
HAL Id: hal-01121943
https://inria.hal.science/hal-01121943

Submitted on 2 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Performance RMA-Based Broadcast on the Intel
SCC

Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper

To cite this version:
Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper. High-Performance RMA-Based
Broadcast on the Intel SCC. 24th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA2012), 2012, Pittsburgh, United States. �10.1145/2312005.2312029�. �hal-01121943�

https://inria.hal.science/hal-01121943
https://hal.archives-ouvertes.fr

High-Performance RMA-Based Broadcast on the Intel SCC

[Extended Abstract]
∗

Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
firstname.lastname@epfl.ch

ABSTRACT
Many-core chips with more than 1000 cores are expected by
the end of the decade. To overcome scalability issues related
to cache coherence at such a scale, one of the main research
directions is to leverage the message-passing programming
model. The Intel Single-Chip Cloud Computer (SCC) is a
prototype of a message-passing many-core chip. It offers
the ability to move data between on-chip Message Passing
Buffers (MPB) using Remote Memory Access (RMA). Per-
formance of message-passing applications is directly affected
by efficiency of collective operations, such as broadcast. In
this paper, we study how to make use of the MPBs to im-
plement an efficient broadcast algorithm for the SCC. We
propose OC-Bcast (On-Chip Broadcast), a pipelined k-ary
tree algorithm tailored to exploit the parallelism provided
by on-chip RMA. Using a LogP-based model, we present
an analytical evaluation that compares our algorithm to the
state-of-the-art broadcast algorithms implemented for the
SCC. As predicted by the model, experimental results show
that OC-Bcast attains almost three times better through-
put, and improves latency by at least 27%. Furthermore,
the analytical evaluation highlights the benefits of our ap-
proach: OC-Bcast takes direct advantage of RMA, unlike
the other considered broadcast algorithms, which are based
on a higher-level send/receive interface. This leads us to
the conclusion that RMA-based collective operations are
needed to take full advantage of hardware features of future
message-passing many-core architectures.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming

Keywords
Broadcast, Message Passing, Many-Core Chips, RMA, HPC

∗A full version of this paper is available at
http://infoscience.epfl.ch/record/176499

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Studies on future Exascale High-Performance Computing

(HPC) systems point out energy efficiency as the main con-
cern [16]. An Exascale system should have the same power
consumption as the existing Petascale systems while pro-
viding thousand times more computational power. A direct
consequence of this observation is that the number of flops
per watt provided by a single chip should dramatically in-
crease compared to the current situation [27]. The solution is
to increase the level of parallelism on a single chip by moving
from multi-core to many-core chips [5]. A many-core chip
integrates a large number of cores connected using a pow-
erful Network-on-Chip (NoC). Soon, chips with hundreds if
not thousands of cores will be available.

Taking the usual shared memory approach for many-core
chips raises scalability issues related to the overhead of hard-
ware cache coherence [20]. To avoid relying on hardware
cache coherence, two main alternatives are proposed: (i)
sticking to the shared memory paradigm, but managing data
coherence in software [27], or (ii) adopting message passing
as the new communication paradigm [20]. Indeed, a large
set of cores connected through a highly efficient NoC can be
viewed as a parallel message-passing system.

The Intel Single-Chip Cloud Computer (SCC) is an ex-
ample of a message-passing many-core chip [14]. The SCC
integrates 24 2-core tiles on a single chip connected by a 2D-
mesh NoC. It is provided with on-chip low-latency memory
buffers, called Message Passing Buffers (MPB), physically
distributed across the tiles. Remote Memory Access (RMA)
to these MPBs allows fast inter-core communication.

The natural choice to program a high-performance
message-passing system is to use Single Program Multiple
Data (SPMD) algorithms. The Message Passing Interface
(MPI) [21] is the de facto standard for programming SPMD
HPC applications. MPI defines a set of primitives for point-
to-point communication, and also defines a set of collective
operations, i.e., operations involving a group of processes.
Several works study implementation of point-to-point com-
munications on the Intel SCC [30, 23, 22], but only little
attention has been paid to implementation of collective op-
erations. This paper studies implementation of collective op-
erations for the Intel SCC. It focuses on the broadcast prim-
itive (one-to-all), with the aim of understanding how to ef-
ficiently leverage on-chip RMA-based communication. Note
that the need for efficient collective operations for many-core
systems, especially the need for efficient broadcast, goes far
beyond the scope of MPI applications, and is of general in-
terest in these systems [27].

1.1 Related work
A message-passing many-core chip, such as the SCC, is

very similar to many existing HPC systems since it gath-
ers a large number of processing units connected through a
high-performance RMA-based network. Broadcast has been
extensively studied in these systems. Algorithms based on a
k-ary tree have been proposed [4]. In MPI libraries, binomial
trees and scatter-allgather [24] algorithms are mainly consid-
ered [11, 26]. A binomial tree is usually selected to provide
better latency for small messages, while the scatter-allgather
algorithm is used to optimize throughput for large messages.
These solutions are implemented on top of send/receive point-
to-point functions and do not take topology issues into ac-
count. This is not an issue for small to medium scale sys-
tems like the SCC. However, it has been shown that for
mesh or torus topologies, these solutions are not optimal
at large scale: non-overlapping spanning trees can provide
better performance [1].

As already mentioned, MPI libraries usually implement
collective operations on top of classical two-sided send/re-
ceive communication1. To take advantage of the RMA ca-
pabilities of high-performance network interconnects such as
InfiniBand [2], one-sided put and get operations, have been
introduced [21]. In one-sided communication, only one party
(sender or receiver) is involved in the data transfer and speci-
fies the source and destination buffers. One-sided operations
increase the design space for communication algorithms, and
can provide better performance by overlapping communica-
tion and computation. On the SCC, RMA operations on
the MPBs allow the implementation of efficient one-sided
communication [19].

Two-sided communication can be implemented on top of
one-sided communication [18]. This way, collective opera-
tions based on two-sided communication can benefit from
efficient one-sided communication. Currently available SCC
communication libraries adopt this solution. The RCCE
library [19] provides efficient one-sided put/get operations
and uses them to implement two-sided send/receive com-
munication. The RCCE comm library implements collec-
tive operations on top of two-sided communication [7]: the
RCCE comm broadcast algorithm is based on a binomial
tree or on scatter-allgather depending on the message size.
The same algorithms are used in the RCKMPI library [28].

