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Abstract. We address here the problem of perceptual colour histograms.
The Riemannian structure of perceptual distances is measured through
standards sets of ellipses, such as Macadam ellipses. We propose an ap-
proach based on local Euclidean approximations that enables to take
into account the Riemannian structure of perceptual distances, without
introducing computational complexity.
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1 Introduction

The histogram of the intensities is a fundamental descriptor of a grayscale im-
age. It is one of the most important tools to address problems such as contrast
enhancement (by histogram linear stretching or using advanced approaches [1]),
image segmentation (by 1D clustering), texture processing [2], image retrieval [3],
etc. The standard way of computing a histogram is to cut the value space into
regular bins and to count the number of pixels that fall into each bin. However the
obtained histogram presents important discontinuities. One thus prefers some-
times to use kernel methods which provide smoother results. One sometimes
considers the color space as a part of a three dimensional Euclidean space. Un-
der this assumption, the histogram of a color image can be build in the same
way as for gray scale image. However, the distances induced on colours by the
human perceptual system cannot be represented by a Euclidean space struc-
ture. Observation showed that the perceptual relation between colours is better
represented in the framework of Riemannian manifolds. The local metrics of
the Riemannian structure are experimentally measured by a set of ellipses, such
as the Macadam ellipses [4],BFD-P [5] and RIT-DuPont [6]. This Riemannian
structure makes the construction of the histogram di�cult. On the one hand, ex-
cept rare situations, there are no regular tilings of the space. On the other hand,
kernel methods have been generalized to Riemannian manifolds in [7], but re-
quires the knowledge of the geodesics. In this paper, we propose an approach
that takes into account the Riemannian structure while keeping the computa-
tion is the Euclidean framework. Thus we propose a way of building histograms
that respects better the perceptual distances than histograms build in Euclidean
spaces, without increasing the computation time.



2 Image histogram and density estimation

Let us consider an image I as a map:

I :

{
D → V
p 7→ I(p)

We have, for instance V = R for grey-scale images or V = Rn for multi-
spectral images. D is the support space of pixels/voxels, typically a subset of
Z2 or Z3. The set of values {I(p), p ∈ D} is interpreted as a set of realizations
of a random variable X. Let us assume that a reference measure µ is given on
the space V . Furthermore, make the strong assumption that the law of X has
a density f with respect to µ. The density f is an interesting quantity in image
processing.

There are various ways of addressing the problem of probability density es-
timation. In the Euclidean context the most popular techniques are mainly the
histograms, the kernels, and the characteristic function density estimator. The
characteristic function density estimator consists in the estimation of the Fourier
transform or series of the density. Each of these three techniques can be trans-
ported in most of Riemannian manifolds. However, the kernel methods become
often signi�cantly simpler than the two others. On the one hand, the histogram
requires a regular tiling of the space which is a di�cult problem for most of Rie-
mannian manifolds. On the other hand the characteristic function method re-
quires explicit expressions of the eigenfunctions of the Laplacian operator, these
functions being known only in a few spaces. For its part, the kernel method only
requires the knowledge of geodesic distances. In what follows, we chose to focus
on the kernel method. Recall that the kernel method in the Euclidean case has
the following form:

f(x) =
1

k

∑
pi∈{pixels}

1

λn
K(
||x− I(pi)||

λ
)

where λ is a scaling parameter, n the dimension of the space, k the number
of pixels, and K : R+ → R+ a map which veri�es the following properties:∫
Rn K(||x||)dx = 1,

∫
Rn xK(||x||)dx = 0, sup(K(x)) = K(0). In this paper, we

assume a supplementary condition of bounded support K(x > 1) = 0.

3 Basics on Riemannian manifolds

LetM be topological space, homeomorphic to an open subset of Rn. An home-
omorphism is bijective continuous map whose inverse is also continuous. Let φ
be an homeomorphism from Uφ ⊂ Rn to M. φ is a parametrization of M. A
Riemannian metric is a smooth �eld of scalar product on Uφ. In other words, a
Riemannian metric associate a positive de�nite matrix to each points of Uφ. A
smooth path is a map γ : [a, b] →M such that φ−1 ◦ γ is piece-wise C1. Let γ



be such a path. The Riemannian metric induces a notion of length on smooth
path:

L(γ) =

∫ b

a

√
〈(φ−1 ◦ γ)′(t), (φ−1 ◦ γ)′(t)〉(φ−1◦γ)(t)dt

Where 〈., .〉(φ−1◦γ)(t) is the scalar product attached to the point (φ−1 ◦ γ)(t).
The notion of shortest path between two points induces a distance on M. A
shortest path is called a geodesic path and can be seen as straight segments.

The scalar product is entirely determined by its unit ball. Expressed in vector
coordinates, the associated unit ball takes the form of an ellipse in two dimensions
or of an ellipsoid in three dimensions. Thus, the Riemannian metric is given by
a �eld of ellipses or ellipsoids.

4 Perceptual metric on colours

Already Riemann used colour as an illustration of the applicability of his ge-
ometry [8], and concrete examples of such colour geometries were developed by
Helmholz [9], Schrödinger [10] and Stiles [11].

