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Seasonal Fractional ARIMA model with BL-GARCH type innovations

Mor Ndongo ], Abdou Kâ Diongue ]1, Simplice Dossou-Gbété §

Abstract

In this paper, we introduce the class of seasonal ARFIMA models with bilinear GARCH (BL-GARCH)
type innovations that are capable of capturing simultaneously four key properties of non-linear time series:
long range dependence, seasonality, volatility clustering and leverage effects. Stationarity and invertibility
conditions are derived and conditional sum of squares (CSS) estimation of the model is also considered.
Under some assumptions, we show that the resulting estimators are consistent and asymptotically normally
distributed. Monte carlo simulation results are presented to evaluate the small-sample performance of the
CSS method for various models.

Keywords: Long memory; Seasonality; Volatility clustering; Leverage effects; CSS method; Monte Carlo
experiments.

1. Introduction

When dealing with empirical time series arising from diverse fields of applications, we are confronted with
the phenomenon of long memory or long range dependence. A popular way to analyze a long memory
time series is to use fractionally integrated autoregressive moving average (FARIMA) processes introduced
by Granger and Joyeux [14] and Hosking [16]. Furthermore, most of time series in real life may have a
persistent periodic behavior, in addition to long term structure. Unfortunately, the FARIMA model does
not allow to take into account a periodic or cyclical behavior. Thus, models dedicated to take seasonal or
cyclical components with long memory have been developed. Recent contributions related to the seasonal
FARIMA model are Porter-Hudak [19], Hassler [15], Arteche and Robinson [1] and Reisen et al.[22]. All
of the aforementioned works assume that the conditional variance of time series is a constant over time.
However, non-constant variance in non-linear time series is a challenging modelling exercise, considered
among many other things by Tong [26]. In particular, the stylized fact that the volatility of financial time
series is non-constant has been long recognized in the literature (see e.g. Bollerslev [4], Bollerslev, Engle
and Woodridge [5], and Weiss [27]). Thus, the methodology for modeling time series with long memory
behavior has been extended to long memory time series with a time-varying conditional variance. See for
instance, Ling and Li [17] who developed the ARFIMA model with GARCH type innovations, and recently
Reisen et al [21] examine the daily average PM10 concentrations using a seasonal ARFIMA model with
GARCH errors. Given that, these models cannot allow to capture asymmetries or non-linearities (Black
[3]), we introduce in this paper a new class of seasonal ARFIMA with BL-GARCH type innovations. This
approach allows to model simultaneously: long memory, seasonality, volatility clustering and leverage ef-
fects, often observed in financial or economics time series. The stationarity and invertibility of the proposed
model are analyzed and, the conditional sum of squares (CSS) estimation of the model parameters is con-
sidered, and we study its asymptotic properties. Also, the small-sample performance of the CSS approach
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is illustrated, using Monte Carlo simulations.

The article is organized as follows. In Section 2, the class of SARFIMA-BL-GARCH model is introduced
with some important properties concerning the positivity of the conditional variance, as well as, for station-
arity and invertibility. In Section 3, the conditional sum of squares estimation is presented, and we derive
its asymptotic properties. Finally, Section 4 calibrates the performance of the estimation procedure through
Monte Carlo simulations, while Section ?? provides concluding remarks.

2. Model and probabilistic properties

In this section, we introduce the model, we will work with, and we give conditions of existence and invert-
ibility.

2.1. Model

Let B be the back shift operator satisfying BYt = Yt−1 for any process (Yt)t∈Z, and s ∈ N∗ the seasonal period,
then the polynomial of non-seasonal orders p and q, seasonal orders P and Q are respectively defined by:

φ(B) = 1 − φ1B − φ2B2 − · · · − φpBp θ(B) = 1 + θ1B + θ2B2 + · · · + θqBq

Φ(Bs) = 1 − ΦsBs − Φ2sB2s − · · · − ΦPsBPs Θ(Bs) = 1 + ΘsBs + Θ2sB2s + · · · + ΘQsBQs.

It is assumed that these polynomials have no common zeros and satisfy the conditions Φ(zs)φ(z) , 0 and
Θ(zs)θ(z) , 0 for |z| = 1. Furthermore, in the above equations, (Φi)1≤i≤P, (φ j)1≤ j≤p, (Θk)1≤k≤Q and (θl)1≤l≤q

are unknown parameters.