Most high-performance networks provide Remote Direct
Memory Access (RDMA) [1, 2], i.e., the RMA operations
are offloaded to the network devices. Some works try to
directly take advantage of these RDMA capabilities to im-
prove collective operations [12, 13, 17, 25]. However, it is
hard to reuse the results presented in these works in the
context of the SCC for two main reasons: (i) they leverage
hardware specific features not available on the SCC, i.e.,
hardware multicast [13, 17], and (ii) they make use of large
RDMA buffers [12, 25], whereas the on-chip MPBs have a
very limited size (8 KB per core). Note also that accesses to
the MPBs are not RDMA operations since message copying
is performed by the core issuing the operation.

1.2 Contributions
We are investigating the implementation of an efficient

broadcast algorithm for a message-passing many-core chip,

1In a classical two-sided communication, a matching opera-
tion is required by both parties: send by the sender, receive
by the receiver.

such as the Intel SCC. The broadcast operation allows one
process to send a message to all processes in the application.
As specified by MPI, the collective operation is executed by
having all processes in the application call the communica-
tion function with matching arguments: the sender calls the
broadcast function with the message to broadcast, while the
receiver processes call it to specify the reception buffer.

To take advantage of on-chip RMA, we propose OC-Bcast
(On-Chip Broadcast), a pipelined k-ary tree algorithm based
on one-sided communication: k processes get the message in
parallel from their parent to obtain a high degree of paral-
lelism. The degree of the tree is chosen to avoid contention
on the MPBs. To provide efficient synchronization between
a process and its children in the tree, we introduce an addi-
tional binary notification tree. Double buffering is used to
further improve the throughput.

We evaluate OC-Bcast analytically using a LogP-based
performance model [9]. The evaluation shows that our al-
gorithm based on one-sided communication outperforms ex-
isting broadcast algorithms based on two-sided communica-
tion. The main reason is that OC-Bcast reduces the amount
of data moved between the off-chip memory and the MPBs
on the critical path.

Finally, we confirm the analytical results through experi-
ments. The comparison of OC-Bcast with the RCCE comm
binomial tree and scatter-allgather algorithms based on two-
sided communication shows that: (i) our algorithm has at
least 27% lower latency than the binomial tree algorithm;
(ii) it has almost 3 times higher peak throughput than the
scatter-allgather algorithm. These results clearly show that
collective operations for message-passing many-core chips
should be based on one-sided communication in order to
fully exploit the hardware resources.

The paper is structured as follows. In Section 2 we de-
scribe the architecture and the communication features of
the Intel SCC. Section 3 presents our inter-core communica-
tion model. Section 4 is devoted to our RMA-based broad-
cast algorithm. Analytical and experimental evaluations are
presented in Sections 5 and 6 respectively. Finally, Section 7
concludes the paper.

2. THE INTEL SCC
The SCC is a general-purpose many-core prototype de-

veloped by Intel Labs. In this section we describe the SCC
architecture and inter-core communication.

2.1 Architecture
The cores and the NoC of the SCC are depicted in Fig-

ure 1. There are 48 Pentium P54C cores, grouped into 24
tiles (2 cores per tile) and connected through a 2D mesh
NoC. Tiles are numbered from (0,0) to (5,3). Each tile
is connected to a router. The NoC uses high-throughput,
low-latency links and deterministic virtual cut-through X-Y
routing [15]. Memory components are divided into (i) mes-
sage passing buffers (MPB), (ii) L1 and L2 caches, as well as
(iii) off-chip private memories. Each tile has a small (16KB)
on-chip MPB equally divided between the two cores. The
MPBs allow on-chip inter-core communication using RMA:
each core is able to read and write in the MPB of all other
cores. There is no hardware cache coherence for the L1 and
L2 caches. By default, each core has access to a private off-
chip memory through one of the four memory controllers,
denoted by MC in Figure 1. The off-chip memory is phys-

Tile
Core
+ L1

Core
+ L1

L2

L2

Mesh
inter
face

MPB

R

MC

MC MC

MC

Private
off-chip
mem.

L2 L1

C
P

U
 0

 t&

s

Shared off-chip memory

Shared on-chip MPB

Private
off-chip
Mem.

L2 L1

C
P

U
 4

7

 t&
s...

(b)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

Figure 1: SCC Architecture

ically shared, so it is possible to provide portions of shared
memory by changing the default configuration.

2.2 Inter-core communication
To leverage on-chip RMA, cores can transfer data using

the one-sided put and get primitives provided by the RCCE
library [29]. Using put, a core (a) reads a certain amount of
data from its own MPB or its private off-chip memory and
(b) writes it to some MPB. Using get, a core (a) reads a cer-
tain amount of data from some MPB and (b) writes it to its
own MPB or its private off-chip memory. The unit of data
transmission is the cache line, equal to 32 bytes. If the data
is larger than one cache line, it is sequentially transferred
in cache-line-sized packets. During a remote read/write op-
eration, each packet traverses all routers on the way from
the source to the destination. The local MPB is accessed
directly or through the local router2.

3. MODELING PUT AND GET PRIMITIVES
In this section we propose a model for RMA put and get

primitives. Our model is based on the LogP model [9] and
the Intel SCC specifications [14]. We experimentally validate
our model and assess its domain of validity.

3.1 The model
The LogP model [9] characterizes a message passing par-

allel system using the number of processors (P), the time
interval or gap between consecutive message transmissions
(g), the maximum communication latency of a single-word-
sized message (L), and the overhead of sending or receiving
a message (o). This basic model assumes small messages.
To deal with messages of arbitrary size, it can be extended
to express L, o and g as a function of the message size [10].

We adapt the LogP model to the SCC communication
characteristics. The LogP model assumes that the latency
is the same between all processes. However, the SCC mesh
communication latency is a function of the number of routers
traversed on the path from the source to the destination. In
our model, the number of routers traversed by one packet
is defined by the parameter d. Communication on the SCC
mesh is done at the packet granularity. A packet can carry
one cache line (32 Bytes). We use the number of cache lines
(CL) as unit for message size. Note that the SCC cores,
network and memory controllers are not required to work at
the same frequency. For that reason, time is chosen as the
common unit for all model parameters.

For each operation, we model (i) the completion time, i.e.,
the time for the operation to return, and (ii) the latency, i.e.,

2Direct access to the local MPB is discouraged because of a
bug in the SCC hardware.

the time for the message to be available at the destination.
We start by modeling read/write on the MPBs and on the
off-chip private memory. Then we model put/get operations
based on read/write. The read operation, executed by some
core c, brings one cache line from an MPB, or from the off-
chip private memory of core c, to its internal registers3. The
write operation, executed by some core c, copies one cache
line from some internal registers of core c to an MPB, or the
off-chip private memory of core c. The formulas representing
our model are given in Figure 2.

