Alliance [14,

15]. In this section, we will illustrate the concept of self-organization and its basic

cornerstones in the framework of cellular networks.

The basis of a self-organizing system is its autonomous and intelligent adaptiv-

ity, i.e., the ability to respond to external environmental changes. Many literature

in the context of wireless networks also suggest that a self-organizing network

should be capable of learning from environmental dynamics and adapt to it

accordingly [16, 17, 18]. Specifically, for small cell networks, detecting the envi-

ronmental dynamics can be done based on local interactions with other nodes

and/or through spectrum sensing. In [19], the authors explain that the adap-

tive behavior of each member of a self-organizing set should also lead the whole

system to form a global pattern which is denoted as the emergent behavior.

Based on the above notions, the basic cornerstones of a self-organizing small

cell network are identified as follows:

• Autonomous and intelligent adaptivity

• Ability to learn from the environment

• Emergent behavior.

In addition to the aforementioned properties, researchers also discuss about

distributed control where each node in the network has to take individual deci-

sions on their own behavior. Distributed control is a desirable feature for self-

organizing small cell networks. In 3GPP Release 11, the specifications divide

self-organizing networks into three categories as given below.

• Centralized SON: Self-organizing algorithms are executed in the Operation,

Administration, and Management (OAM) system.

• Distributed SON: Self-organizing algorithms are executed at the network node

level.
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• Hybrid SON: Algorithms are executed at both OAM and network node levels.

Distributed resource allocation is essential for the provision of distributed

control in self-organizing networks. Several distributed resource allocation algo-

rithms for small cell network have been proposed in the recent literature which

will be discussed later in this chapter.

1.2.1 Self-Organizing Functionalities

In general, the self-organizing process of a small cell network can be splitted

into three phases, i.e., pre-operational phase, operational phase, and failure re-

covery phase. These three phases commonly correspond to Self-configuration,

Self-optimization, and Self-healing, which are also referred to as Self-X func-

tionalities [3, 20, 21].

During the standardization process for LTE SON, 3GPP has defined a set of

use cases and associated functions in Releases 9, 10 and 11 [22, 23, 24] which are

described in Fig. 1.2. Next Generation Mobile Networks (NGMN) Alliance also

highlights several operational use cases for the introduction of SON features for

mobile networks. NGMN divides the SON related use cases into four categories

i.e., planning, deployment, monitoring, and maintenance [25]. However, most

of the steps in planing are not covered by SON functions, therefore, we only

list the use cases of latter three categories in Fig. 1.3 which are similar to the

3GPP SON user cases. The network parameters such as neighborhood list and

handover settings are considered as radio parameters while IP addresses and QoS

requirements are considered as transport parameters.

A brief overview of the operation and associated functions of each phase of

self-organization is given below.

• Self-configuration: Self-configuration is performed in the pre-operational pro-

cess during which the small cell base stations (SBSs) connect to the network

and execute their initialization algorithms automatically while providing

plug-and-play capabilities to the network nodes. This functionality is com-

posed of basic set-up of the base station and the initialization of network

parameter settings.

Specifically, an SBS is expected to automatically configure its IP address

once it is connected to the network. This can be done by using the Dy-

namic Host Configuration Protocol (DHCP). Then the SBS can communi-

cate with the OAM center and small cell access gateway for authentication.

This procedure is called automatic inventory. Once the SBS is connected

to the core network it can download and install the required software (i.e.,

automatic software download). The SBSs are also expected to set trans-

port parameters such as transport layer QoS setting and radio parameters

(e.g., neighborhood list and handover settings). The assignment of a PCI

(Physical Cell ID) is also done in the self-configuration phase.

As small cells are usually deployed in the coverage area of macro cells,
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Figure 1.3 SON related use cases defined by NGMN.

frequency reuse scheme plays a major role in interference control and

frequency selection is important which needs to be decided at the self-

configuration phase. An SBS should identify its allowable frequency band
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before entering into the operational phase. One option is to use Universal

Frequency Reuse (UFR) with cross-tier interference constraints and an-

other option is to split the existing bandwidth for each tier. In the latter

case there will be no cross-tier interference; however, the spectral efficiency

can be less than that in UFR [26]. A detailed description of frequency selec-

tion will be given in Section 1.3. Enabling self-configuration process lessens

or avoids involvement of manual expertise during the installation phase.

• Self-optimization: The main task of self-optimization is to automatically ad-

just certain parameter settings to adapt with the network dynamics for the

optimal performance. In order to perform self-optimization, the network

nodes need to measure certain network parameters (e.g., number of users,

traffic patterns, and traffic load) and collect the information about the net-

work conditions (e.g., channel gains). Then these information can be used

to optimize the network performance.

In recent literature, many approaches have been proposed to realize self-

optimization in small cell networks. Some of the prominent game theory

based approaches will be discussed in the latter parts of this chapter.

Resource allocation-based inter-cell interference coordination is one of

the mostly targeted issues in self-organizing networks. Resource alloca-

tion settings (e.g., channel allocation and power allocation) and scheduling

are significant in inter-cell interference coordination. Different criteria can

be used for performance optimization depending on the objectives. Sev-

eral commonly used optimization objectives are as follows: thoughput/data

rate/ SINR maximization, coverage maximization, load balancing, power

minimization.

Note that multiple objectives can also be merged together by defining a

proper payoff function [27, 28].

These objective can be further categorized as system centric objectives

and user centric objectives. System centric objectives focus on optimizing

the total network performance rather than individual performance. This

type of approaches generally rely on a considerable amount of information

exchange among network nodes and a centralized controller is usually re-

quired. An example is the maximization of the total network throughput

with the constraint of a maximum transmit power. In comparison, user

centric objectives focus on individual performance at each node (e.g., max-

imizing the individual rate) rather than the overall performance. This type

of objectives are common for self-organizing network since they are more

likely to rely on local interactions among the nodes.

• Self-healing: Self-healing enables the network to have the ability to detect,

diagnosis, compensate, and recovery from failures and abnormal status.

Accordingly, the self-healing process is mainly composed of three functions

[29]: fault detection, fault diagnosis, and fault recovery.

Traditional healing approaches may not be feasible due to the existence
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of a large number of heterogeneous base stations and their random na-

ture of deployment. Instead, methods for self-healing would be required.

Firstly, the problems should be detected from performance measurement

(e.g., abrupt performance degradation) or event driven report. In this case,

periodic monitoring should be performed. Then a diagnosis process can be

performed to determine the cause for the failure (e.g., software or hardware)

according to which the corresponding compensation and recovery schemes

can be performed. In the case of software faults, the base station may try

several actions such as reloading of a backup of software, activation of a

fallback software load, and downloading a software unit and reconfigura-

tion. In the case of hardware faults, the base station may use redundant

resources [30].

1.2.2 Characteristics of Self-Organizing Algorithms

Comprehending the significant and necessary features of a self-organizing al-

gorithm is important and essential for the design of self-organizing small cell

networks. In this section, we summarize the important characteristics of self-

organizing algorithms as follows.

1. Stability : The stability in the context of self-organizing networks is defined

as [3]: “An algorithm or adaptation mechanism that is able to consistently

traverse a finite number of states within an acceptable finite time.”. That is,

a self-organizing algorithm should be able to converge within acceptable it-

erations. Note that for game theory-based algorithms, there could exist more

than one equilibrium points. Certain conditions and initial points may be re-

quired for the algorithm to converge to the desired equilibrium point. Also,

the delay in information exchange may result in delayed convergence or oscil-

lations around an equilibrium point [28].

2. Robustness: Robustness is the ability of an algorithm to reach back to a stable

state within a bounded duration of time in case of an unexpected change in

the system or environment which makes the system deviate from a stable sate.

Small cell base stations may be more vulnerable to failures than cautiously

planned macro base stations. Self-organizing algorithms should be capable of

bringing the system back to an equilibrium state. In this regard, robustness

can also be viewed as a part of self-healing functionality.

3. Scalability : The complexity of self-organizing algorithms should not increase

in an unbounded manner with the increase of network size. The scalability

poses certain complexity requirements on the algorithms. Specifically, less

complex algorithms which occupy less computation resource (e.g., CPU and

memory) could make the network more scalable. Also, the amount of infor-

mation exchange should not increase unbounded with increase in the number

of network nodes. Learning through local interactions can prevent the system

from extensive information exchange.
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4. Agility : The network should respond to the environmental changes within a

reasonable duration of time. Agility depends on backhaul constraints of the

nodes as the information has to be exchanged prior to the decision making.

It also depends on the computational power of the network nodes. Global

information exchange can make the system respond too sluggishly. While re-

sponding to temporary changes may also result in oscillations between states.

Therefore, perfect agility is considered as one of the most difficult conditions

to be fulfilled for a self-organizing network.

1.3 Issues and Challenges in Self-Organizing Small Cell Networks

Enabling self-organization for small cell networks poses a number of issues and

challenges which should be fully understood. In this section, we identify the main

design issues and challenges for self-organizing small cell networks.

1. Interference mitigation: Due to the scarcity of the available bandwidth allo-

cated for wireless networks, small cells have to share the same transmission

bandwidth with the existing macro network which results in both cross-tier

and co-tier interferences. With the increasing density of the small cell net-

works, interference mitigation, which is essential for self-organizing small cell

networks, becomes more challenging.

2. Resource management : Guaranteeing the efficient coexistence of a large num-

ber of small cells with traditional macro cells from the perspective of resource

allocation is a fundamental issue [31]. Self-organizing algorithms should be

capable of performing resource allocation to achieve optimal performance.