A zero-mean process (Xt)t∈Z is said a seasonal ARFIMA model with bilinear GARCH type errors, denoted
hereafter as SARFIMA(p, d, q) × (P, D, Q)s-BL-GARCH(r, m), if the following equation is satisfied

φ(B)Φ(Bs)(1 − B)d(1 − Bs)DXt = θ(B)Θ(Bs)εt, (2.1)

where the long-memory parameters d and D are fractional parameters at the zero (or long-run) and seasonal
frequencies, respectively . The process (εt)t∈Z in equation (2.1) is a BL-GARCH(r, m) model defined by:

εt = htZt (2.2)

h2
t = a0 +

r∑
i=1

aiε
2
t−i +

m∑
j=1

b jh2
t− j +

r∗∑
k=1

ckεt−kht−k, (2.3)

where a0, ai, b j and ck are constant parameters, r, m and r∗ are non-negative integers with r∗ = min(r, m),
h2

t is the conditional variance of the process (εt)t∈Z given the σ-fields It−1 generated by the past information
{εt−1, εt−2, . . .}. In above, the process (Zt)t∈Z is a sequence of independent identically normally distributed
random variables with mean 0 and variance 1. This model has the advantage of being characterized by
a more flexible parametric structure. In this model, leverage effects are explained by the interactions be-
tween past observations and volatilities. More precisely, for ck < 0 a positive quantity is added to h2

t if
εt−k < 0 while the same quantity is subtracted if εt−k > 0. If ck = 0 for all k, the model in (2.1)-(2.3) is
the seasonal fractional ARIMA model with generalized autoregressive conditional heteroscedasticity dis-
turbances (SARFIMA(p, d, q) × (P, D, Q)s-GARCH(r, m)) introduced by Reisen et al [21]. In addition,
if D = P = Q = 0, we obtain the fractionally integrated process with GARCH erros (ARFIMA(p, d, q)-
GARCH(r, m)) proposed by Baillie et al [2] and Ling and Li [17].
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According to Giraitis and Leipus [13] or Reisen et al. [22], one can easily show that

(I − B)d(I − Bs)D =

[ s
2 ]∏

j=0

[
(1 − eiλ j B)(1 − e−iλ j B)

]d j

=

[ s
2 ]∏

j=0

(1 − 2 cos(λ j)B + B2)d j , (2.4)

with d0 = d+D
2 , d j = D, for j = 1, . . . , [ s

2 ] − 1, d[ s
2 ] = D

2 , and λ j =
2π j

s , for j = 0, . . . , [ s
2 ], where [x] is

the greatest integer small than or equal to x, and i is the complex number such that i2 = −1. Otherwise, by
means of the expansion we have:

[ s
2 ]∏

j=0

(1 − 2cosλ jB + B2)d j =

+∞∑
j=0

ψ j(d, ν)B j,

where the coefficients
(
ψ j(d, ν)

)
j≥0

are given by:

ψ j(d, ν) =
∑

0≤l0,··· ,l[ s
2 ]≤ j,

l0+···+l[ s
2 ]= j

Cl0 (d0, ν0) · · ·Cl[ s
2 ]

(
d[ s

2 ], ν[ s
2 ]

)
, (2.5)

and where d = (d0, . . . , d[ s
2 ]), ν = (ν0, . . . , ν[ s

2 ]) with ν j = cos(λ j), for j = 0, . . . , [ s
2 ]. The weights

(Cl (di, νi))l∈Z are the Gegenbauer polynomials and they can be computed using the following recursion
formula:

C0 (di, νi) = 1
C1 (di, νi) = 2diνi

C j (di, νi) = 2νi

(
di−1

j + 1
)
C j−1 (di, νi) −

(
2 di−1

j + 1
)
C j−2 (di, νi) , ∀ j > 1.

2.2. Probabilistic properties
We now specify some probabilistic properties of the model 2.1 - 2.3. First, we give the conditions for
which the conditional variance h2

t , defined in (2.3), is non-negative. It is important in practice for estima-
tion theory (using quasi-maximum likelihood methods) that a model as in (2.2) and (2.3) does not generate
negative conditional variance h2

t in sample, since the log quasi-likelihood involves a term in log(h2
t ), which

explodes to −∞ as h2
t approaches 0, and is ill-defined for h2

t ≤ 0. The second set of conditions concerns
the second-order stationary of the BL-GARCH process and the stationary for a seasonal fractional ARIMA
model. The BL-GARCH model with gaussian distributions was recently proposed by Storti and Vitale [24].
This study was extended by Diongue et al [9], considering elliptical distributions, and they give new prob-
abilistic results concerning the stationarity of the process and the moments.

For the positivity of the conditional variance, Storti and Vitale [24] show that, for a0 > 0 and si > 0
(i = 1, . . . ,max(r,m) − r∗), with si = ar∗+i if r > m, or si = ar∗+i if r < m, a sufficient conditions for h2

t > 0
is given by:

c2
i < 4aibi, for i = 1, . . . , r∗. (2.6)

They give also the condition of second-order stationary for the BL-GARCH model, restricting to the case
r = m. Here, we extend this result to the more general case in which r , m. The result is stated in the
following corollary.
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Corollary 2.1. The BL-GARCH(r, m) process, defined by equations (2.2) and (2.3), is stationary in wide-
sense if and only if all the roots Bi of the polynomial

Π (B) = 1 −
r∗∑

i=1

πiBi −

max(r,m)∑
i=r∗+1

αiBi, (2.7)

with B being the Backward operator, πi = ai + bi, for i = 1, . . . , r∗, lie outside the unit circle. Note that in
(2.7), we set αi = ai if r > m, αi = bi if r < m. In other words, the condition can be expressed as follows:

Π (B) = 0 for |Bi| > 1, i = 1, . . . ,max(r, m). (2.8)

Proof. The proof of Corollary 2.1 follows mainly the lines of the proof of Theorem 2 in Storti and Vitale
[24].