3.1.1 MPB read/write
Any read or write operation of a single cache line includes

some core overhead ompb, as well as some mesh overhead
which depends on d (the distance between the core and the
MPB). We define Lhop as the time needed for one packet
to traverse one router; it is independent of the packet size.
Therefore, the latency of writing one cache line to an MPB
is given by Formula 1 in Figure 2. The write completes when
the acknowledgment from the MPB is received, which adds
d · Lhop (Formula 2).

To read one cache line from an MPB, a request has to be
sent to this MPB; the cache line is received as a response.
Therefore the latency and the completion time are equal
(Formula 3).

3.1.2 Off-chip read/write
By omem

r and omem
w , we represent the constant overhead

of reading and writing one cache line from/to the off-chip
memory. Note that in the LogP model, an overhead o is
supposed to represent the time during which the processor is
involved in the communication. We choose to include mem-
ory read and write overheads in omem

r and omem
w for the sake

of simplicity. The latency and the completion time of off-
chip memory read/write correpond to Formulas 4-6, where
d represents the distance between the core that executes the
read/write operation and the memory controller.

3.1.3 Operation put

To model put (and later get) from MPB to MPB, we in-

troduce ompb
put (respt. ompb

get) to define the core overhead of the
put (respt. get) function apart from the time spent moving
data. The corresponding omem

put and omem
get are used for op-

erations involving private off-chip memory. A put operation
executed by core c reads data from some source and writes
it to some destination: the source is either c’s local MPB
(Formula 7) or private off-chip memory (Formula 8), and
the destination is an MPB. We denote by dsrc the distance
between the data and core c executing the operation, and
by ddst the distance between c and the MPB to which the
data is written. If c moves data from its local MPB then
dsrc = 1. Otherwise, dsrc is the distance between c and the
memory controller. Note also that the P54C cores can only
execute one memory transaction at a time: moving a mes-
sage of m cache lines takes m times the time needed to move

3The read operation, as defined here, should not be inter-
preted as a single instruction. Indeed, it is implemented as a
sequence of instructions, which read an aligned cached line
word by word. The first instruction causes a cache miss,
and the corresponding cache line is moved to the L1 cache
of the calling core. The subsequent instructions hit the L1
cache. Analogous holds for write operations, except that L1
prefetching is implemented in software.

Lmpb
w (d) = ompb + d · Lhop (1)

Cmpb
w (d) = ompb + 2d · Lhop (2)

Lmpb
r (d) = Cmpb

r (d) = ompb + 2d · Lhop (3)

Lmem
w (d) = omem

w + d · Lhop (4)

Cmem
w (d) = omem

w + 2d · Lhop (5)

Lmem
r (d) = Cmem

r (d) = omem
r + 2d · Lhop (6)

Cmpb
put (m, ddst) = ompb

put +m · Cmpb
r (1) +m · Cmpb

w (ddst) (7)

Cmem
put (m, dsrc, ddst) = omem

put +m · Cmem
r (dsrc) +m · Cmpb

w (ddst) (8)

Lmpb
put (m, ddst) = ompb

put +m · Cmpb
r (1) + (m− 1) · Cmpb

w (ddst) + Lmpb
w (ddst) (9)

Lmem
put (m, dsrc, ddst) = omem

put +m · Cmem
r (dsrc) + (m− 1) · Cmpb

w (ddst) + Lmpb
w (ddst) (10)

Lmpb
get (m, dsrc) = Cmpb

get (m, dsrc) = ompb
get +m · Cmpb

r (dsrc) +m · Cmpb
w (1) (11)

Lmem
get (m, dsrc, ddst) = Cmem

get (m, dsrc, ddst) = omem
get +m · Cmpb

r (dsrc) +m · Cmem
w (ddst) (12)

Figure 2: Communication Model

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9

M
ic

ro
se

co
n
d
s

Distance in Hops

MPB to MPB Get Completion Time

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9

M
ic

ro
se

co
n
d
s

Distance in Hops

MPB to MPB Put Completion Time

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4

M
ic

ro
se

co
n
d
s

Distance in Hops

MPB to Memory Get Completion Time

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4

M
ic

ro
se

co
n
d
s

Distance in Hops

Memory to MPB Put Completion Time

Exp: 1 CL
Exp: 4 CL
Exp: 8 CL

Exp: 16 CL
Model: 1 CL
Model: 4 CL
Model: 8 CL

Model: 16 CL

Figure 3: get and put performance (CL = Cache Line)

one cache line4. The latency is a bit lower, since it does not
include the acknowledgment of the last cache line written to
the remote MPB (Formulas 9 and 10).

3.1.4 Operation get

A get operation executed by core c reads data from some
source and writes it to some destination: the source is an
MPB, and destination is c’s local MPB (Formula 11) or pri-
vate off-chip memory (Formula 12). We denote by dsrc the
distance between the data and core c executing the opera-
tion, and by ddst the distance between c and the MPB to
which the data is written. If c moves data to its local MPB,
then ddst = 1. Otherwise, ddst is the distance between c
and the memory controller. In the case of a get operation,
latency and completion time are equal.

3.2 Model validation
We perform a set of experiments to determine the value

of the parameters we introduced and to validate our model.
Experimental settings are detailed in Section 6. Figure 3
presents with dots the completion time of put and get oper-
ations from MPB to MPB or to private memory as a function
of the distance for different message sizes. The parameter
values obtained are presented in Table 1. The performance
obtained from the model is represented by lines in Figure 3.
It shows that our model precisely estimates the communica-
tion performance. Note that, for a given message size, the
performance difference between the 1-hop distance (which
means accessing the MPB of the other core on the same tile)

4For this reason, we do not need to use the parameter g of
the LogP model.

and the 9-hop distance (maximum distance) is only 30%.

3.3 Contention issues
The proposed model assumes a contention-free execution.

Bearing that in mind, we study contention on the SCC, to
assess the validity domain of the model. We identify two
possible sources of contention related to RMA communica-
tion: the NoC mesh and the MPBs. Generally speaking,
concurrent accesses to the off-chip private memory could
be another source of contention. However, in the config-
uration without shared memory, assumed throughout this
paper, each core has one memory rank for itself and there
is no measurable performance degradation even when the
48 cores are accessing their private portion of the off-chip
memory at the same time [30].