Note that resource allocation objectives may vary depending on the require-

ment. For example, cross-tier and intra-tier interferences can be mitigated

through proper power and sub-channel allocation. In addition to that most

of other use cases categorized under self-optimization phase (e.g., load bal-

ancing, coverage and capacity optimization, and handover optimization) can

also be achieved by using appropriate resource allocation. It is desirable for

SON entities to take independent decisions on resource allocation without

any centralized control. Therefore, developing distributed or semi-distributed

resource management techniques for self-organizing small cell networks is one

of the key issues.

3. Access control : A mobile user in a multi-tier network is capable of connecting

to either macro base station or a small cell base station provided that the user

is in the coverage area of both cells. This decision can be taken by the users

based on the receive power of the pilot signal. On the other hand, the base

stations can also decide how many users and which users should be accepted

to be served in order to meet their own requirements (e.g., maximizing the

total capacity and load balancing). Decisions on access control are expected

to be taken distributively in SONs.
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4. Learning and reasoning : Devising suitable learning techniques for self-organizing

small cell networks is one of the major challenges. Self-organizing entities

are expected to collect network information during the learning process. The

learning technique should be strong enough to develop a sufficient knowledge

base that can be used by the self-organizing entities to exploit the available

resources efficiently. This also involves issues such as deciding the information

collection rate and achieving a balance between the exploration and exploita-

tion trade-off. Reasoning refers to the decision process to achieve optimal or

desired network performance according to the knowledge base obtained during

the learning process.

5. Computation cost : The SBSs may not have high processing power as that

of traditional macro base stations. In this case, complex algorithms which

require high computation power may not be suitable for small cells. Designing

low-complexity self-organizing algorithms for small cells is a major challenge.

6. Imperfect information: With certain self-organizing algorithms, the SBSs are

expected to exchange information with nearby nodes (i.e., local interactions).

However, this information can be distorted due to the noisy backhaul and can

be delayed due to the time taken in processing and transmission. In addition

to local interactions, many algorithms also rely on Channel State Information

(CSI). While CSI can also be distorted or temporally unavailable due to the

fading experienced by feedback channels. Also, if the status of each channel

is estimated by spectrum sensing, the sensing result can be inaccurate.

These imperfect information could affect the self-organizing algorithms

from two aspects. First, the performance of the algorithms could degrade due

to the use of inaccurate information. Secondly, the stability of the algorithms

may not be guaranteed due to the delayed information [28, 32]. Therefore,

dealing with imperfect information also poses a significant challenge to the

design of self-organizing algorithms for small cell networks. The considera-

tion of imperfect information and quantification of its effect can be found in

several works such as [32, 33, 34].

7. Limited backhaul : Unlike macro base stations which have a separate backhaul,

SBSs such as femto base stations connect to the core network via a IP-based

backhaul such as DSL. The same backhaul link may also be used for inter-cell

coordination and periodic information exchange required by self-organizing

algorithms. The limited capacity of backhaul and the possible latency and er-

rors introduced are considerable issues in the context of self-organizing small

cell networks. Also note that the backhaul can be hybrid (e.g., coexistence

of both wired and wireless backhaul) with different constraints [35]. These

backhaul limitations and constraints should be taken into account when de-

veloping self-organizing algorithms for small cell networks. Security is also a

significant issue since the backhaul may not be owned by the same operator.
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1.4 Game Theory for Self-Organizing Small Cell Networks

1.4.1 Fundamentals of Game Theory

Game theory provides a rich set of mathematical tools for modeling and an-

alyzing interactive decision making problems in which the interests of agents

(i.e., players) may conflict with each other. It is a well developed area in applied

mathematics and has been used primarily in economics to model competitions

in markets.

In recent years, game theory has also been widely adopted to solve many

problems in the area of wireless communications [36, 37]. A number of works

have explored the applications of game theory for the analysis and optimization

of various issues in wireless systems, in most cases to solve resource allocation

problems in a competitive environment.

A non-technical definition of a game is given as follow. A game is a process in

which the agents select certain strategies from their own strategy sets and obtain

payoffs according to the strategies of all agents. The choice of a strategy can be

made both simultaneously and non-simultaneously. In addition, an agent may

make decisions multiple times according to the game rule. A game consists of a

set of players, a set of strategies available to those players, and a specification of

payoffs for each combination of strategies.

1. Set of players N : The set of decision makers involved in the game. The players

are assumed to be rational or bounded rational depending on the type of the

game.

2. Set of strategies (Si)i∈N : Strategies are the options that a player can select

depending on the state of the game. Here Si denotes the set of strategies

of player i ∈ N . A player’s strategy could contain a single action, multiple

actions, or probability distribution over multiple actions. As common in game

theory, S−i denotes the strategies of all players other than i. The state of a

game depends on the strategies taken by all the players (i.e., [si, s−i]). Note

that different players could have different strategy sets.

3. Payoff πi: The payoff represents the preference of each player under the

current strategy profile. The payoff could be modeled as a cost function

ci(si, s−i), a utility function ui(si, s−i), or a combination of both (e.g., in

the form of equation (1.1)), where the cost function represents the cost of

performing certain strategies (e.g., transmit power) which needs to be mini-

mized, the utility function represents the gain (e.g., profit of service providers)

which needs to be maximized.

πi(si, s−i) = u(si, s−i)− c(si, s−i). (1.1)

It is straightforward to see that a player’s payoff depends not only on her own

strategy but also on the strategies of all other players.
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1.4.2 Motivations of using Game Theory for Self-Organizing Networks

The motivations of using game theory for self-organizing small cell networks are

summarized below.

• The heterogeneous network nodes in small cell networks can be deployed by

different operators/users. The performance of one network could be easily

affected by the behavior of other networks. In this case, modeling of inter-

active behavior would be required. Different from optimization models in

which the mutual impact among different entities during the decision mak-

ing process cannot be accurately taken into account, game theory models

provide a mathematical framework to analyze the competitive or coopera-

tive interactions among the players in a multi-player system.

• Different network nodes could have different QoS requirements and can be self-

interested. Each node takes individual decisions (e.g., on resource allocation

and scheduling) to meet her own requirements rather than optimizing the

system-wide performance. In this case, these nodes may have conflicting

interests. Such self-interested behavior can be easily modeled by using game

theory (e.g., by formulating a non-cooperative game). The “self-interest” of

the nodes can be modeled in terms of performance metrics such as capacity,

delay, throughput, interference and signal-to-interference-plus-noise ratio

(SINR), in the in the payoff.

• The basic keystones of a self-organizing network as defined in Section 1.2

are ability to learn from environment, autonomous adaptivity and emer-

gent behavior capability. In the context of game theory, the players could

adapt their decisions to obtain a better payoff (i.e., learning and adapta-

tion). Also, after several adaptation iterations, the game could reach the

equilibrium (emergent behavior). The above mentioned properties of a self-

organizing network can be attained by devising self-organizing algorithms

based on game theory.

• Centralized algorithms could be highly inefficient for a dense heterogeneous

wireless networks due to the complexity of the algorithms and the amount

of information exchange. Accordingly, distributed control is a desirable fea-

ture for self-organizing small cell networks as explained in Section 1.2.

Game theory provides a natural tool to develop distributed self-organizing

algorithms as it allows local interactions and individual decision making.

Local interactions will reduce the amount information exchange among the

nodes and as a result the network becomes more scalable and more capable

of operating with limited backhaul conditions.

1.4.3 Types of Games

Different game models (e.g., non-cooperative/cooperative, static/dynamic) have

been used to address self-organizing problems in small cell networks the choice
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of which depends on the characteristics of the network, applications, and also

the objectives.

Different game theory models may differ considerably in structure from many

aspects, e.g., number of players, number of strategies, and payoffs. The number

of players may vary in different games. If a game has only one player, the game

becomes an optimization problem. We call a two person game or multiple person

game if the game has two or more players, respectively. In different games, the

number of strategies for players can be either finite (e.g., in a rock-scissor-paper

game) or infinite (e.g., in a pricing game). The analysis of a finite strategy game

and an infinite strategy game are different. The summation of payoffs of all

players may also differ in different models. In general, this summation can be

zero, a non-zero constant number, or any arbitrary value. The game process is an

important aspect in the game structure. The players in a game may take actions

simultaneously, in a certain order, or in a repeated fashion, according to which the

game can be referred to as a static game, a dynamic game, and a repeated game,

respectively. In addition, the assumptions of players’ rationality are different.

Most of the game theory models assume perfect rationality of players, while

some models consider that the players are with limited rationality (i.e., bounded

rationality). According to the above analysis, game models can be divided into

the following categories.

Non-cooperative vs. cooperative games
Non-cooperative games are the most popular games. In non-cooperative games,

the players are commonly considered to be rational and self-interested who have

fully or partially conflicting interests. Each player selects the strategy to optimize

her own payoff function. For non-cooperative games, the most commonly used

solution concept is Nash Equilibrium the definition of which is given as follows.

definition 1.1 Nash Equilibrium: Let si ∈ Si and s−i ∈ S−i. Then the NE

strategy profile
(
s∗i , s

∗
−i
)

is defined as,

πi
(
s∗i , s

∗
−i
)
≥ πi

(
si, s

∗
−i
)

(1.2)

for all si ∈ Si and for all i ∈ N .