Concerning the seasonal fractional ARIMA model, Reisen et al.[22] (see also Giraitis and Leipus [13])
show that it is stationary and invertible if and only if the following conditions hold:

|D + d| <
1
2

and |D| <
1
2
. (2.9)

Therefore, using the model properties in Reisen et al.[22] and the conditions listed in Storti and Vitale [24],
the following theorem is established for the SARFIMA(p, d, q) × (P, D, Q)s−BL-GARCH(r, m) model.

Theorem 2.2. Let (Xt)t∈Z be generated by equations (2.1), (2.2) and (2.3). We assume that the conditions
(2.6) and (2.8) hold. We suppose that the polynomials Φ(zs)φ(z) and Θ(zs)θ(z) have no common zeros, and
the long memory parameters d and D satisfy condition (2.9). Then, the following statements hold:

a) if Φ(zs)φ(z) , 0, for |z| = 1, then (Xt)t∈Z is second-order stationary and has the following representa-
tion

Xt =

∞∑
j=0

ψ j(d, ν)
Θ(zs)θ(z)
Φ(zs)φ(z)

εt− j. (2.10)

Hence, (Xt) is strictly stationary and ergodic.

b) If Θ(zs)θ(z) , 0, for |z| ≤ 1, then (Xt) is invertible, and that is, (εt) can be written as

εt =

∞∑
j=0

π j(d, ν)
Φ(zs)φ(z)
Θ(zs)θ(z)

Xt− j, (2.11)

where the weights
(
π j(d, ν)

)
j≥0

are such that π j(d, ν) = ψ j(−d, ν), with the coefficients
(
ψ j(d, ν)

)
j≥0

given
by equation (2.5).

Proof. The proof of this theorem is given in the appendix.

Under stationarity and invertibility conditions, MA(∞) and AR(∞) representations are respectively:

Xt =

∞∑
j=0

c jεt− j and εt =

∞∑
j=0

c̃ jXt− j, (2.12)
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where the coefficients (c j) j≥0 and (c̃ j) j≥0 are determined respectively by:

Θ(zs)θ(z)
∞∑
j=0

ψ j(d, ν)z j = Φ(zs)φ(z)
∞∑
j=0

c jz j, |z| ≤ 1 (2.13)

and

Φ(zs)φ(z)
∞∑
j=0

π j(d, ν)z j = Θ(zs)θ(z)
∞∑
j=0

c̃ jz j, |z| ≤ 1. (2.14)

In the particular case where P = Q = 0, it is easy to verify that the coefficients (c j) j≥0 and (c̃ j) j≥0 can be
computed using the following recursion formula:

c0 = 1 and c j = ψ j (d, ν) +

min( j,p)∑
i=1

φic j−i −

min( j,q)∑
i=1

θiψ j−i (d, ν) , ∀ j ≥ 1 (2.15)

and

c̃0 = 1 and c̃ j = π j (d, ν) −
min( j,p)∑

i=1

φiπ j−i (d, ν) +

min( j,q)∑
i=1

θic̃ j−i, ∀ j ≥ 1. (2.16)

3. Conditional Sum of Squares estimation

Chung [8] proposed a method based on maximization of the CSS function. In this section, we define the
CSS method in the estimation of the SARFIMA(p, d, q) × (P, D, Q)s-BL-GARCH(r, m) process defined
by equations (2.1), (2.2) and (2.3), and we establish the asymptotic properties of the CSS estimator.

3.1. Definition of the estimator

Suppose that X1, . . . , Xn are generated by the model (2.1), (2.2) and (2.3). Denote by
γ = (d, D, φ1, . . . , φp, θ1, . . . , θq, Φ1, . . . ,ΦP, Θ1, . . . ,ΘQ)T , δ = (a0, a1, . . . , ar, b1, . . . , bm, c1, . . . , cr∗ )T ,
and ω = (γT , δT )T the parameter vector to be estimated. We assume that the parameter ω satisfies the
stationary conditions given in Theorem 2.2, andω0 = (γT

0 , δ
T
0 )T is the true value ofω and is in the interior of

the compact set Λ ⊆ Rp+q+P+Q+r+m+r∗+3. Under the assumption of normality of the standardized innovation
(Zt)t∈Z, the likelihood function is equal to

L(ω) = L(ω | Z1, . . . ,Zn) =

n∏
t=1

g(Zt, ω),

where g(Zt, ω) is the conditional Gaussian distribution function. Thus, the conditional sum of squares
estimator ω̂n of ω in Λ maximizes the conditional log-likelihood on I0, (ignoring the constant)

L(ω) =
1
n

n∑
t=1

lt, lt = −
1
2

log(h2
t ) −

ε2
t

2h2
t
. (3.17)
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3.2. Asymptotic properties
The following theorem provides some results related to the asymptotic properties of the SARFIMA-BL-
GARCH process estimators, obtained by the CSS approach.