To understand if the mesh could be subject to contention,
we have run an experiment that highly loads one link. We
selected the link between tile (2, 2) and tile (3, 2). To put
a maximum stress on this link, all cores except the ones
located on these two tiles are repeatedly getting 128 cache
lines from one core in the third row of the mesh, but on the
opposite side of the mesh compared to their own location.
For instance, a core located on tile (5, 1) gets data from tile
(0, 2). Because of X-Y routing, all data packets go through
the link between tile (2, 2) and tile (3, 2). The measurement
of a MPB-to-MPB get latency between tile (2, 2) and tile
(3, 2) with the heavily loaded link did not show any per-
formance drop, compared to the load-free get performance.
This shows that, at the current scale, the network cannot
be a source of contention.

Contention could also arise from multiple cores concur-
rently accessing the same MPB. To evaluate this, we have

parameter Lhop ompb omem
w omem

r ompb
put ompb

get omem
put omem

get

value 0.005 µs 0.126 µs 0.461 µs 0.208 µs 0.069 µs 0.33 µs 0.19 µs 0.095 µs

Table 1: Parameters of our model

 0

 20

 40

 60

 80

 100

 1 2 4 6 8 12 16 24 32 40 48

M
ic

ro
se

co
n
d
s

Number of concurent accesses

Average Time
Single Core Latency

(a) Concurrent MPB get comple-
tion time (128 cache lines)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 4 6 8 12 16 24 32 40 48
M

ic
ro

se
co

n
d
s

Number of concurent accesses

Average Time
Single Core Latency

(b) Concurrent MPB put comple-
tion time (1 cache line)

Figure 4: MPB contention evaluation

run a test where cores are getting data from the MPB of core
0 (on tile (0, 0)), and another test where cores are putting
data into the MPB of core 0. For these tests, we select two
representative scenarios of the access patterns in our broad-
cast algorithm presented in Section 4: parallel gets of 128
cache lines and parallel puts of 1 cache line. Note that hav-
ing parallel puts of a large number of cache lines is not a
realistic scenario since it would result in several cores writ-
ing to the same location. Figure 4a shows the impact on
latency when increasing the number of cores executing get
in parallel. Figure 4b shows the same results for parallel
put operations. The x axis represents the number of cores
executing get or put at the same time. The results are the
average values over millions of iterations. In addition to the
average latency, the performance of each core is displayed
to better highlight the impact of contention (small circles
in Figure 4). When all 48 cores are executing get or put in
parallel, contention can be clearly noticed. In this case, the
slowest core is more than two times slower than the fastest
one for get, and more than four times slower for a put op-
eration. Moreover we observed non-deterministic overhead
after the contention threshold, by running the same exper-
iment on other cores than core 0. It can be noticed that
contention does not equally affect all cores, which makes it
hard to model.

These experiments indicate that MPB contention has to
be taken into account in the design of algorithms for collec-
tive operations. They show that up to 24 cores accessing the
same MPB do not create any measurable contention. Next
we present a broadcast algorithm that takes advantage of
this property.

4. RMA-BASED BROADCAST
This section describes the main principles of OC-Bcast,

our algorithm for on-chip broadcast. The full description of
the algorithm, including the pseudocode, is provided in the
full version of the paper.

4.1 Principle of the broadcast algorithm
To simplify the presentation, we assume first that mes-

sages to be broadcast fit in the MPB. This assumption is
later removed. The core idea of the algorithm is to take ad-
vantage of the parallelism that can be provided by the RMA

operations. When a core c wants to send message msg to a
set of cores cSet, it puts msg in its local MPB, so that all
the cores in cSet can get the data from there. If all gets are
issued in parallel, this can dramatically reduce the latency
of the operation compared to a solution where, for instance,
the sender c would put msg sequentially in the MPB of each
core in cSet. However, having all cores in cSet executing
get in parallel may lead to contention, as observed in Sec-
tion 3.3. To avoid contention, we limit the number of parallel
get operations to some number k, and base our broadcast
algorithm on a k-ary tree; the core broadcasting a message
is the root of this tree. In the tree, each core is in charge of
providing the data to its k children: the k children get the
data in parallel from the MPB of their parent.

Note that the k children need to be notified that a mes-
sage is available in their parent’s MPB. This is done using
a flag in the MPB of each of the k children. The flag, called
notifyFlag, is set by the parent using put once the message is
available in the parent’s MPB. Setting a flag involves writing
a very small amount of data to remote MPBs, but neverthe-
less sequential notification could impair performance espe-
cially if k is large. Thus, instead of having a parent setting
the flag of its k children sequentially, we introduce a binary
tree for notification to increase the parallelism. This choice
is not arbitrary: It can be shown analytically that a binary
tree provides the lowest notification latency, when compared
to trees of higher output degrees. Figure 5 illustrates the k-
ary tree used for message propagation, and the binary trees
used for notification. C0 is the root of the message prop-
agation tree; the subtree with root C1 is shown. Node C0

notifies its children using the binary notification tree shown
at the right of Figure 5. Node C1 notifies its children using
the binary notification tree, as depicted at the bottom of
Figure 5.

Apart from the notifyFlag used to inform the children
about message availability in their parent’s MPB, another
flag is needed to notify the parent that the children have got
the message (in order to free the MPB). For this we use k
flags in the parent MPB, called doneF lag, each set by one
of the k children.

To summarize, considering the general case of an interme-
diate core, i.e., the core that is neither the root nor a leaf, a
core is performing the following steps. Once it has been no-
tified that a new chunk is available in the MPB of its parent
Cs: (i) it notifies its children, if any, in the notification tree
of Cs; (ii) it gets the chunk in its own MPB; (iii) it sets its
doneF lag in the MPB of Cs; (iv) it notifies its children in
its own notification tree, if any; (v) it gets the chunk from
its MPB to its off-chip private memory.

Finding an efficient k-ary tree taking into account the
topology of the NoC is a complex problem [4] and it is or-
thogonal to the design of OC-Bcast. It is outside the scope
of this paper since our goal is to show the advantage of us-
ing RMA to implement broadcast. In the rest of this paper,
we assume that the tree is built using a simple algorithm
based on the core ids: Assuming that s is the id of the root

C0

C1 C2 C3 C4 C5 C6 C7

C8 C9 C10 C11

C0

C1 C2

C7

C3 C4 C5 C6

C1

C8 C9

C10 C11

Notification tree

Notification tree

Message propagation
tree

Figure 5: k-ary message propagation tree (k = 7)
and binary notification trees.

and P the total number of processes, the children of core i
are the cores with ids ranging from (s + ik + 1)modP to
(s + (i + 1)k)modP . Figure 5 shows the tree obtained for
s = 0, P = 12 and k = 7.