When the game reaches a Nash equilibrium, none of the players can improve

her payoff by changing strategy unilaterally. There are also other solution con-

cepts such as correlated equilibrium which can be considered as a generalized

version of NE [38], evolutionary equilibrium and dominant-strategy equilibrium.

We also discuss some of the other solution concepts that have been applied in

the context of self-organizing small cell networks later in this chapter.

Recently, cooperation among network nodes for improving both individual

and system wide performance has attracted much attention. The players can

make agreements and cooperate. Cooperative game provides analytical tools to

model and analyze the cooperative behavior of rational players who may form

coalitions. In this case, the members of each coalition cooperate to maximize
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the coalition payoff and the competition is among coalitions instead of among

individual players.

Static vs. dynamic games
A static game is one in which a single decision (time irrelevant but may contain

multiple actions) is made by each player, and each player has no knowledge of

the decisions made by other players before making her own decision. Decisions

are made simultaneously (or their order is irrelevant). A game is dynamic if the

order in which the decisions are made is important or the strategy itself is time-

dependent. For dynamic games, the dynamics can be abstracted from different

aspects which lead to different types of dynamic games listed as follows:

(i) Dynamic nature in games’ play order: The dynamic nature in games’ play

(decision) order leads to the development of multi-stage game (e.g., Stackelberg

game). In this case, the decisions are made asynchronously and the games’ play

order is important. The players who move later can observe the decisions of the

players who move first and then make the decisions accordingly. Note that if

multiple players exist in one stage, the competition within this stage is usually

formulated as a stage game.

(ii) Dynamic nature in time dependency: The dynamic nature in the time

dependency leads to the development of differential game and evolutionary game.

For differential game, the strategy of a player is time-dependent (i.e., function of

time t). That is, the player seeks a best response strategy considering the entire

time horizon. For evolutionary game, the players adapt their strategies according

to the time-varying system state.

Games with special structures
Note that in general the existence and uniqueness of equilibrium as well as the

convergence of best response dynamics to the equilibrium cannot be guaranteed.

However, based on the characteristics of the game formulation, some special

structures of games can be identified with which the games show remarkable

properties in terms of the existence and convergence of pure strategy NE. Two

of those special structure games which are useful in deriving self-organizing so-

lutions are discussed below.

(i) Supermodular games: Supermodular games are characterized as the games

with strategic complementarities. The ‘increment’ of strategy of one player will

be unprofitable to other players. Therefore, the best response of other players

would also be an increment of their strategies. The technical definition is given

as follows.

definition 1.2 Supermodular game: Let G = (N , (Si)i∈N , (πi)i∈N ), where N
is the player set, (Si)i∈N is the strategy set which is a subset of Euclidean space,

and (πi) is the payoff of ith player. The game G is said to be supermodular if

following conditions are satisfied [39]:

1. (Si)i∈N is a compact subset of R.
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2. (πi)i∈N is continuous.

3. si and s−i show increasing differences which is equivalent to the condition
∂2πi(si,s−i)
∂sih∂sik

≥ 0 for all k 6= h.

The following properties can be observed in supermodular games [40, 41].

1. Best responses are monotonically increasing.

2. Pure strategy NE exists.

3. NE can be attained using greedy best-response algorithms.

4. If the NE is unique, it is also globally stable.

(ii) Potential games: A game is categorized as a potential game if the mo-

tivation of all players to change their strategy can be expressed using a single

global function (i.e., the potential function). In such games, obtaining the NE is

equivalent to the maximization of the potential function.

definition 1.3 Exact potential game: Let G = (N , (Si)i∈N , (πi)i∈N ) be a

non-zero sum non-cooperative game where N is the player set, (Si)i∈N strategy

set, and (πi) is the payoff of the ith player. The game G is an exact potential

game if there exists an exact potential function Φ : S → R for all i ∈ N such

that

Φ (s′i, s−i)− Φ (s′′i , s−i) = π (s′i, s−i)− π (s′′i , s−i) , (1.3)

where s−i ∈ S−i and s′i, s
′′
i ∈ Si.

In other words, the change in individual payoff gained by any player by unilat-

erally deviating to another strategy is same as the difference in the corresponding

values of the potential function. In ordinal potential games the signs of the dif-

ferences are similar.

definition 1.4 Ordinal potential game: Let G = (N , (Si)i∈N , (πi)i∈N ), is a

non-zero sum non-cooperative game where N is the player set, (Si)i∈N strategy

set and (πi) is the payoff of ith player. The game G is an exact potential game if

there exists an exact potential function Φ : S → R for all i ∈ N such that

sgn [Φ (s′i, s−i)− Φ (s′′i , s−i)] = sgn [π (s′i, s−i)− π (s′′i , s−i)] , (1.4)

where s−i ∈ S−i , s′i, s
′′
i ∈ Si, and sgn denotes the sign function.

Note that the above definitions are only valid for static potential games. Po-

tential games have following remarkable properties [36, 42].

1. Every finite exact or ordinal potential game has at least one pure strategy

NE.

2. Both best response dynamics and better resoponse dynamics converges to the

pure NE.

3. The NE is unique if
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• S is compact and convex.

• Φ is continuously differentiable on the interior of S.

• Φ is strictly concave on S.

1.4.4 Price of Anarchy and Price of Stability

Game theoretic approaches may not guarantee the optimal performance, i.e., an

equilibrium solution of the game may not be the optimal solution for the prob-

lem. This inefficiency of the game theoretic solutions may occur due to the selfish

behavior of the players. To measure the inefficiency of equilibrium solutions of

a game, two popular concepts, i.e., the price of anarchy (PoA) and the price of

stability (PoS) [43] can be defined as follows.

Price of Anarchy

Price of anarchy is defined as the ratio between the payoffs at the worst equilib-

rium (i.e., the equilibrium point which gives the least payoff) and the optimal

centralized solution to the problem. PoA can vary for different payoff functions.

Price of Stability

Price of anarchy can be significantly small for the games with multiple equilibria

even if only one equilibrium point is inefficient. Hence, price of stability is defined

as the ratio between payoff received at the best equilibrium and the optimal(best

possible) payoff.

Note that PoA and PoS are both equal for the games with unique equilibrium.

1.4.5 Design of Payoff Functions

Game theory was initially proposed and developed for economics and social sci-

ences. Therefore, properly fitting those game models in the context of communi-

cation engineering is challenging. Specifically, defining the payoff functions based

on the network performance metrics (e.g., achievable data rate, delay, and trans-

mit power), modeling the network dynamics (e.g., randomness of the wireless

channel, randomness of the user locations and base station deployment, and

mobility of the users), meeting the requirements defined by the standards and

realizing of the SON characteristics have to be considered within the scope of

the game. Among all these, defining a proper payoff function is one of the key

challenges. The payoff function quantifies the perceived preference or the satis-

faction level of a player. In the context of self-organizing small cells, the user

satisfaction level may depend on one or multiple performance metrics given as

follows:

• Individual performance (e.g., rate, SINR, and delay)

• Global network performance

• Interference level caused to other network nodes
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• Power/energy consumption

• User fairness.

As self-organizing small cell technologies are still in its infancy, there is no

well-defined framework for designing the payoff functions. To this end, we will

introduce some general approaches and guidelines on how payoff functions can be

designed for various applications and objectives in the context of self-organizing

small cell networks.

A payoff function π(x) is expected to satisfy the following criteria.

1. The non-stationary property: dπ(x)
dx > 0, which states that the payoff increases

with the preference or satisfaction.

2. The risk aversion property : d
2π(x)
dx2 < 0, which states that the payoff function

is concave. In other words, the marginal payoff of satisfaction decreases with

increasing level of satisfaction.

Depending on the objective, behavior, and rationality of the network nodes,

different payoff functions are defined in the wireless communications literature.

The payoff/utility functions which can be applied in the context of small cell

networks are discussed below.

Payoff functions for power consumption
Power/energy conservation is crucial in small cell networks as they might be

operated in energy-limited environment (e.g power supplied by a battery). [44]

defines a simple energy aware payoff function as follows:

πi(e) =
Etot
ei

, (1.5)

where Etot is the total energy available for each player and ei is the energy

required by player i for transmission. Players would try to achieve a higher

payoff by reducing the transmission power.

Payoff functions for individual performance
Instead of direct power minimization as that in equation (1.5), it is more ap-

propriate for self-organizing algorithms to perform power control in such a way

that the desired performance can be satisfied. The following logarithmic payoff

function with individually perceived SINR as the input parameter can capture

the self-interest of network nodes and is used for power control in [45, 46]:

πi(si, s−i) = log(γi(si, s−i)), (1.6)

where γi is the SINR of the ith player. Such a logarithmic payoff function and

its extensions are most popular payoff functions used in the context of resource

allocation due to its simplicity and mathematical tractability [47]. For example,

such form of payoff can be used for subcarrier allocation (in OFDMA networks)

and joint power-subcarrier allocation as well.

Another widely used payoff function is the Shannon capacity or the maximum
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achievable rate which can be considered as an extended version of logarithmic

function of SINR as shown below:

πi(si, s−i) = ln(1 + γi(si, s−i)). (1.7)

Fairness utility function
One of the desired objectives of resource allocation is to provide fairness among

users instead of obtaining the optimum performance. The most widely used pay-

off function which guarantees fairness is given below:

u(x) =

{
xa

a , if a < 0,

log x, if a = 0,
(1.8)

where a ≤ 0. By twice differentiation of (1.8) with respect to x we obtain

du(x)

dx
=

{
xa−1, if a 6= 0,
1
x , if a = 0,

(1.9)

and

d2u(x)

dx2
=

{
(a− 1)xa−2, if a 6= 0,
−1
x2 , if a = 0.