Theorem 3.1. Suppose that (Xt)t∈Z are generated by equations (2.1), (2.2) and (2.3). Assume that the
hypothesis of Theorem 2.2 holds. Then, the conditional sum of squares estimator ω̂n of ω, obtained by
maximizing the conditional log-likelihood function (3.17), has the following properties

(a) The CSS estimator ω̂n exists and satisfies:

∂L(ω)
∂ω

= 0 and ω̂n
P
−→ ω0, as n −→ +∞.

(b) For such a sequence,
√

n (ω̂n − ω0)
D
−→ N(0, Ω−1

0 ), as n −→ +∞,

where
P
−→ and

D
−→ denote respectively convergence in probability and in distribution. Furthermore,

Ω0 = diag(Ωγ0 , Ωδ0 ), Ωγ0 and Ωδ0 are values of Ωγ and Ωδ at ω = ω0, with

Ωγ = E
[

1
h2

t

∂εt

∂γ

∂εt

∂γT +
1

2h4
t

∂h2
t

∂γ

∂h2
t

∂γT

]
and Ωδ = E

[
1

2h4
t

∂h2
t

∂δ

∂h2
t

∂δT

]
.

(c) Further, the information matrix Ωγ and Ωδ can be estimated consistently by:

Ω̂γ =
1
n

n∑
t=1

[
1
h2

t

∂εt

∂γ

∂εt

∂γT +
1

2h4
t

∂h2
t

∂γ

∂h2
t

∂γT

]
and Ω̂δ =

1
n

n∑
t=1

[
1

2h4
t

∂h2
t

∂δ

∂h2
t

∂δT

]
.

Proof. The proof is given in Appendix

It is important to not that εt, ht all depend on the theoretically infinite past history of (Xt) or (εt). We choose
the presample estimates of ht and ε2

t to be
∑n

t=1 ε
2
t /n. As noted in Ling and Li [17], this will not affect

asymptotic efficiency and other asymptotic properties (see also Bollerslev [4] and Weiss [27]).

4. Monte Carlo Simulation

In this section, we study the finite sample performance of the CSS method described previously, to estimate
the parameters of SARFIMA(p, d, q) × (P, D, Q)s-BL-GARCH(r, m) process. The simulation results
give the average values, the root mean square error (RMSE) and the mean absolute error (MAE) of the es-
timation procedure based on 1000 replications. All calculations were carried out using an R programming
environment (see [20]) on a Pentium (R) Dual-Core CPU, 2.60 GHz (2 CPUs) computer.

Because there is no known technique for generating an exact Seasonal ARFIMA model with BL-GARCH
type innovations, we adapt the method developed by Stoev and Taqqu [23] for ARFIMA time series with
stable innovations. Thus, we approximate the path Xt, t = 1, . . . , n by the truncation moving average

Xt =

M∑
j=0

c jεt− j, (4.18)

where M is the truncation parameter and fixed in this study to 10 000, and the non random constants (c j) j≥0
are determined by equation (2.13). The sum in (4.18) is computed using the Fast Fourier Transform (FFT)
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algorithm, as suggested by Stoev and Taqqu [23]. The BL-GARCH innovations (εt) are generated using the
method developed in Diongue et al.[9]. The simulation algorithm generates n + 500 observations for each
series, saving only the last n. This operation is performed in order to avoid dependence on initial values.

Thus, for fixed value of the seasonal period (s = 4), we carry out an experiment of 1000 samples for the four
processes summarized in Table 1. For each model, we use four different sample sizes (n = 100, n = 300,
n = 500 and n = 1000). The simulation results are presented in Tables 2-5.

Table 1: Data generating processes (DGPs).

DGPs d D φ θ a0 a1 b1 c1

Model 1 0.10 0.30 − − 0.01 0.09 0.9 0.15
Model 2 0.10 0.30 0.50 − 0.01 0.09 0.9 0.15
Model 3 0.10 0.30 − 0.30 0.01 0.09 0.9 0.15
Model 4 0.10 0.30 0.50 0.30 0.01 0.09 0.9 0.15

In these tables, the sample sizes are given in the first columns. The estimations of the parameters are given
in the next columns, the root mean square error (RMSE) is given in the row below (in parentheses) and the
mean absolute error (MAE) is given under the row of the RMSE (in brackets).

• In the first experiment, a SARFIMA(0, d, 0)×(0,D, 0)-BL-GARCH(1, 1) model is considered (i.e. the
model without short memory parameters). The simulation results are summarized in Table 2. Results
reveal that parameter estimates are satisfactory, even for small sample sizes (n = 100, n = 300),
in the sense that the RMSE and also the MAE are small. We can also remark that the impact of
the sample size n on the estimation method. Indeed, when the sample size increases (n = 1000),
the results improve significantly too. Figure 1 displays the corresponding boxplots2 and shows the
relative scatter of the 1000 estimates. The vertical axis in the figure indicates the deviation from
the nominal value of the parameters. This figure confirms the previous results since we observe that
confidence intervals are small, and shows also that the impact of the sample sizes on this dispersion.