4.2 Handling large messages
Broadcasting a message larger than an MPB can easily

be handled by decomposing the large message in chunks
of MPB size, and broadcasting these chunks one after the
other. This can be done using pipelining along the propa-
gation tree, from the root to the leaves.

We can further improve the efficiency of the algorithm
(throughput and latency) by using a double-buffering tech-
nique, similar to the one used for point-to-point communi-
cation in the iRCCE library [8]. Up to now, we have con-
sidered messages split into chunks of MPB size,5 which al-
lows an MPB buffer to store only one message chunk. With
double-buffering, messages are split into chunks of half the
MPB size, which allows an MPB buffer to store two mes-
sage chunks. The benefit of double-buffering is easy to un-
derstand. Consider message msg split into chunks ck1 to
ckn being copied from the MPB buffer of core c to the MPB
buffer of core c′. Without double buffering, core c copies
cki to its MPB in a step r; core c′ gets cki in step r + 1;
core c copies to its MPB cki+1 in step r + 2; etc. If each of
these steps takes δ time units, the total time to transfer the
message is roughly 2nδ. With double buffering, the message
chunks are two times smaller and so, message msg is split
into chunks ck1 to ck2n. In a step r, core c can copy cki+1 to
the MPB while core c′ gets cki. If each of these steps takes
δ/2 time units, the total time is roughly only nδ.

5. ANALYTICAL EVALUATION
We analytically compare OC-Bcast with two state-of-the-

art algorithms based on two-sided communication: binomial
tree and scatter-allgather. We consider their implementa-
tions from the RCCE comm library [7]. RCKMPI [28] uses
the same algorithms, but still keeps their original MPICH2
implementation, not optimized for the SCC. Also, our ex-
periments have confirmed that RCCE comm currently per-
forms better than RCKMPI. Thus, we have chosen to con-
duct the analysis using RCCE comm, as the fastest available

5Of course, some MPB space needs to be allocated to the
flags.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 40 60 80 100 120 140 160 180

M
ic

ro
se

co
n
d
s

Message size (cache lines)

k=2
k=7

k=47
binomial

(a) Modeled broadcast latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30

M
ic

ro
se

co
n
d
s

Message size (cache lines)

k=2
k=7

k=47
binomial

(b) Modeled broadcast latency
(zoom-in)

Figure 6: Broadcast algorithms: analytical latency
comparison. Legend: k=x, OC-Bcast with the cor-
responding k; binomial, RCCE comm binomial.

implementation of collectives on the SCC, to the best of our
knowledge.

To highlight the most important properties, we divide the
analysis into two parts: latency of small messages (OC-Bcast
vs. binomial tree) and throughput for large messages (OC-
Bcast vs. scatter-allgather). The analysis is based on the
model introduced in Section 3. For a better understanding
of the presented results, first we give some necessary imple-
mentation details.

5.1 Implementation details
Both OC-Bcast and the RCCE comm library use flags al-

located in the MPBs to implement synchronization between
the cores. SCC guarantees read/write atomicity on 32B
cache lines. So, allocating one cache line per flag is enough to
ensure atomicity (no additional mechanism such as locks is
needed). In the modeling of the algorithms we assume that
no time elapses between setting the flag (by one core) and
checking that the flag is set (by the other core). OC-Bcast
requires k + 1 flags per core. The rest of the MPB can be
used for the message payload. For this, OC-Bcast uses two
buffers of Moc = 96 cache lines each. RCCE comm, which
is based on RCCE, uses a payload buffer of Mrcce = 251
cache lines. Since topology issues are not discussed in the
paper, we simply consider an average distance dmpb = 1 for
accessing remote MPBs, and an average distance dmem = 1
for accessing the off-chip memory.

5.2 Latency of short messages
We define the latency of the broadcast primitive as the

time elapsed between the call of the broadcast function by
the source, and the time at which the message is available
at all cores (including the source), i.e., when the last core
returns from the function. The analytically computed la-
tency for small messages on the SCC is shown in Figure 6.
For OC-Bcast, different values of k are given (k = 2, k = 7,
k = 47). Note that OC-Bcast with k = 7 provides the
best trade-off between latency and throughput according to
our analysis. Although the characteristics of the SCC allow
us to increase k up to 24 without experiencing measurable
contention (as discussed in Section 3), the same tree depth
is reached already with k = 7. As we can see, OC-Bcast
significantly outperforms the binomial tree algorithm. The
difference increases as the message size increases.

The improvement of OC-Bcast over the binomial tree al-
gorithm is a direct consequence of using RMA. To clarify

this, we now derive the formulas used to obtain the data in
Figure 6. For the sake of simplicity, we ignore notification
costs here and concentrate only on the critical path of data
movement in the algorithms. Figure 7 summarizes the sim-
plified formulas, whereas the complete formulas are given in
the full version of the paper.

5.2.1 Latency of OC-Bcast
For OC-Bcast, the critical path of data movement is ex-

pressed as follows. Consider a message of size m ≤ Moc to
be broadcast by some core c. Core c first puts the message
in its MPB, which takes Cmem

put (m) time to complete. Then,
depending on k, there might be multiple intermediate nodes
before the message reaches the leaves. For P cores and a
k-ary tree, there are O(logkP) levels of intermediate nodes.
At each intermediate level, the cores copy the message from
their parent’s MPB to their own MPB in parallel, which
takes Cmpb

get (m) time to complete. Note that after copying,
each node has to get the message to its private memory, but
this operation is not on the critical path. Finally, the leaves
copy the message, first to their MPB (Cmpb

get (m)) and then
to the off-chip private memory (Cmem

get (m)). Therefore, the
total latency is given by Formula 13 in Figure 7.

5.2.2 Latency of the two-sided binomial tree
The binomial tree broadcast algorithm is based on a bi-

nary recursive tree. The set of nodes is divided into two
subsets of bP

2
c and dP

2
e nodes. The root, belonging to one

of the subsets, sends the message to one node from the other
subset. Then, broadcast is recursively called on both sub-
sets. Obviously, the formed tree has O(log2P) levels and in
each of them the whole message is sent between the pairs
of nodes. A send/receive operation pair involves a put by
the sender and a get by the receiver, so the total latency of
the algorithm is O(log2P) · (Cmem

put (m) + Cmem
get (m)). How-

ever, note that after receiving the broadcast message, a node
keeps sending it to other nodes in every subsequent iteration.
Therefore, if the message is small, we can assume that it will
be available in the core’s L1 cache, which reduces the cost
of the put operation. We approximate reading from the L1
cache with zero cost. With this, we get Formula 14.