(1.10)

It can be observed that the function given in equation (1.8) has both non-

stationary and risk aversion properties for all x > 0 since du(x)
dx > 0 and

d2u(x)
dx2 < 0.

System payoff functions
In self-organizing enabled small cell networks, a group of densely deployed small

cells could form a cluster and cooperate with each other to enhance the per-

formance of the cluster [48]. In addition to that, cooperative games can also be

formulated to design self-organizing algorithms for small cells. Accordingly, coop-

erative payoff functions, which reflect the overall network/cluster performance,

are required.

The simplest and most intuitive cooperative payoff function would be the sum

capacity/rate of the cluster/network as shown below:

πi(s) =
∑
j∈Ni

Cj(s), (1.11)

where N is the set of players in the ith cluster who cooperates with each other

and Cj is the capacity of the jth player.

Multi-dimensional payoff function
The payoff function can be designed considering multiple performance metrics.

In such cases, these multiple metrics could appear in the payoff function (most

case in a product form). One typical example is given as follows:

πi = πrate
i πdelay

i . (1.12)
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Payoff function with cost
For a strategy adopted by a player, there could be a cost associated with it (e.g.,

cost of using bandwidth, power consumption) or it may affect the performance

of other players (e.g., cause interference). This issue can be modeled by intro-

ducing certain cost functions into the payoff function. In particular, the payoff

function (some may refer to this as net utility) can be defined to reflect both the

satisfaction of the player (modeled by utility function) and the cost (e.g., price

per unit resource) as follows:

πi(si, s−i) = ui(si, s−i)−mx, (1.13)

where ui(si, s−i) is the utility based on the user satisfaction and m is the price

paid for each resource x.

[49] uses a net utility function with logarithmic payoff as given below:

πi(si, s−i) = ai log (1 + γi(si, s−i))− bimγi(si, s−i), (1.14)

where γi is the SINR of the ith user, ai and bi are weighting parameters and m is

the cost for the received SINR. The gain of maximizing γi could be neutralized

by the cost associated with the received SINR.

The following form of payoff function (equation 1.15) is used in [28] to limit

the interference caused to the macro users by the downlink transmission of small

cells:

πi(si, s−i) = w1 (π (γ(si, s−i)))− w2 (Im − T ) , (1.15)

where w1 and w2 are biasing factors which can be determined based on which

network (i.e., macro or small cell network) should be given priority in resource

allocation. Im is the interference caused to the nearest macro user and T is the

macro user interference threshold. When the interference caused to the nearest

macro user (Im) exceeds a certain threshold, small cell base stations are demo-

tivated to allocate resources to its user even if it increases the individual payoff.

At the same time, such payoff function encourages the SBSs to use resources

(i.e., transmit power and OFDMA subcarrier) as long as it does not exceed the

interference threshold of the macro users.

Guaranteeing the existence of equilibrium is one of the essential features of

any game formulation. It is straightforward that the existence of equilibrium,

convergence, and stability of the equilibrium is highly related to the payoff func-

tion and the structure of the game. Therefore, special payoff function can also

be designed to fit the game model into special structures (e.g., super-modular,

potential). Polynomial time computability is another important feature of a pay-

off function. Besides, when it comes to self-organizing small cell networks, the

ability to compute with local information or with reduced information exchange

is also highly desirable.



1.5 Game Theory-Based Resource Management for Self-Organizing Small Cells 21

1.5 Game Theory-Based Resource Management for
Self-Organizing Small Cells

Resource management aims for efficient usage of scarce resources (e.g., power

and spectrum) as well as for interference management when it comes to the

underlaying small cell networks. Besides, some other issues such as load balancing

and coverage optimization can also be eventually modeled as resource allocation

problems. In general, the resource allocation in orthogonal frequency-division

multiple access (OFDMA)-based small cell networks can be categorized into

three classes: subcarrier allocation, power allocation, and joint subcarrier-power

allocation.

Game theory-based resource management is one of the mostly addressed is-

sues in the context of self-organizing small cell networks. Different types of games

are used to address the above issues depending on the objective and the network

characteristics. In the following, formulations of the selected game models for de-

vising self-organizing distributed resource management algorithms are discussed.

1.5.1 Non-cooperative Game-Based Decentralized Power Allocation

Power allocation problem of a self-organizing small cell network can be modeled

by a non-cooperative game in which the players are the small cell nodes (e.g.,

SBSs or users). The strategy of a player is the allocation of transmit power. The

strategy selection of a player will impact the payoff of other players. Specifically,

the transmission power selection of a player creates a positive or negative impact

on the payoff of other players due to the possible increase or decrease of interfer-

ence. The payoff function of the players can be chosen appropriately according

to the design objective.

Non-cooperative game-based downlink power control

In [39], a non-cooperative game is used to model the downlink transmission power

allocation problem among the SBSs. A system with one central macro cell and

several underlaid closed access small cells is considered. It is also assumed that

the distance between an SBS and its associated users are almost the same, hence

all users served by this SBS have equal rate and the rate of a user of small cell

i (Ri) is given by

Ri =
1

Ni
log

(
1 +

hi,iPi
I +

∑
j 6=i hi,jPj

)
, (1.16)

where Ni is the number of users associated with base station i, hi,j is the average

channel gain from small cell base station i to users in small cell j, I is the noise

power plus the interference from the macro base station and Pi is the transmit

power of small cell base station i. The small cell base stations are the players of

the game each of which is self-interested and tries to increase its own capacity.
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The strategy set for base station i is defined as Si = [0, Pmax], where Pmax is

the maximum allowable transmit power for a SBS. The payoff function is then

defined considering three factors:

• Achievable average rate of the small cell base station

• Fairness of the system

• Transmit power.

The payoff increases with the increasing average rate, while it decreases with the

increasing transmit power due to the increased interference caused to neighboring

cells. Also, fairness should also be considered among the base stations. Therefore,

the payoff function is defined as follows:

π(Pi) = Ni log(Ri)− βPi, (1.17)

where β is a positive constant.

This game is shown to be a supermodular game and accordingly the NE can be

achieved by using best response dynamics (see Sec.1.4.3). Based on best response

dynamics, the following power control algorithm is derived. Small cell base sta-

tions update their transmit power periodically to best response to the current

strategy profile of other base stations. Eventually, the algorithm converges to the

NE.

Algorithm 1 Non-cooperative game-based downlink power allocation algorithm

1: Initialize

2: repeat

3: Measure noise and interference from other SBSs

4: Calulate the payoff by substituting in equation (1.17)

5: Find Pi which maximizes equation (1.17)

6: Update Pi
7: Wait until the next update time

8: until SBS turns off

The performance of the above algorithm is evaluated numerically in [39] which

proves the capability of the algorithm to be implemented in a real environment

while providing fairness to the small cell users. However, the algorithm shows

slightly degraded performance than the centralized system which delivers optimal

performance. This is due to the selfish decentralized behavior of the users.

Non-cooperative game-based uplink power control

Uplink power allocation in small cell networks can also be modeled as a non-

cooperative game [50, 51]. Specifically, a non-cooperative game based distributed

uplink power control algorithm is proposed in [51]. The power control is per-

formed distributively based on SINR adaptation while mitigating the interference

caused to the macro base station. A single macro cell and a set of N underlaid
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small cells are considered. Each base station serves only one user at a time with

a guaranteed SINR requirement.

In order to protect the macro base station from interference due to the uplink

transmission of the small cell users, the macro user is also considered as a player

in the game. In this case, the player set consists of the macro user and the small

cell users denoted by, N = {0, 1, ..., N}, where index 0 denotes the macro user

and the indices 1, 2, ..., N denote small cell users. The strategy of each player i

is its transmit power denoted by pi. The payoff function for macro user is given

by

π0

(
p0,p−0

)
= − (γ0 − Γ0)

2
, (1.18)

where Γ0 is the target SINR and γ0 is the received SINR of the macro user. The

received SINR of any user is given by

γi =
pihi,i

σ2 +
∑
j 6=i pjhi,j

, (1.19)

where σ2 is the noise power and hi,j is the channel gain between users i and j.

Each small cell user also tries to maximize her own individual SINR while

meeting the minimum SINR requirement, Γi. The payoff of a small cell user is

given by

πi
(
pi,p−0

)
= R (γi,Γi) + bi

C
(
pi,p−0

)
σ2 +

∑
j 6=i pjhi,j

, (1.20)

where bi is a weighting factor. The reward function, R (γi,Γi) and the penalty

function C
(
pi,p−0

)
are defined as follows:

R (γi,Γi) = 1− exp (−ai (γi − Γi)) , (1.21)

where ai is a constant and

C
(
pi,p−0

)
= −pih0,i. (1.22)

The reward increases with γi until the threshold Γi is met. Once the received

SINR exceeds the minimum requirement, the reward decreases with γi, which

discourages the small cell users to increase their power. By equation (1.22), the

small cell users are given a penalty with the increase of transmit power. The

penalty is scaled by interference and noise (σ2 +
∑
j 6=i pjhi,j) in equation (1.33)

to ensure that small cells experiencing higher interference are less penalized.

Note that the payoff function is a monotonically increasing concave function of

γi for fixed pi. Also, for fixed γi, the payoff is a monotonically decreasing concave

function of pi.