• In the second experiment, we consider the preceding model (Model 1) with short memory part. Con-
sequently, this experiment is designed to examine the relative performances of the estimators when
there are long-memory and short memory components simultaneously. The results are presented in
Tables 3 - 5. We observe that, when short memory components are introduced in the model, the
estimation of long memory parameters is disturbed. Indeed, the RMSE and MAE obtained in Ta-
bles 3, 4 and 5 are larger than those presented in Table 2. This phenomenon is already observed in
the literature (e.g. Boutahar et al.[6], Diongue and Guégan[11]). However, we observe a significant
improvement when the sample size becomes large (n = 500, n = 1000). We remark also that the
estimators of the parameters for the BL-GARCH errors seem not to be affected by the presence of the
AR and MA components, particularly for larger sample sizes (n = 500, n = 1000).

2Boxplot of estimates in Model 2, Model 3 and Model 4 are omitted in the paper but are available to authors upon request.
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Table 2: CSS estimation for Model 1.

sizes d̂ D̂ â0 â1 b̂1 ĉ1

100 0.0980 0.3137 0.0617 0.0825 0.8156 0.1844
(0.0732) (0.0893) (0.1022) (0.0945) (0.2286) (0.1187)
[0.0605] [0.0727] [0.0557] [0.0750] [0.1433] [0.0903]

300 0.1013 0.3158 0.0190 0.0857 0.8883 0.1552
(0.0503) (0.0520) (0.0246) (0.0490) (0.0721) (0.0529)
[0.0408] [0.0419] [0.0119] [0.0378] [0.0462] [0.0415]

500 0.1019 0.3125 0.0140 0.0897 0.8926 0.1541
(0.0387) (0.0413) (0.0102) (0.0335) (0.0383) (0.0409)
[0.0305] [0.0326] [0.0060] [0.0261] [0.0289] [0.0320]

1000 0.0996 0.3097 0.01148 0.0896 0.8972 0.1499
(0.0264) (0.0280) (0.0042) (0.0198) (0.0211) (0.0251)
[0.0213] [0.0223] [0.0030] [0.0158] [0.0164] [0.0202]

Table 3: CSS estimation for Model 2.

sizes d̂ D̂ φ̂ â0 â1 b̂1 ĉ1

100 0.1005 0.3116 0.4907 0.0763 0.0763 0.8114 0.1789
(0.1068) (0.0991) (0.1414) (0.2127) (0.0964) (0.2406) (0.1214)
[0.0906] [0.0789] [0.1100] [0.0694] [0.0763] [0.1476] [0.0917]

300 0.0942 0.3083 0.4984 0.0211 0.0837 0.8825 0.1500
(0.0870) (0.0548) (0.1002) (0.0316) (0.0467) (0.0932) (0.0531)
[0.0767] [0.0431] [0.0842] [0.0134] [0.0368] [0.0519] [0.0409]

500 0.0957 0.3074 0.4989 0.0135 0.0876 0.8957 0.1511
(0.0771) (0.0413) (0.0856) (0.0096) (0.0331) (0.0381) (0.0375)
[0.0671] [0.0326] [0.0719] (0.0056) [0.0256] [0.0278] [0.0296]

1000 0.1004 0.3058 0.4973 0.0113 0.0901 0.8978 0.1529
(0.0634) (0.0284) (0.07138) (0.0043) (0.0205) (0.0216) (0.0261)
[0.0526] [0.0229] [0.0584] [0.0031] [0.0159] [0.0166] [0.0207]
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Table 4: CSS estimation for Model 3.

sizes d̂ D̂ θ̂ â0 â1 b̂1 ĉ1

100 0.1265 0.3116 0.2945 0.0760 0.0778 0.8061 0.1748
(0.1050) (0.0973) (0.1366) (0.2014) (0.0987) (0.2481) (0.1191)
[0.0863] [0.0779] [0.1090] [0.0692] [0.0773] [0.1514] [0.0886]

300 0.1268 0.3064 0.3011 0.0199 0.0826 0.8882 0.1508
(0.0792) (0.0518) (0.0844) (0.0271) (0.0466) (0.0778) (0.0522)
[0.0658] [0.0413] [0.0686] [0.0123] [0.0363] [0.0470] [0.0400]

500 0.1350 0.3061 0.3118 0.0135 0.0871 0.8961 0.1481
(0.0738) (0.0409) (0.0758) (0.0086) (0.0325) (0.0357) (0.0366)
[0.0612] [0.0323] [0.0612] [0.0056] [0.0257] [0.0270] [0.0289]

1000 0.1381 0.3000 0.3181 0.0110 0.0896 0.8972 0.1446
(0.0615) (0.0292) (0.0564) (0.0044) (0.0199) (0.0221) (0.0258)
[0.0509] [0.0228] [0.0458] [0.0030] [0.0158] [0.0170] [0.0207]

Table 5: CSS estimation for Model 4.

sizes d̂ D̂ φ̂ θ̂ â0 â1 b̂1 ĉ1

100 0.0904 0.3137 0.4753 0.2626 0.0790 0.0789 0.7974 0.1830
(0.1081) (0.1003) (0.3194) (0.3437) (0.2122) (0.1002) (0.2625) (0.1277)
[0.0931] [0.0805] [0.2336] [0.2599] [0.0721] [0.0785] [0.1603] [0.0947]