5.2.3 Latency comparison
Now we can directly compare the analytical expressions

for the two broadcast algorithms. In Formula 13, which
represents the latency of OC-Bcast, there are only two off-
chip memory operations (Cmem

r/w) on the critical path for one
chunk, regardless of the number of cores P . This is not the
case for the binomial algorithm, represented by Formula 14.
Moreover, as k increases, the number of MPB-to-MPB copy
operations reduces for OC-Bcast.

The gain of OC-Bcast increases further when increasing
the message size because of double buffering and pipelining.
It can be observed in Figure 6a that the slope changes for
messages larger than MOC−Bcast (96 cache lines). In Figure
6b, we can notice that OC-Bcast-47 is the slowest for very
small message in spite of having only two levels in the data
propagation tree (the root and its 47 children). The reason
is that a large value of k increases the cost of polling. For
k = 47, the root has 47 flags to poll before it can free its
MPB.

5.3 Throughput for large messages

Now we consider messages large enough to fill the prop-
agation tree pipeline used by OC-Bcast. For such mes-
sages, every core executes a loop, where one chunk is pro-
cessed in each iteration. We compare OC-Bcast with the
RCCE comm scatter-allgather algorithm.

Table 2 gives the throughput based on the analytical model.
The same values of k are considered for OC-Bcast as in the
latency analysis. Regardless of the choice of k, the through-
put is almost three times better than the one provided by
two-sided scatter-allgather. To understand this gain, we
again compute the critical path of the message payload. As
in the latency analysis, we derive simplified formulas (Fig-
ure 7), and provide complete formulas in the full version of
the paper. To simplify the modeling, we assume a message
of size P ·Moc. With OC-Bcast, such a message is trans-
ferred in P chunks of size Moc. Scatter-allgather transfers
the same message by dividing it into P slices of size Moc.

5.3.1 Throughput of OC-Bcast
To express the critical path of data movement of OC-

Bcast, we need to distinguish between the root and the other
nodes (intermediate nodes and leaves). The root repeatedly
moves new chunks from its private off-chip memory to its
MPB, which takes Cmem

put (Moc) for each chunk. The other
nodes repeat two operations: First, they copy a chunk from
the parent’s MPB to their own MPB, and then copy the
same chunk from the MPB to their private memory, which
gives the completion time of Cmpb

get (Moc)+Cmem
get (Moc). The

throughput is determined by the throughput of the slowest
node. For the parameter values valid on the SCC, the root is
always faster than the other nodes, so the throughput of OC-
Bcast (in cache lines per second) is expressed by Formula 15.
Note that the peak throughput is not a function of k. This
is because we assume that the message is large enough to
fill the whole pipeline.

5.3.2 Throughput of two-sided scatter-allgether
Scatter-allgather has two phases. During the scatter phase,

the message is divided into P equal slices of size Moc (recall
that the message size is fixed to P ·Moc). Each core then
receives one slice of the original message. The second phase
of the algorithm is allgather, during which a node should
obtain the remaining P − 1 slices of the message. To im-
plement allgather, the Bruck algorithm [6] is used: At each
step, core i sends to core i − 1 the slices it received in the
previous step.

Now we consider the completion time of the two phases of
the scatter-allgather algorithm. The scatter phase is done
using a binary recursive tree, similar to the one used by
the binomial algorithm. The difference is that in this case
we transfer only a part of the message in each step. In
the end, the root has to send out each of the P slices but
its own, so the critical path of this step consists of P − 1
send/receive operations, which gives the completion time of
(P − 1)(Cmem

put (Moc) + Cmem
get (Moc)). The allgather phase

consists of P − 1 exchange rounds. In each round, core i
sends one slice to core i− 1 and receives one slice from core
i+ 1. Thus, there are two send/receive operations between
pairs of processes in each round, so this phase takes 2(P −
1)(Cmem

put (Moc) + Cmem
get (Moc)) to complete. As with the

binomial tree, taking the existance of the caches into account
gives a more accurate model. Note, however, that this holds
only for the allgather phase. Finally, the completion times

Lcritical
OC−Bcast(P,m, k) = Cmem

put (m) +O(logkP) · Cmpb
get (m) + Cmem

get (m)

= m ·
(
O(logkP) ·

(
Cmpb

r + Cmpb
w

)
+ Cmem

r + Cmem
w

)
(13)

Lcritical
binomial(P,m) = O(log2P) · (m · Cmpb

w + Cmem
get (m))

= m ·
(
O(log2P) ·

(
Cmpb

r + Cmpb
w + Cmem

w

)
+ Cmem

r

)
(14)

BOC−Bcast =
Moc

Cmpb
get (Moc) + Cmem

get (Moc)
=

1

2Cmpb
r + Cmpb

w + Cmem
w

(15)

Bscatter allgather =
P ·Moc

P · (Cmem
put (Moc) + Cmem

get (Moc)) + (2P − 3)(Moc · Cmpb
w + Cmem

get (Moc))

≈
1

3Cmpb
r + 3Cmpb

w + Cmem
r + 3Cmem

w

(16)

Figure 7: Latency and Throughput Model for Broadcast Operations

of the two phases are added up. There is no pipelining in
this algorithm, so the throughput can be easily expressed
as a reciprocial value of the computed completion time on
the root. Formula 16 presents the modeled throughput of
the two-sided scatter-allgather algorithm (in cache lines per
second).

5.3.3 Throughput comparison
The additional terms in Formula 16 compared to For-

mula 15 explain the performance difference in Table 2, and
show the advantage of designing a broadcast protocol based
on one-sided operations: The number of write accesses to
the MPBs and to the off-chip memory (Cmpb

w and Cmem
w)

with OC-Bcast is three times lower than that of the scatter-
allgather algorithm based on two-sided communication. The
number of read accesses is also reduced.

5.4 Discussion
The presented analysis shows that our broadcast imple-

mentation based on one-sided operations brings considerable
performance benefits, in terms of both latency and through-
put. Note, however, that OC-Bcast is not the only possible
design of RMA-based broadcast. Our goal in this paper is
not to find the most efficient algorithm and prove its opti-
mality, but to highlight the potential for exploiting paral-
lelism using RMA-based approach. Indeed, a good exam-
ple of another possible broadcast implementation is adapt-
ing the two-sided scatter-allgather algorithm to use the one-
sided primitives available on the SCC.