The existence of Nash equilibrium for the above uplink power control game

can be proven by employing the following theorem from [52, 53, 54].

theorem 1.5 A Nash equilibrium exists in game G = (N , (Si)i∈N , πi(.)i∈N )

if, for all i = 0, 1, ..., N ,
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1. (Si)i∈N is a nonempty, convex, and compact subset of some Euclidean space

RN+1.

2. πi(s) is continuous in s and quasi-concave in pi.

The uplink transmit power at the NE (denoted by p∗) is given by following

two equations [51]:

p∗0 = min

(
I0
(
p∗−0

)
g0,0

Γ0, pmax

)
,when i = 0, (1.23)

p∗i = min

(
Ii
(
p∗−i
)

gi,i

[
Γi +

1

ai
ln

(
aigi,i
big0,i

)]+

, pmax

)
,when i 6= 0, (1.24)

where [x]+ = max (x, 0) and Ii
(
p∗−i
)

= σ2 +
∑
j 6=i p

∗
jhi,j .

In order to devise a distributed power control algorithm which converges to

the NE, [51] uses the standard interference function defined in [55].

definition 1.6 Standard interference function: f(p) is a standard interference

function if the following conditions are satisfied for all p ≥ 0:

1. Positivity, f(p) > 0.

2. Monotonicity, if p′ > p then f(p′) > f(p).

3. Scalability, for all α > 1, αf(p) > f(αp).

Yates [55] showed that an iterative power control algorithm which calculates

the power at next iteration k + 1 according to the rule pk+1 = f(P ) converges

to a unique fixed point if f(P ) is a standard interference function.

The received SINR is γi = pi
Ii

, according to which the equations (1.23) and

(1.23) can be modified to form a distributed iterative power control algorithm.

The individual uplink transmit power is updated as follows:

pk+1
0 = min

(
pk0
γk0

Γ0, pmax

)
,when i = 0, (1.25)

pk+1
i = min

(
pki
γk0

[
Γi +

1

ai
ln

(
aigi,i
big0,i

)]+

, pmax

)
,when i 6= 0. (1.26)

Both equations (1.25) and (1.26) are standard interference functions. There-

fore, the power control algorithm converges to a unique fixed point which is the

NE defined in (1.23) and (1.23).

More importantly the algorithm can be executed distributively with minimal

network overhead, and therefore, would be suitable for resource allocation in a

self-organizing small cell network.
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1.5.2 Non-cooperative game-based sub-carrier allocation

In addition to power allocation, sub-carrier allocation (we consider OFDMA net-

works) is also an essential part for self-organizing resource allocation. Distributed

subcarrier allocation problem can also be modeled as a non-cooperative game

in a similar way as that for power control. In this case, the strategy set should

represent the selection of available subcarriers for each node of the network. In

the following, we give a descriptive example for uplink distributed subcarrier al-

location in OFDMA-based small cell networks based on non-cooperative games.

[56] proposes a decentralized method for small cells in a two-tier network

to individually select the most appropriate subset of resource blocks in order

to mitigate both cross-tier and co-tier interferences. In the model, the macro

network consists of 19 macrocell sites, each of which has three hexagonal sectors.

Small cells are deployed inside the macrocell according to the 5 × 5 grid model

specified in the 3GPP simulation scenario given for urban deployment in [57]. 25

apartments are arranged according to a 5× 5 grid and each of these apartments

would have a small cell (femto cells in this case) with a probability of pd. UM
number of macro users are randomly and uniformly located in each sector and US
number of small cell users are randomly and uniformly located in each apartment.

It is also assumed that the total bandwidth W is divided into K resource blocks.

The resource block (RB) allocation is modeled as a non-cooperative game

G = (N , (Si)i∈N , πi(.)i∈N ), where N is the set of small cell users. The strategy

S of each player i is the selection of a subset of RBs. Two payoff functions π1

and π2 are considered (given in equations (1.27) and (1.28)), where π1 takes

into account only the co-tier interference between SBSs while π2 considers both

co-tier and cross-tier interferences. Let each small cell user select H number of

resource blocks for transmission. S and M are the total number of small cell

users and macro users, respectively. The selected set of resource blocks by small

cell user i is given by Ri = k1
i , k

2
i , ..., k

H
i . For all i, j ∈ N and x, y ∈ 1, 2, ...,H,

δkxi ,k
y
j

is an interference indicator function, where δkxi ,k
y
j

= 1 if RBs kxi and kyj are

the same and δkxi ,k
y
j

= 0, otherwise. The two payoff functions are given below.

π1
i (si, s−i) =

H∑
x=1

H∑
y=1

− S∑
j=1,j 6=i

gbij p
kyj
j δkxi ,k

y
j
−

S∑
j=1,j 6=i

g
bj
j p

kyi
i δkxj ,k

y
i

 , (1.27)

and

π2
i (si, s−i) =

H∑
x=1

 H∑
y=1

− S∑
j=1,j 6=i

gbij p
kyj
j δkxi ,k

y
j
−

S∑
j=1,j 6=i

g
bj
j p

kyi
i δkxj ,k

y
i


+

L∑
z=1

− M∑
m=1,j 6=i

gbimp
kzm
m δkxi ,kzm −

M∑
m=1,j 6=i

g
bj
j p

kzi
i δkxj ,kzi

 ,
(1.28)

where gbij is the channel gain between the small cell j and the SBS bi, g
bm
j
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denotes the channel gain between the small cell j and the MBS bm, and p
kyj
j is

the transmit power of user j on its selected RB kyj .

The two terms in equation (1.27) represent the co-tier interference caused at

the base station i by other base stations and the co-tier interference caused to

other SBSs by SBS i, respectively. The additional two terms in equation (1.28)

measure the cross-tier interference.

The existence and the uniqueness of the NE are proved by showing that the

above game is an exact potential game. The corresponding potential functions

and the proof can be found in [56]. In potential games, the best response dy-

namics always converges to a pure strategy NE. The best response strategy is

given by

st+1
i = arg max

s′∈S
πi
(
s′, st−i

)
. (1.29)

The small cell users are assumed to be able to sense the spectrum in order to

select the best set of RBs as st+1
i .

Giupponi in [58] also formulates the downlink resource (joint subcarrier and

power) allocation problem as a potential game. The payoff function is designed

to model both co-tier and cross-tier interferences and a distributed resource

allocation algorithm is proposed.

1.5.3 Complimentary TRi-Control Loop for Uplink Interference Mitigation
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Figure 1.4 Uplink interference scenario in a two-tier network.

Small cell users may cause considerable amount of interference to the macro

base station in uplink and vice versa (as shown in Fig. 1.4). [59] proposes a self-

organizing uplink interference management architecture called Complimentary

TRi-Control Loop (CTRL) which is composed of three control loops as shown

in Fig. 1.5, which are explained below.

• MTXPC - maximum transmit power control loop: The maximum transmit

power control loop determines the maximum possible transmit power for
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Figure 1.5 Complimentary TRi-control loop.

small cells in order to provide the uplink protection for the macro network.

The decision is taken based on the feedback uplink load margin information

of the macro base station.

• TSINRC - target SINR control loop: The duty of target SINR control loop

is to determine the required uplink SINR for each SBS with minimum

possible information exchange among them. A non-cooperative game is

formulated and the decisions are taken considering the maximum transmit

power decided at MTXPC loop.

• ITXPC - instantaneous transmit power control loop: The actual transmit

power allocation is done at this loop. The transmit power is allocated to

achieve the target SINR calculated at TSINRC loop with the constraint on

maximum transmit power.

The maximum transmit power control loop is modeled as a Q estimation prob-

lem in adaptive control theory. MTXPC loop calculates the maximum transmit

power for each SBS user in a self-organizing manner. The complete model can

be found in [59].

The target SINR control loop is formulated as a non-cooperative game in

which NE is obtained as the solution. The players are the set of small cell base

stations. The strategy set (S) is composed of the set of possible transmit powers

on each resource block. The transmit power vector of each user i is given by

pi = (pi,1, pi,2, ...., pi,K), where pi,k is the transmit power of user i on subcarrier

k. pi,k must be less than the maximum transmit power Pi,k obtained at the

MTXPC loop. The vector p is composed of the transmit powers of all the users

in all SBSs. Let K and Nf denote the set of subcarriers and the set of users

connected to SBS i, respectively. bi,k is the normalized time period that the user



28 Game Theory and Learning Techniques for Self-Organization in Small Cell Networks

i transmits on resource block k. The payoff function of each player f is given by

πf (p, b) =
∑
i∈Nf

∑
k∈K

bi,kW log2

(
1 +

γi,k
c

)
−
∑
i∈Nf

∑
k∈K

bi,kµi,kpi,k, (1.30)

where W is the size of a resource block, ω = − ln(5BER)/1.6 is a constant to

achieve a given bit error rate (BER) µi,k is the price paid for the interference

caused and γi,k is the target SINR of user i on subcarrier k.

There exists a NE (given in equation 1.31) for the above game if µi,k is large

enough.

γ∗i,k = max

([
Whki

(ln 2)Ii,k(p−i)µ
k
i

− ω
]+

,
hi,kPi,j
Ii,k(p−i)

)
, (1.31)

where Ii,k is the interference (including macro cell interference) plus the thermal

noise at user i on resource block k and hki is the channel gain from user i to its

own base station on subcarrier k. The proof of the existence of an NE is based

on the fact that the payoff function is continuous and quasi-concave and the

strategy set is a non-empty, compact, and convex subset in the Euclidean space.

The complete proof can be read from [59].