300 0.0841 0.3107 0.4650 0.2453 0.0199 0.0810 0.8901 0.1555
(0.0840) (0.0527) (0.2680) (0.2717) (0.0251) (0.0465) (0.0734) (0.0527)
[0.0735] [0.0415] [0.1867] [0.1935] [0.0122] [0.0365] [0.0460] [0.0411]

500 0.0880 0.3116 0.4728 0.2588 0.0139 0.0862 0.8963 0.1526
(0.0775) (0.0421) (0.2332) (0.2302) (0.0090) (0.0320) (0.0355) (0.0378)
[0.0672] [0.0334] [0.1603] [0.1602] [0.0058] [0.0255] [0.0269] [0.0297]

1000 0.0924 0.3053 0.4560 0.2493 0.0116 0.0896 0.8964 0.1485
(0.0679) (0.0303) (0.2216) (0.2016) (0.0047) (0.0197) (0.0224) (0.0262)
[0.0582] [0.0238] [0.1459] [0.1347] [0.0032] [0.0155] [0.0170] [0.0211]
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Figure 1: Boxplot of estimates of d = 0.1, D = 0.3, a0 = 0.01, a1 = 0.09, b1 = 0.9 and c1 = 0.15 in Model 1, with sample size
n = 100, n = 300, n = 500 and n = 1000, based on 1000 replications.

5. Empirical study

The daily returns of the kenyan stock market index are used for the empirical study in this article to illustrate
both the usefulness and the applicability of the proposed model and estimation method.
The raw series has a sample size of 6181 observations, measured form March 1st of 1991 to January 31st
of 2008. Table ?? gives the summary statistics of the returns of kenyan stock index for the full sample.

For modeling purpose, the time series is divided into two parts; learning and prediction sets. The 5816
observations from March 1st of 1991 until January 31st of 2007 are considered as learning set and the
remaining 365 observations are considered for the prediction study.

10



6. Conclusion

In this article, we have developed the family of seasonal ARFIMA process with BL-GARCH type errors,
which should prove useful in many fields of time series analysis. It is much more flexible in the simultane-
ous modeling of long-memory behaviour, seasonal components, volatility clustering and leverage effects;
often encountered in financial data. Under some assumptions, the model is shown to be stationary and
invertible. The parameter estimation problem is addressed to the conditional sum of squares procedure
proposed by Chung [8], and under some regularly conditions we establish the asymptotic properties of the
resulting estimates. Finite sample behaviours of this method were studied using Monte Carlo simulations.
It indicate that the approach can yield asymptotic efficient estimates. Consequently, it is reasonable method
to deal with seasonal long-range dependent data containing volatility clustering and leverage effects.

Since the results from the model presentation and the estimation methodology are encouraging, it will be
interesting to examine the empirical application of the SARFIMA-BL-GARCH model in financial data. We
raise also the question of the ”best” estimation procedure. This issue appears to be further investigated.
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[11] A. K. Diongue and D. Guégan. Estimation of k-Factor GIGARCH Process: A Monte Carlo Study, Communications in Statistics

- Simulation and Computation, 37(10), (2008), 2037-2049
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Appendix : Proofs of Theorems

Proof of Theorem 2.2

The proof of this theorem follows mainly the proof of Theorem 2.3 in Ling and Li [17].
a) The process in (2.1) can be written as

Xt =
Θ(Bs)θ(B)
Φ(Bs)φ(B)

(1 − B)−d (1 − Bs)−D εt = Ψ1(B)εt,

where Ψ1(z) =
Θ(zs)θ(z)
Φ(zs)φ(z)

(1 − z)−d (1 − zs)−D. Now the power series expansion (1−z)−d(1−zs)−D converges

for all |z| ≤ 1, when |D+d| < 1/2 and |D| < 1/2 (see Reisen et al.[22] for more details). The series Θ(zs)θ(z)
converge also for all z, since it is a polynomial, and that 1/Φ(zs)φ(z) converges for all |z| ≤ 1 when all the
roots of the equation Φ(zs)φ(z) = 0 lie outside the circle |z| = 1. Thus, the power series expansion of Ψ1(z)
converges for all |z| ≤ 1, and so (Xt)t exists with representation (2.10). From Corollary 2.1, the process (εt)t

is second-order stationary and hence E(ε2
t ) < ∞. Similar to the proof of Theorem 2.2 in Ling and Li [17],

we can show that (Xt)t is also second-order stationary. Indeed, we have

E
(
X2

t

)
= E


 ∞∑

k=0

ckεt−k

2 (6.19)

=

∞∑
k=0

c2
kE

(
ε2

t−k

)
+

∑
k1,k2=0, k1<k2

ck1 ck2E
(
εt−k1εt−k2

)
, (6.20)

where the coefficients (ck)k≥0 are determined by equation (2.13). By representation (2.2), we have (εt)t is a
measurable function of i.i.d. random variables Zt’s with mean zero and variance 1. Hence, the second term
of equation (6.20) is equal to zero. Thus, we have:

E
(
X2

t

)
=

∞∑
k=0

c2
kE

(
ε2

t−k

)
=

 ∞∑
k=0

c2
k

2

E
(
ε2

t

)
. (6.21)

Under the conditions (2.9), we have
∑

c2
k < ∞, and we know that the right side of equation (6.21) is finite,

and so (Xt)t is second-order stationary. If (εt)t is a function of i.i.d random variables, hence so is (Xt)t.
Consequently, (Xt)t is strictly stationary and ergodic.

b) The proof is similar to a) except that the conditions are required on the convergence of

Ψ2 (z) =
Φ(zs)φ(z)
Θ(zs)θ(z)

(1 − z)d (1 − zs)D , for all |z| ≤ 1.

A similar argument as in a) can be used to show that the power series expansion of Ψ2(z) is convergent for
all |z| ≤ 1, and so (Xt)t is invertible and we know that (2.11) holds.
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Proof of Theorem 3.1

The proof of Theorem 3.1 uses the following lemma.

Lemma 6.1. Suppose that (Xt)t∈Z are generated by equations (2.1), (2.2) and (2.3), and the assumptions of
Theorem 3.1 hold. Then

−
1
n

n∑
t=1


∂2lt
∂γ∂γT

∂2lt
∂δ∂γT

∂2lt
∂γ∂δT

∂2lt
∂δ∂δT


a.s
−→

 Ωγ 0

0 Ωδ

 , as n −→ ∞,

where Ωγ and Ωδ are positive matrices, with

Ωγ = E
[

1
h2

t

∂εt

∂γ

∂εt

∂γT +
1

2h4
t

∂h2
t

∂γ

∂h2
t

∂γT

]
and Ωδ = E

[
1

2h4
t

∂h2
t

∂δ

∂h2
t

∂δT

]
,

where
a.s
−→ denotes convergence almost surely.

Proof. The proof of Lemma 6.1 follows mainly the lines of the proof of Theorem 3.1. in Ling and Li [17].

To prove the consistency and asymptotic normality of the CSS estimator, we will check the conditions
listed by Basawa et al.[7]. They have analyzed the asymptotic properties of ML estimator in process with
dependent observations, by given a set of sufficient conditions. Thus to prove condition (a), we need to
check the following three conditions:

(1) −n−1
∑ ∂lt(ω0)

∂ω

P
−→ 0;

(2) There exists a nonrandom matrix M(ω0) > 0 such that for all ε > 0,

P
{
−n−1

∑ ∂2lt(ω0)
∂ω∂ωT ≥ M(ω0)

}
> 1 − ε, for all n ≥ n1(ε);

(3) There exists a constant M < ∞ such that

E
∣∣∣∣∣∣ ∂3lt(ω)
∂ωi∂ω j∂ωk

∣∣∣∣∣∣ < M, for all ω ∈ Λ,

where ωi is the ith component of ω.

Consider the first-order derivatives of the function lt with respect to the parameters. Thus, we have for each
t:

∂lt
∂γ

=
1

2h2
t

(
ε2

t

h2
t
− 1

)
∂h2

t

∂γ
−
εt

h2
t

∂εt

∂γ
and

∂lt
∂δ

=
1

2h2
t

(
ε2

t

h2
t
− 1

)
∂h2

t

∂δ
. (6.22)

These derivatives involve that of εt and h2
t , which we now specify as follows:

∂εt

∂d
= −

∞∑
k=1

1
k
εt−k;

∂εt

∂D
= −

∞∑
k=1

1
k
εt−ks;
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∂εt

∂φ j
= −φ−1(B)εt− j, j = 1, . . . , p;

∂εt

∂θ j
= −θ−1(B)εt− j, j = 1, . . . , q;

∂εt

∂Φ j
= −Φ−1(Bs)εt− js, j = 1, . . . , P;

∂εt

∂Θ j
= −Θ−1(Bs)εt− js, j = 1, . . . ,Q;

∂h2
t

∂γ
= 2

r∑
i=1

aiεt−i
∂εt−i

∂γ
+

m∑
j=1

b j

∂h2
t− j

∂γ
+

r∗∑
k=1

ckεt−k
∂ht−k

∂γ
+

r∗∑
k=1

ckht−k
∂εt−k

∂γ
,

and similarly, we have
∂h2

t

∂δ
= ε̃t +

m∑
j=1

b j

∂h2
t− j

∂δ
+

r∗∑
k=1

ckεt−k
∂ht−k

∂δ
,

where ε̃t = (1, ε2
t−1, . . . , ε

2
t−r, h2

t−1, . . . , h
2
t−m, ε

2
t−1h2

t−1, . . . , ε
2
t−r∗h

2
t−r∗ )

T .