Furthermore, some simple, yet effective optimizations can
be applied to OC-Bcast to make it even faster. For instance,
a leaf in a broadcast tree does not need to copy the data
to its MPB, but directly to the off-chip private memory.
Similarly, we could take advantage of the fact that there
are two cores accessing the same physical MPB, to have less
data copying. However, we have chosen not to include these
optimizations because they would result in having to deal
with many special cases, which would likely obfuscate the
main point of the presented work.

6. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of OC-Bcast

on Intel SCC and compare it with both the binomial and

the scatter-allgather broadcast of RCCE comm [7].

6.1 Setup
The experiments have been done using the default settings

for the SCC: 533 MHz tile frequency, 800 MHz mesh and
DRAM frequency and the standard LUT entries. We use the
sccKit version 1.4.1.3, running a custom version of sccLinux,
based on Linux 2.6.32.24-generic. As already mentioned in
the previous section, we fix the chunk size used by OC-Bcast
to 96 cache lines, which leaves enough space for flags (for any
choice of k). The presented experiments use core 0 as the
source. Selecting another core as the source gives similar
results. A message is broadcast from the private memory of
core 0 to the private memory of all other cores. The results
are the average values over 10’000 broadcasts, discarding
the first 1’000 results. For time measurement, we use global
counters accessible by all cores on the SCC, which means
that the timestamps obtained by different cores are directly
comparable. The latency is defined as in Section 5. To
avoid cache effects in repeated broadcasts, we preallocate a
large array and in every broadcast we operate on a different
(currently uncached) offset inside the array.

6.2 Evaluation results
We have tested the algorithms with message sizes ranging

from 1 cache line (32 bytes) to 32’768 cache lines (1 MiB). As
in Section 5, we first focus on the latency of short messages,
and then analyze the throughput of large messages. Regard-
ing the binomial tree and scatter-allgather algorithms, our
experiments have confirmed that the former performs bet-
ter with small messages, whereas the latter is a better fit for
large messages. Therefore, we compare OC-Bcast only with
the better one for a given message size.

6.2.1 Latency of small messages
Figure 8a shows the latency of messages of size m ≤

2MOC−Bcast. Comparing the results with Figure 6a shows
the accuracy of our analytical evaluation, and confirms the
performance increase. Even for messages of one cache line,
OC-Bcast with k = 7 provides 27% improvement compared
to the binomial tree (16.6µs vs. 21.6µs). As expected, the
difference grows with the message size, since a larger message
implies more off-chip memory accesses in the RCCE comm

Algorithm OC-Bcast, k=2 OC-Bcast, k=7 OC-Bcast, k=47 scatter-allgather
Throughput (MB/s) 35.22 34.30 35.88 13.38

Table 2: Broadcast algorithms: analytical comparison of throughput

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 40 60 80 100 120 140 160 180

M
ic

ro
se

co
n
d
s

Message size (cache lines)

k=2
k=7

k=47
binomial

(a) Broadcast latency

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000 10000

M
eg

ab
y
te

s
p
er

 s
ec

o
n
d

Message size (cache lines)

k=2
k=7

k=47
s-ag

(b) Broadcast throughput

Figure 8: Experimental comparison of broadcast al-
gorithms. Legend: k=x, OC-Bcast with the corre-
sponding value of k; binomial, RCCE comm bino-
mial; s-ag, RCCE comm scatter-allgather.

algorithms, but not in OC-Bcast. It can also be noticed that
large values of k help improving the latency in OC-Bcast by
reducing the depth of the tree. For message size between 96
and 192 cache lines, the latency of OC-Bcast with k = 7 is
around 25% better than with k = 2.

Another result worth mentioning is the relation between
the curves representing k = 7 and k = 47. Namely, we
can see that they almost completely overlap in Figure 8a,
whereas there is a more significant difference indicated by
the analytical evaluation (Figure 6a). This can be attributed
to MPB contention – recall that too many parallel accesses
to the same MPB can impair the performance, as pointed
out in Section 3.

6.2.2 Throughput for large messages
The results of the throughput evaluation are given in Fig-

ure 8b (note that the x-axis is logarithmic). The peak perfor-
mance is very close to the results presented in Table 2: OC-
Bcast gives an almost threefold throughput increase com-
pared to the two-sided scatter-allgather algorithm. The OC-
Bcast performance drop for a message of 97 cache lines is
due to the chunk size. Recall that the size of a chunk in
OC-Bcast is 96 cache lines. A message of 97 cache lines is
divided into a 96 cache lines chunk and 1 cache line chunk.
The second chunk is then limiting the throughput. For large
messages, this effect becomes negligible since there is always
at most one non-full chunk.

It can be noticed that the only significant difference with
respect to the analytical predictions is for OC-Bcast with
k = 47 (the throughput is about 16% lower than predicted).
Once again, MPB contention is one of the sources of the ob-
served performance degradation. This confirms that large
values of k might be inappropriate, especially at large scale,
since the linear gain in parallelism could be paid by an ex-
ponential loss related to contention.

6.3 Discussion
The expected performance based on the model is slightly

better than the results we obtain through the experiments.

The main reason is that in the analytical evaluation, we
assumed a distance of one hop for all put and get operations:
This is physically not possible on the SCC no matter what
tree generation strategy is used. However, note that the
measured values are still very close to the computed ones.

7. CONCLUSION
OC-Bcast is a pipelined k-ary tree broadcast algorithm

based on one-sided communication. It is designed to lever-
age the inherent parallelism of on-chip RMA in many-cores.
Experiments on the SCC show that it outperforms the state-
of-the-art broadcast algorithms on this platform. OC-Bcast
provides around 3 times better peak throughput and im-
proves latency by at least 27%. An analysis using a LogP-
based model shows that this performance gain is mainly due
to a limited number of off-chip data movements on the crit-
ical path of the operation: one-sided operations allow to
take full advantage of the on-chip MPBs. These results show
that hardware-specific features should be taken into account
to design efficient collective operations for message-passing
many-core chips, such as the Intel SCC.

The work presented in this paper considers the SPMD
programming model. Our ongoing work includes extend-
ing OC-Bcast to handle the MPMD programming model by
leveraging parallel inter-core interrupts. Many-core operat-
ing systems [3] are an interesting use-case for such a primi-
tive. We also plan to extend our approach to other collective
operations and integrate them in an MPI library, so we can
analyze the overall performance gain in parallel applications.