Based on the interactions among the above proposed three control loops, the

spatial reuse of spectrum within small cells is enabled without degrading the per-

formance of the macro tier. The operation of CTRL does not require any changes

in the resource management of the macro network and converges distributively

to a stable solution.

1.5.4 An Evolutionary Game Approach for Self-Organization with Reduced
Information Exchange

As we have seen in the previous examples, traditional game theory (e.g., Nash

equilibrium problem) relies on the rational decisions of the players. The play-

ers are expected to choose their strategies rationally as the best responses to

the strategies of other players. The rationality implies complete information and

strong computation capability of each player to calculate the best response to

other players strategies. This assumption may be too strong for densely deployed

nodes in a self organizing small cell network. As a solution, the distributed re-

source allocation problem can be formulated as an evolutionary game [28, 60, 61].

Evolutionary game theory (EGT) was originally developed to analyze the evo-

lution of populations of biological species with bounded-rationality. Instead of

selecting the strategy which gives the best response to the other users’ strategies,

in EGT, each player selects a strategy by replication and can adapt its selection

for a better payoff (i.e., evolution). Accordingly, EGT focuses on the dynamics

of the strategy adaptation in the population. A population is the set of players

involved in the game. The behavior of the population can be described by the

number of its members choosing each pure strategy. The success of a strategy is
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reflected by the proportion of members in the population using it. In the follow-

ing, we provide and example on formulating the downlink subcarrier selection

and transmit power allocation of a small cell network as an evolutionary game

[28].

−500 0 500
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Figure 1.6 Small cell cluster underlaid with a macro network.

The downlink transmission of an OFDMA-based two-tier cellular network com-

posed of macrocells and an underlaying self-organizing small cell cluster is con-

sidered here (as shown in figure 1.6). The spatial distribution of the small cell

base stations and macro base stations follow two independent point processes in

R2 with densities λf and λm, respectively. Each macro user is attached to the

nearest macro base station and each small cell user is located at a distance rf
from its serving base station. Each SBS serves only one user at a time and selects

one subcarrier to serve that user. The macrocell and the small cells share the

same set of orthogonal subcarriers denoted by K = {1, 2, ...,K}. They are also

capable of selecting a transmit power level from a finite set of values which is

denoted by L = {1, 2, ..., L}. Each SBS should select a suitable subcarrier-power

combination which is referred to as the “transmission alignment” of that SBS.

The set of transmission configurations (i.e., strategy set) is denoted by S. For

each subcarrier k, there is a maximum aggregate interference threshold that can

be caused by the entire small cell cluster to the macro users which is denoted by

T (k).

The small cell base stations form the player set of the game, denoted by N .

The strategies S available for each player is the set of transmission alignments.

In the context of an evolutionary game, the set of players also constitutes the

population. Denote by ns the number of SBSs selecting pure strategy s ∈ S.
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Then the frequency of strategy s used in the population is given by

xs =
ns
N
, (1.32)

where the frequency xs is also referred to as the population share of pure strategy

s. The population shares of all strategies add to 1. The payoff is a function of the

utility of an SBS when certain transmission alignment is used and the interference

caused to the nearest macro user and is given by

πs = π
(k)
l = w1

(
U(SINR

(k)
l )
)
− w2

(
I(k)
m − T (k)

)
, (1.33)

where SINR
(k)
l is the received SINR of a small cell user served by subcarrier k and

power level l, w1 and w2 are biasing factors and I
(k)
m is the aggregate interference

created by the small cell cluster on subcarrier k at the nearest macro user.

Sepcifically, in [28], two utility functions are considered which are given as

follows:

U1(SINR
(k)
l ) = E

[
SINR

(k)
l

]
, (1.34)

and

U2(SINR
(k)
l ) = E

[
ln
(

1 + SINR
(k)
l

)]
. (1.35)

Based on two utility functions, two payoff functions can be defined (π
(1)
s , π

(2)
s )

and hence two games are formulated.

G1 =
(
N ,S, π(1)

s )
)
, (1.36)

and

G2 =
(
N ,S, π(2)

s )
)
. (1.37)

The Evolutionary Equilibrium (EE) is the solution concept for both G1 and

G2. In the context of the evolutionary game for transmission alignment selection,

each SBS will adapt its strategy according to its received payoff. This is referred

to as the evolution of the game during which the strategy adaptation of SBSs

will change the population share, and therefore, the population state will evolve

over time. The strategy adaptation process and the corresponding population

state evolution can be modeled and analyzed by replicator dynamics [62] which

is a set of ordinary differential equations defined as follows:

ẋs(t) = xs(t) (πs(t)− π̄(t)) , (1.38)

for all s ∈ S, with initial population state x(0) = x0 ∈ X, where X is the state

space which contains all possible population distributions. Here πs is the payoff

of each SBS choosing transmission alignment s and π̄ is the average payoff of

the entire population. The equilibrium point of the game can be obtained by

solving the replicator dynamics. Evolutionary equilibrium is the point where

the replicator dynamics is equal to zero. In other words, when the system is
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at equilibrium, the fractions of the population choosing each strategy remain

constant.

As the game (either G1 or G2) is repeated, each SBS observes its own payoff

and compares it with the average payoff of the system. Then, if its payoffs is less

than the average, in the next period, the SBS randomly selects another strategy.

The proposed distributed resource allocation algorithm is given in Algorithm

2.

Algorithm 2 Evolutionary game-based distributed resource allocation

1: Initialize: The SBSs choose a transmission alignment randomly and set

i = 1.

2: repeat

3: Exploitation : Each SBS transmits on the selected transmission config-

uration and observes the received utility. The utility and the transmission

alignment information are then sent to the central controller.

4: Learning: A central controller calculates the average payoff of the pop-

ulation and the population state and broadcasts it to all SBSs.

5: Update: Each SBS compares its own payoff with the average payoff of

the population. If the payoff is less than the average, the SBS randomly

selects another subcarrier for transmission.

6: i = i+ 1

7: until i ≥ Maxi (maximum number of iterations that the algorithm can

execute)

The stability of the of the equilibrium point can be analyzed by using a stochas-

tic geometry approach. The spatial distribution of macro base stations and small

cell base stations are approximated by Poisson point processes (PPP). Then the

expected SINR for any population distribution can be derived in terms of the

population shares (see [28] for the stochastic geometry based derivation). The

expressions obtained for the above mentioned utility functions (when path-loss

exponents equals 4) are as given below:

E
[
SINR

(k)
l

]
=

8pl

A2
(
λm
√
pm + λ

(k)
f E

[√
pf
])2 , (1.39)

and

E
[
r

(k)
l

]
=

∫ ∞
t=0

exp

(
−A

2
√
pl

(
λm
√
pm + λ

(k)
f E

[√
pf
])√

et − 1

)
dt, (1.40)

where pl is the transmit power of level l, pm is the transmit power of MBSs,

pf ∈ {p1, p2, ..., pL} denotes the transmit power of SBSs, A = π2r2
s , and λ

(k)
f is

the density of SBSs transmitting on subcarrier k which is also assumed to be

uniformly randomly distributed.

The probability mass function of the transmit power of any interferer (i.e.,
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pf in (1.39) and (1.40)) can be directly obtained from the proportions of the

population selecting each strategy. For transmission alignment corresponding to

subcarrier k and power level l, the PMF (which can be used to find E
[√
pf
]
) of

the transmit power of a generic interferer is given as follows:

Pr (pf = pj) =


n
(k)
j∑L

t=1 n
(k)
t −1

, if j 6= l,

n
(k)
j −1∑L

t=1 n
(k)
t −1

, if j = l,

or equivalently,

Pr (pf = pj) =


x
(k)
j∑L

t=1 x
(k)
t − 1

N

, if j 6= l,

x
(k)
j −

1
N∑L

l=t x
(k)
t − 1

N

, if j = l,

where n
(k)
j is the number of players selecting subcarrier k and power level j and

x
(k)
j =

n
(k)
j

N . For a network with two orthogonal subcarriers and one transmit

power level, the interior evolutionary equilibrium in game G1 can be shown to

be asymptotically stable [28].

Simulations show that G2 converges faster than G1. The impact of delay in

information exchange also analyzed numerically which shows that the system

converges to the equilibrium under small delays. However, when the delay is

larger than a certain bifurcation point, the system will diverge. Also there is

no guarantee that the system will converge to the same equilibrium point as

the delay-free system. The key features of the above discussed evolutinary game

based algorithm are as follows: simplicity, reduced information exchange than

other non-cooperative game based algorithms, and fairness.

In [28], the performance of the above algorithm is compared with the optimal

performance obtained by a centralized resource allocation which acts as a bench-

mark. A gap exists between the maximum payoff and the payoff obtained by the

EGT-based algorithm. Also the gap increases with the number of base stations

in both G1 and G2.

Up to this end, we have studied some basic examples of using different game

models in order to devise self-organizing algorithms for small cells. Other cus-

tomized algorithms which satisfy various constraints can be built on top of these

basic examples. For example, in [63] a self-organizing interference management

paradigm is proposed while taking into account the constraints due to the pres-

ence of heterogeneous backhauls. The problem is formulated as a non-cooperative

game and a fully distributed learning algorithm is devised based on reinforcement

learning (RL) which converges to an equilibrium solution.