Using the expression in equation (6.22), we have E
[
∂lt
∂ω

]
ω=ω0

= 0. According the assumptions of Theorem

2.2 and Corollary 2.1, the process (Xt)t∈Z and (εt)t∈Z are strictly stationary and ergodic. Hence, applying
the ergodic theorem, we obtain condition (1). To check condition (2), we need to compute the derivatives
of order two as follows:

∂2lt
∂γ∂γT = −

1
h2

t

∂εt

∂γ

∂εt

∂γT −
1

2h4
t

∂h2
t

∂γ

∂h2
t

∂γT

(
ε2

t

h2
t

)
+

(
ε2

t

h2
t
− 1

)
∂

∂γ

[
1

2h2
t

∂h2
t

∂γT

]
−

2εt

h2
t

∂εt

∂γ

∂h2
t

∂γT +
εt

h2
t

∂2εt

∂γ∂γT ,

and
∂2lt
∂δ∂δT = −

1
2h4

t

∂h2
t

∂δ

∂h2
t

∂δT

(
ε2

t

h2
t

)
+

1
2

(
ε2

t

h2
t
− 1

)
∂

∂δ

[
1
h2

t

∂h2
t

∂δT

]
.

Similarly, we find (∂2lt)/(∂γ∂δT ) and (∂2lt)/(∂δ∂γT ).
According to Lemma 6.1, the matrix Ω0 is positive definite, and hence for any constant vector C , 0,

1
n

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C

a.s
−→ −CT Ω0C.

For any given C, let 0 < ∆(C) < CT Ω0C/2. Then

∀ ε > 0, lim
n→+∞

P
(∣∣∣∣∣∣n−1

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C + CT Ω0C

∣∣∣∣∣∣ > ε
)

= 0

Particularly, we have for ε = ∆:

lim
n→+∞

P
(∣∣∣∣∣∣n−1

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C + CT Ω0C

∣∣∣∣∣∣ ≤ ∆

)
= 1.

In other words, we have ∀ ε > 0, there exists n1 = n1(ε) such that ∀ n ≥ n1:∣∣∣∣∣∣ P
(∣∣∣∣∣∣n−1

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C + CT Ω0C

∣∣∣∣∣∣ ≤ ∆

)
− 1

∣∣∣∣∣∣ < ε
=⇒ P

(
n−1

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C + CT Ω0C ≤ ∆

)
> 1 − ε
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=⇒ P
(
n−1

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C + CT Ω0C ≤

CT Ω0 C
2

)
> 1 − ε

=⇒ P
(
n−1

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C ≤ −

CT Ω0 C
2

)
> 1 − ε

=⇒ P
(
−n−1

∑
CT

(
∂2 lt(ω0)
∂ω ∂ωT

)
C ≥

CT Ω0 C
2

)
> 1 − ε

So the condition (2) is satisfied. To prove condition (3), we remark that:

∂3εt

∂d3 = ln3(1 − B)εt =

− ∞∑
k=1

1
k

Bk

3

εt.

=⇒ E
(
∂3εt

∂d3

)2

= E

 ∑
k1,k2,k3=1

1
k1k2k3

εt−k1−k2−k3

2

=
∑

k1,k2,k3=1

1
k2

1 k2
2 k2

3

E
(
ε2

t−k1−k2−k3

)
=

(
π2

6

)3

E
(
ε2

t

)
< ∞

Similarly, we can show that E
(
∂3εt

∂ω3
i

)2
< ∞, where ωi is the ith component of ω. Thus, differentiating

∂2lt/∂ω∂ωT and using the preceding discussion, we obtain condition (3).

Finally, using the first-order Taylor expansion of the expression ∂ L(ω)
∂ ω

at ω = ω0, and the conditions (1), (2)
and (3), we obtain the existence and the consistency of the CSS estimator ω̂n.

To prove condition (b) of Theorem 3.1, we remark at first, by Lemma 6.1, we have:

1
n

∑(
∂lt
∂ω

∂lt
∂ωT

)
ω=ω0

a.s
−→ Ω0. (6.23)

Let us define S n as

S n =

n∑
t=1

ηT
0

(
∂lt
∂ω

)
ω=ω0

where η0 is an arbitrary constant vector with ηT
0 η , 0. We have

E
(
ηT

0
∂lt(ω0)
∂ω

)
= ηT

0 E
(
∂lt(ω0)
∂ω

)
= 0.

Then
(
ηT

0
∂lt(ω0)
∂ω

)
t

are a sequence of martingale differences and S n is the sum of martingale difference.

Hence S n is a martingale and we have 1
nE(S 2

n) = ηT
0 Ω0η > 0. From the stationarity and the ergodicity of

(Xt) and (εt), we have:[
1
n
E

(
S 2

n

)]−1 [
1
n
E

(
S 2

n | In

)] a.s
−→ 1. (6.24)
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Using the central limit theorem of Stout [25], we get:

1
√

n

n∑
t=1

(
∂lt
∂ω

)
ω=ω0

D
−→ N(0, Ω0), as n −→ +∞. (6.25)

Using the first-order Taylor expansion of the expression ∂ L(ω)
∂ ω

at ω = ω0, and the conditions (6.23), (6.24)
and (6.25), we have:

√
n (ω̂n − ω0)

D
−→ N(0, Ω−1

0 ), as n −→ +∞.

The condition (c) of Theorem 3.1 is directly obtained from Lemma 6.1.
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