8. ACKNOWLEDGEMENTS
We would like to thank Martin Biely, Žarko Milošević

and Nuno Santos for their useful comments. Thanks also to
Ciprian Seiculescu for helping us understand the behaviour
of the SCC NoC. We are also thankful for the help provided
by the Intel MARC Community.

9. REFERENCES
[1] G. Almási, P. Heidelberger, C. J. Archer,

X. Martorell, C. C. Erway, J. E. Moreira,
B. Steinmacher-Burow, and Y. Zheng. Optimization of
MPI collective communication on BlueGene/L
systems. In Proceedings of the 19th annual
international conference on Supercomputing, ICS ’05,
pages 253–262, 2005.

[2] I. T. Association. InfiniBand Architecture
Specification: Release 1.0. InfiniBand Trade
Association, 2000.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architecture
for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, pages 29–44, 2009.

[4] O. Beaumont, L. Marchal, and Y. Robert. Broadcast
Trees for Heterogeneous Platforms. In Proceedings of
the 19th IEEE International Parallel and Distributed
Processing Symposium, IPDPS ’05, pages 80–92, 2005.

[5] S. Borkar. Thousand core chips: a technology
perspective. In Proceedings of the 44th annual Design
Automation Conference, DAC ’07, pages 746–749,
2007.

[6] J. Bruck, C.-T. Ho, E. Upfal, S. Kipnis, and
D. Weathersby. Efficient Algorithms for All-to-All
Communications in Multiport Message-Passing
Systems. IEEE Transactions on Parallel and
Distributed Systems, 8:1143–1156, November 1997.

[7] E. Chan. RCCE comm: A Collective Communication
Library for the Intel Single-chip Cloud Computer.
http://communities.intel.com/docs/DOC-5663, 2010.

[8] C. Clauss, S. Lankes, J. Galowicz, and T. Bemmerl.
iRCCE: a non-blocking communication extension to
the RCCE communication library for the Intel
Single-chip Cloud Computer. http://communities.
intel. com/docs/DOC-6003, 2011.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In Proceedings of the fourth ACM
SIGPLAN symposium on Principles and practice of
parallel programming, PPOPP ’93, pages 1–12, 1993.

[10] D. E. Culler, L. T. Liu, R. P. Martin, and C. O.
Yoshikawa. Assessing Fast Network Interfaces. In
IEEE Micro, pages 35–43, Feb. 1996.

[11] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104,
Budapest, Hungary, September 2004.

[12] R. Gupta, P. Balaji, D. K. Panda, and J. Nieplocha.
Efficient Collective Operations Using Remote Memory
Operations on VIA-Based Clusters. In Proceedings of
the 17th International Symposium on Parallel and
Distributed Processing, IPDPS ’03, pages 46–62, 2003.

[13] T. Hoefler, C. Siebert, and W. Rehm. A practically
constant-time MPI Broadcast Algorithm for
large-scale InfiniBand Clusters with Multicast. In
Proceedings of the 21st IEEE International Parallel &
Distributed Processing Symposium, IPDPS ’07, page
232, 2007.

[14] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, H. Wilson, N. Borkar,
G. Schrom, and et al. A 48-Core IA-32
message-passing processor with DVFS in 45nm
CMOS. In 2010 IEEE International SolidState
Circuits Conference, pages 108–109. IEEE, 2010.

[15] P. Kermani and L. Kleinrock. Virtual cut-through: A
new computer communication switching technique.
Computer Networks, 3(4):267–286, 1979.

[16] P. Kogge et al. Exascale Computing Study:
Technology Challenges in Achieving Exascale Systems.
Technical report, DARPA, 2008.

[17] J. Liu, A. R. Mamidala, and D. K. Panda. Fast and

Scalable MPI-Level Broadcast Using InfiniBand’s
Hardware Multicast Supportsch. In Proceedings of the
18th International Symposium on Parallel and
Distributed Processing, IPDPS ’04, page 10, 2004.

[18] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K.
Panda. High performance RDMA-based MPI
implementation over InfiniBand. In Proceedings of the
17th annual international conference on
Supercomputing, ICS ’03, pages 295–304, 2003.

[19] T. Mattson and R. Van Der Wijngaart. RCCE: a
Small Library for Many-Core Communication.
http://techresearch.intel.com, 2010.

[20] T. G. Mattson, R. Van der Wijngaart, and
M. Frumkin. Programming the Intel 80-core
network-on-a-chip terascale processor. In Proceedings
of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 38:1–38:11, 2008.

[21] MPI Forum. MPI2: Extensions to the
Message-Passing Interface. www.mpi-forum.org, 1997.

[22] T. Preud’homme, J. Sopena, G. Thomas, and
B. Folliot. BatchQueue: Fast and Memory-Thrifty
Core to Core Communication. In Proceedings of the
2010 22nd International Symposium on Computer
Architecture and High Performance Computing,
SBAC-PAD ’10, pages 215–222, 2010.

[23] R. Rotta. On efficient message passing on the intel
scc. In Proceedings of the 3rd MARC Symposium,
pages 53–58, 2011.

[24] M. Shroff and R. Van De Geijn. CollMark: MPI
collective communication benchmark. In International
Conference on Supercomputing 2000, page 10, 1999.

[25] S. Sur, U. K. R. Bondhugula, A. Mamidala, H. W.
Jin, and D. K. Panda. High performance RDMA
based all-to-all broadcast for infiniband clusters. In
Proceedings of the 12th international conference on
High Performance Computing, HiPC’05, pages
148–157, 2005.

[26] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of Collective Communication Operations
in MPICH. IJHPCA, 19(1):49–66, 2005.

[27] J. Torrellas. Architectures for Extreme-Scale
Computing. Computer, 42(11):28–35, Nov. 2009.

[28] I. A. C. Ureña, M. Riepen, and M. Konow. RCKMPI -
lightweight MPI implementation for intel’s single-chip
cloud computer (SCC). In Proceedings of the 18th
European MPI Users’ Group conference on Recent
advances in the message passing interface,
EuroMPI’11, pages 208–217, 2011.

[29] R. F. van der Wijngaart, T. G. Mattson, and
W. Haas. Light-weight communications on Intel’s
single-chip cloud computer processor. ACM SIGOPS
Operating Systems Review, 45(1):73–83, Feb. 2011.

[30] M. W. van Tol, R. Bakker, M. Verstraaten, C. Grelck,
and C. R. Jesshope. Efficient Memory Copy
Operations on the 48-core Intel SCC Processor. In
Proceedings of the 3rd MARC Symposium, pages
13–18, 2011.