Cognitive Radio (CR) enabled small cells ([64, 65]) which can sense the spec-

trum are also proposed as a solution for interference mitigation. CR enabled SBSs

can opportunistically allocate both licensed and unlicensed frequency bands to

the users in order to avoid interference. [66] uses a correlated equilibrium-based
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approach ([67]) to mitigate co-tier interference among cognitive femto access

points for the downlink OFDMA LTE networks. Correlated equilibrium is pref-

ered for a self-organizing network than NE as it allows devising decentralized

and adaptive algorithms. In [66], the spectrum allocation competition among

cognitive base stations is formulated as a non-cooperative game. The sepctrum

allocation is done using two payoff functions i.e., global payoff and local payoff.

The global function provides fairness among players considering the total network

performances while the local payoff function is based on individual performance

measures.

A summary of the game models discussed in this chapter is given in Table 1.1.
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1.6 Learning Techniques for Self-Organizing Small Cell Networks

In the previous sections of this chapter, we have observe that in order to achieve

the equilibrium, small cells have to be aware of the environment (e.g., by sensing

or local interaction) and react accordingly by adjusting their resource allocation

policies. Also, due to the dynamics of wireless environment, most of the system

parameters need to be adjusted as well. Such adaptation for obtaining better

performance and/or for reaching the equilibrium can be viewed as a learning

process which is crucial for self-organization in small cells. Accordingly, different

learning techniques can be applied. Specifically, distributed learning techniques

such as RL and Q-Learning have recently gained significant attentions of the

research community. Also, in the past few years there has been a growing interest

in applying machine learning techniques for wireless networks.

In this section, we will introduce the basics of some commonly used learning

techniques and provide examples on how those techniques can be applied for self-

organizing small cell networks. Specially, we focus on the adaptations of different

learning techniques to learn the equilibria in game-based self-organizing systems.

1.6.1 Reinforcement Learning

RL [71] can be simply explained as mapping situations into actions in such a

way that the cumulative reward is maximized. A learning agent has to explore

the environment and exploit what it has already explored to get a better payoff.

The basic elements of RL are explained below.

• Policy (Φ): A policy is a mapping of the set of states given by S into actions

(A). Generally the policies are stochastic.

• Reward function (u): Similar to the payoff/utility function in game theory,

the reward function reflects an agent’s preference of that state. Simply,

the reward function maps the state-action pair into a numerical value. The

agent’s objective is to maximize its total reward in the long run.

• Model of the environment : The model reflects the behavior of the environ-

ment.

RL has been widely used in the field of cognitive radio networks [72]. Here we

introduce an example (based on [70] and [73]) of applying RL to learn and reach

equilibrium in a self-organizing small cell network.

Let us consider the downlink transmission of a macro base station and a set of

N underlaid small cell base stations (denoted by N ) each of which transmits to

one user at a time. K = {1, ...,K} is the set of orthogonal sub-carriers shared by

both tiers. At each time slot, the macro base station serves one macro user over

each sub-carrier and also each SBS selects one subcarrier to transmit. Each SBS

is capable of selecting a transmission power level from a finite set of power levels.

The combination of the power level and the subcarrier is termed as a transmission
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alignment. The problem is to select suitable transmission alignments for the

downlink tranmission of SBSs while protecting the macro users from interference.

The above problem can be modeled as a mixed-strategy non-cooperative game.

SBSs form the player set N and the available transmission alignments form the

action set Ai. The mixed strategy (si) vector of user i is given by

si = (αi,a1 , αi,a2 , ..., αi,aL) ∈ ∆(Ai), (1.41)

where L is the total number of transmission alignments, αi,al is the long term

probability of the SBS taking action al.

Two games are formulated (G1 and G2) based on two payoff functions as fol-

lows:

π1
i (ai(n),a−i(n)) =

∑
k∈K

log2(1 + γki (n))1{γk
0 (n)>Γk

0}, (1.42)

π2
i (ai(n),a−i(n)) =

∑
i∈N

∑
k∈K

log2

(
1 + γki (n)

)
1{γk

0 (n)>Γk
0}
, (1.43)

where γki is the SINR at the user served by SBS i on subcarrier k, γk0 is the SINR

at macro user receiving on subcarrier k, Γk0 is the SINR threshold at macro user

on subcarrier k, and n denotes the time step.

The long term average value of the payoff (for both games) is given by

π̄i(si, s−i) =
∑
a∈A

πi(ai,a−i)Π
N
j=1αj,aj . (1.44)

The solutions obtained for the above games are in the notion of logit equilib-

rium [74]. Before defining the logit equilibrium, it is necessary to understand the

concept of Smoothed Best Response (SBR).

definition 1.7 Smoothed best response: The smoothed best response of player

i with parameter mi is given by

βmi
i (s−i) =

(
βmi
i,i (s−i) , ..., β

mi

i,L (s−i)
)
, (1.45)

where

βmi

i,l (s−i) =
exp

(
miūi

(
e

(L)
l , s−i

))
∑L
t=1 exp

(
miūi

(
e

(L)
l , s−i

)) , (1.46)

in which the vector e
(L)
l =

(
e

(L)
l,1 , e

(L)
l,2 , ..., e

(L)
l,L

)
∈ RL denotes the sth vector

of the canonical base spanning the space of real vectors of dimension S, (i.e.,

e
(L)
l,t = 0 for t ∈ {1, 2, ..., L}\{l} and e

(L)
l,l = 0). Note that SBR is equivalent to

best response when mi → ∞. For finite mi > 0, SBR assigns high probabilities

to the actions associated with high average payoffs.

Using the above definition, the logit equilibrium is defined as follows:
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definition 1.8 Logit equilibrium: A strategy profile s∗ = (s1, s2, ..., sN ) ∈
∆(A1)× ...×∆(AN ) is logit equilbrium with parameters mi(∀i∈N ) > 0 of the G1

or G2 if

s∗i = βmi
i (s∗−i), (1.47)

where βmi
i is the smoothed best response of player i with parameter mi.

Note that s∗ is an ε-equilibrium with ε = maxiεN

(
1
mi

ln(L)
)

. Also, it can

be observed that ε → 0 for large mi which means ε-equilibrium reaches a pure

strategy NE when mi is large enough.

As both the above games are finite games, the existence of the LE can be

proved following the Theorem 1 in [75]. Due to the fact that G2 is a potential

game, it can be proved that the convergence of the SBR dynamics is guaranteed

for G2 if each SBS possesses the complete information of the strategies of other

SBSs [76]. For self-organizing small cell networks, [70] proposes an RL-based tech-

nique in order to learn and reach the equilibrium. Each SBS makes an estimation

(given by equation (1.48) on their own instantaneous payoff (π (ak(n),a−k(n)))

based on user feedback as follows:

π̃i(n) = π (ai(n),a−i(n)) + εi,ai(n)(n), (1.48)

where εi,ai(n)(n) represents the error of the estimation due to thermal noise and

it is also assumed that E
[
εi,ai(n)(n)

]
= 0, ∀i.

Each SBS should estimate the expected utility it achieves with each of its

actions in order to build the SBR. Two coupled RL processes are proposed in

[70] to achieve the LE. The first RL process allows SBSs to build an estimate

of the vector of average payoffs π̄i(.,π−i(n)) using observations π̃i(n), where

π̄i(.,π−i(n)) =
(
π̄i

(
e

(L)
1 ,π−i(n)

)
, ..., π̄i

(
e

(L)
L ,π−i(n)

))
. The first precess is

given by equation (1.49). The second RL process (given in equation (1.50)) uses

the vector of estimated average payoffs at time n to update the transmission

probability vector si(n), where w1
i and w2

i are learning parameters.

π̂i,l(n) = π̂i,l(n− 1) + w1
i (n)1{ai(n)=l} (π̃i(n)− π̂i,l(n− 1)) . (1.49)

si,l(n) = si,l(n− 1) + w2
k(n)

(
β̃

(mi)
i,l (ûi(n))− si,l(n− 1)

)
. (1.50)

The parameters should satisfy the following conditions:
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lim
T−→∞

T∑
t=1

w1
i (t) = +∞,

lim
T−→∞

T∑
t=1

(w1
i (t))

2 < +∞,

lim
T−→∞

T∑
t=1

w2
i (t) = +∞,

lim
T−→∞

T∑
t=1

(w2
i (t))

2 < +∞,

lim
T−→∞

w1
i (t)

w2
i (t)

= 0,

and

∀i ∈ N , w2
i = w2, (1.51)

or

∀i ∈ N/{N} lim
T−→∞

w2
i (t)

w2
i (t+ 1)

= 0. (1.52)

[70] proves that the convergence point (if there is a one) of the above given RL

algorithm is an LE. In addition to that it is also proved that the convergence of

G2 is always guaranteed as it is a potential game and all players share identical

interests.

1.6.2 Q-Learning

Q-learning proposed by Watkins in [77] is also a form of reinforcement learning

technique which can be used to find an optimal decision policy for any given

finite Markov decision process (MDP) problem without knowledge of the transi-

tion probabilities. It has also been shown that Q-learning algorithm converges to

the optimal policy for the systems with centralized control [71, 77]. Q-learning

has recently been applied in the field of cognitive radio and wireless commu-

nications. For example, [78] investigates the problem of network selection in a

heterogenous network and [65] applies Q-learning based learning technique for

channel selection in multi-user cognitive radios. Q-learning based distributed re-

source allocation algorithm is devised in [79] in order to reduce interference in a

network where small cells coexist with the macro network. In the following, we

provide an example of the use of Q-learning for downlink resource allocation in

a two-tier small cell network [60].

Small cell base stations (denoted by the set N ) form the player set and uni-

versal frequency reuse with K subcarriers is considered. It is also assumed that

there is only one macro user receiving on each subcarrier at a given time. Each of
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these macro users has with a minimum SINR requirement. Similar to the system

model of the example given in Section 1.6.1, each SBS is able to select its trans-

mission power from a finite set of values. Therefore, the set of subcarrier-power

level combinations (i.e., transmission alignments) defines possible set of actions

for each SBS.

The states for each player i at time t is defined as follows.

si(t) =
(
s

(1)
i (t), s

(2)
i (t), ..., s

(K)
i (t)

)
, (1.53)

where s
(k)
i (t) takes the value 0 if the SBS i violates the QoS constraint for macro

user on subcarrier k and s
(k)
i (t) = 1, otherwise. The action and utility vectors of

each SBS at time t are given by

ai(t) =
(
a

(1)
i (t), a

(2)
i (t), ..., a

(K)
i (t)

)
, (1.54)

and

ui(t) =
(
u

(1)
i (t), u

(2)
i (t), ..., u

(K)
i (t)

)
, (1.55)

where a
(1)
i (t) ∈ {0, 1}.

Each SBS i observes its current state si(t) and takes an action ai(t) based on

the decision policy Φ : s→ a. Our objective is to find an optimal decision policy

Φ∗.

For each SBS, a Q-function maintains the knowledge of other players based

on which the decisions can be taken individually without interacting with other

players.

The expected discounted reward over a finite horizon is given by

V Φ(s) = E{γt × r (st,Φ
∗(st)) |s0 = s}, (1.56)

where 0 ≤ γ ≤ 1 is the discount factor at time t and r is the reward. The above

equation can be re-written as

V Φ(s) = R (s,Φ∗(s)) + γ
∑
s′∈S

ps,s′(Φ(s))V Φ(s′), (1.57)

where R (s,Φ∗(s)) is the mean value of the reward r(s,Φ(s)) , ps,s′ is the tran-

sition probability from state s to s′ and 0 ≤ γ ≤ is the discount factor. The

optimal policy Φ∗ gives the optimal discounted reward V ∗(s). Hence,

V ∗(s) = V Φ(s)∗ = max
∀a

(
R (s, a)) + γ

∑
s′∈S

ps,s′(a)V ∗(s′)

)
. (1.58)

A Q value is maintained to learn the expected discounted reward. For an

agent who takes action a when it is at state s and then follows the policy Φ, the

expected discounted utility (which is the Q value) is given by

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

Ps,s′V
Φ(s′). (1.59)
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Each agent keeps trying all action-state combinations with a non-zero prob-

ability. The Q-learning algorithm utilizes the obtained reward at each step to

update the Q values according to the following equation:

Qt ((s), (a)) = (1− α)Qt−1 ((s), (a)) + α

[
rt ((s), (a)) + γmax

b 6=a
Qt−1(v, b)

]
,

(1.60)

where α is the learning rate.

Simulation results show that this technique reach the convergence after few

iterations for the above mentioned system model. However, the evolutionary

game based learning algorithm in Section 1.5.4 shows faster convergence than

the Q-learning based algorithm. The faster convergence is achieved at the expense

of more information exchange among base stations.

1.6.3 Regret-matching Learning

Regret-matching [80] is a learning technique which can converge to a Corre-

lated Equilibrium (CE) in finite games. The notion of CE is based on having

a correlating mechanism for the players. This correlating mechanism provides a

probability distribution over the set of actions of each player which provides an

assignment recommendation for each action. Such assignment recommendation

is said to be in CE if none of the players would benefit by deviating from the

recommendation. For a more formal definition of CE, we first define the game

G = {N , (Si)i∈N , (Pi)i∈N } where N is the set of players, Si is the action set of

ith player and Pi gives the set of payoffs that can be obtained by the ith player.

S = Πi∈N (Si) is the set of N -tuples of the strategies. Let s denote any element

in S, si denotes an element of Si and πi ∈ P is the payoff of the player i.

definition 1.9 Correlated Equilibrium: A probability distribution Ψ over S
gives a correlated equilibrium for the game G, if ∀i ∈ N , ∀k ∈ Si and ∀s−i ∈ S−i,∑

s−i∈S−i

Ψ(s)
(
πi(k, s−i)− πi(s, s−i)

)
≤ 0, (1.61)

where S−i is the set of actions played by the opponents of player i. Every Nash

equilibrium is also a correlated equilibrium which corresponds to the case where

the recommendations are not correlated at all.

In regret matching algorithm, a player would take decisions in order to minimize

the regret. The regret of a player playing action s′ is defined as the difference

between the average payoff that the player would have achieved if she played the

action s′ all the time and the average current payoff. Regret of player i playing

action s at nth step is defined as follows.

r
(s′)
i (n) =

1

n− 1

n−1∑
t=1

(πi (s′, s−i(t))− πi (s(t), s−i(t))) , (1.62)

where s(t) denotes the action played by the corresponding player (k in the above
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equation) at time step t. The steps of the regret matching algorithm are given

in Algorithm 1.6.3.

Algorithm 3 Regret Matching Algorithm

1: For t = 1, 2, 3, · · ·
2: Calculate the regret for each user using equation (1.62).

3: Obtain the regret vector for each player, i.e., Ri(n) =(
∀s ∈ S : r

(s)
i (n)

)
.

4: Obtain the probability distribution Ψi(n) by normalizing Ri(n).

5: The action played at time step n is chosen according to the probability

distribution Ψi(n).

It is also known that regret-matching learning can converge towards pure strat-

egy NE points of exact potential games [81]. However, regret-based learning al-

gorithm assumes that each player can calculate the expected payoff that it would

have achieved by playing any action other than the current action. Therefore, a

considerable amount of information exchange might be needed for this algorithm

to be implemented.

In the context of self-organizing small cells, the aforementioned regret-based

learning algorithm can be modified to implement a fully decentralized algorithm

which only based on the SINR feedback of the users to the base station [38].

This modified algorithm converges to an ε-coarse correlated equilibrium.

1.6.4 Learning by Cooperation

The performance of learning mechanisms can be significantly improved by en-

abling cooperation among the learners [82, 83]. Small cell base stations who

cooperate with neighboring base stations in order to speed up and improve their

learning process are called docitive base stations. Cooperation is generally done

via the backhaul. Network nodes are expected to select other nodes which operate

under similar conditions to learn from. The similarity between two base stations

are captured by a gradient which is defined based on the network architecture.

Several different cases of docition can be identified based on the degree of

docition [84, 6].

• Startup docition: When a small cell base station connects to the network

for the first time, it can learn the policies from other SBSs with similar

gradients by exchanging Q tables.

• IQ-driven docition: SBSs with similar gradients share their policies periodi-

cally.

• Performance-driven docition: Base stations share their policies with less expert

nodes, based on their ability to meet a pre-defined QoS targets.

In addition to the above discussed techniques, there are a number of other
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learning techniques that are potentially applicable for self-organizing small cell

networks. For instance, logit learning algorithm and its variants (i.e., max-logit

algorithm and binary logit algorithm) converge to NE in potential games [85].

Learning automata [86] which is a branch of adaptive control theory is also an-

other potential technique to implement distributed learning in self-organizing

small cell networks. Stochastic learning automata-based channel selection al-

gorithm has been proposed for opportunistic spectrum access in cognitive radio

networks in [87]. This stochastic learning automata-based algorithm can converge

to a pure strategy NE point for any exact potential game. Since development of

distributed learning techniques for small cell networks has attracted a significant

attention from the research community recently, new learning techniques are still

being emerged.

1.7 Conclusion

In this chapter, we have discussed game theory approaches and learning tech-

niques for self-organization in small cell networks. First we have given an overview

of self-organizing networks including the motivations of enabling self-organizing

functionalities in densely deployed small cells. Then a brief introduction to game

theory has been given and the motivations of using game theory in self-organizing

small cell networks have been discussed. Also, some widely used game models

have been explained. Then a few examples have been given to explain how game

theory can be used to solve the problem of self-organization in small cell net-

works. This chapter has also discussed learning techniques that can be used in

small cell networks.

Some of the future research issues in designing self-organizing small cell net-

works are outlined below.

1. Incomplete information games: In order to address the issue of incomplete

information, most of the existing algorithms use RL based techniques as we

discussed in this chapter. However, models to address partial information can

also be developed using Bayesian games. By using the Bayesian theorem, a

belief on the parameters of other players can be constructed. The solution

concept obtained in such games is the Bayesian Nash equilibrium.

2. Multi radio access technology (Multi-RAT): In future networks, different radio

access technologies (e.g., Wi-Fi, small cells) are expected to be integrated in

order to provide seamless service to the user. Access control between different

technologies should be done in a self-organizing way to achieve the optimal

performance.

3. Signaling overhead-optimal performance trade-off: There is always a trade-

off between the signaling overhead and optimal performance of a network.

A network may deliver optimal performance with complete information but

the signaling cost for implementing such algorithms would be higher. On
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the other hand, the algorithms that rely on less information or incomplete

information may deliver slightly degraded performance. Addressing this issue

and quantifying the trade-off is significant in order to achieve near-optimal or

optimal performance in self-organizing networks.

4. Context-awareness: Context awareness which is a powerful feature in many

intelligent systems is recently proposed to be applied for enhancing self-

organizing features in small cell networks. The idea is to utilize the con-

text information, i.e., information from the users’ environment, behavior, and

social media, to enhance the provision of services and applications. The al-

gorithms should be devised considering the efficient exploitation of context

aware information taken from different sources. The reliability of the different

information sources would also be an important issue.
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