4.1 Ellipses, local metric

The �rst experimental determination of the �eld of ellipses describing the Rie-
mannian metric of the colour space was performed by MacAdam [4]. The ex-
periment consisted of about 25 000 colour matches with one observer, and the
ellipses were derived from the covariance matrices of the repeated observations.
Later, it has become common practice to denote ellipses obtained in this manner
as JND (just noticeable di�erence) ellipses or ellipsoids.

Later, another type of experiment has become more commonplace. Pairs of
colours that are barely perceptually di�erent, are presented to the observer, who
is given the task to estimate the magnitude of the perceptual distance using a
set of standard pairs. Ellipses, ellipsoids and metrics obtained in this way are
normally denoted supra-threshold ellipses. Examples of supra-threshold color
di�erence based data include BFD-P [5] and RIT-DuPont [6].

4.2 Global model

Data sets of measurements provide information on distances through the local
metric or through distances between speci�c colours. A global model provides
an analytic expression of the distance between two arbitrary colours. The closest
the proposed expression is to the Riemannian perceptual distances, the better
the model is. The more conventional procedure for going from a tristimulus space
to a space closer linked to a perceptual homogeneous space typically includes the
following steps. First, apply a linear transform in the tristimulus space such that
the base gets close to the cone fundamentals of the retina. Secondly, perform
a non-linear compression of the coordinates (e.g., logarithmic or cubic root) in



order to mimic the non-linear response of the human visual system. Finally, per-
form a linear transformation of the resulting coordinates in order to correspond
better to the perceptual attributes of colour. Typically, the �rst coordinate is a
weighted sum of the coordinates and represent a lightness correlate, whereas the
two other coordinates are weighted di�erences, and represent colour opponent
channels such as, e.g., red�green and blue�yellow.

In order to identify the di�erent parameters of the various transforms, dif-
ferent optimisation criteria are used. In the CIELAB colour space [13], the pa-
rameters were optimised such that the lightness should correspond to perceived
lightness, and that the Euclidean metric in the resulting space should correspond
to perceptual colour di�erences. For the IPT colour space [14], the parameters
were optimised in order to achieve a constant perceived hue along straight radial
lines in cylindrical coordinates. It is furthermore reasonably well established that
in such perceptual spaces, the Euclidean metric is not the one best correspond-
ing to the perceived colour di�erences, and other models have been proposed,
see, e.g., Luo et al. [15] and Farup [12]. In the hyperbolic models proposed in
Farup [12], histograms can be computed using adapted kernels, see [16].

5 Kernel density estimation using local Euclidean

approximations

In general Riemannian manifolds, computing the distance between two arbitrary
points given the metric �eld is a di�cult problem. Indeed, �nding the distance
is a minimization problem over a set of paths. However, for two close points, the
local metric provides a satisfying approximation of the Riemannian distance. A
probability density measures the ratio between the probability of an in�nitesimal
volume element and its volume. It is thus a local notion. The central idea of
this section takes advantage of the fact that histograms mainly involves local
phenomena. Since in a Riemannian manifold the computation of an histogram
does not involve computation of long geodesics, the need of a global model that
provides distances between every pairs of colours is of lower importance than in
most of applications.

Fig. 1 shows a set of ellipses in the projective ab plane. Let us assume that
these ellipses represent the local perceptual metric. Let c be a point where the
metric has been measured through the ellipse Ec. In a neighborhood of c, com-
puting distances using the metric measured at c is a better approximation of the
perceptual distance than using the canonical euclidean distance of the ab plane.
At a point p where the metric is originally unknown, a metric interpolated from
the neighbor points ci has all the odds of being more relevant than the canonical
Euclidean metric of the map, see Fiq 1.

Let dR(p, q) be the perceptual distance between color p and color q. dR(p, q)
is the Riemannian distance induced by the �eld of ellipses. Let ||p − q|| be the
distance associated with the canonical scalar product of the ab plane, and ||p−q||c
be the distance associated with the scalar product induced by the ellipse Ec.
Let B(c,R) and Bc(c,R) be the respective balls of center c and radius R. The



previous discussion can be formalized as follow. It can be shown that:

limx→c
||x− c||c
dR(x, c)

= 1

while if ||.||c 6= ||.||, the equality case being exceptional,

limx→c
||x− c||
dR(x, c)

6= 1

Therefore for such a c there exists A > 0 such that,

∀R > 0,∃x ∈ B(c,R), A <

∣∣∣∣ ||x− c||dR(x, c)
− 1

∣∣∣∣ . (1)

On the other hand there exists a real positive number Rc = Rc,A such that,

∀x ∈ B(c,Rc),

∣∣∣∣ ||x− c||cdR(x, c)
− 1

∣∣∣∣ < A. (2)

We have

supB(c,Rc)

(∣∣∣∣ ||x− c||cdR(x, c)
− 1

∣∣∣∣) < A < supB(c,Rc)

(∣∣∣∣ ||x− c||dR(x, c)
− 1

∣∣∣∣) .
Thus for x ∈ B(c,Rc), ||x− c||c is preferred to ||x− c||. Consider a kernel K and
a scaling parameter λ such that

λ ≤ Rc and Bc(c, λ) ⊂ B(c,Rc).

For x ∈ B(c,Rc), K
(
||x−c||c

λ

)
is preferred to K

(
||x−c||
λ

)
. For x /∈ B(c,Rc),

K
(
||x−c||c

λ

)
= K

(
||x−c||
λ

)
= 0. Thus under these assumptions on the scaling

parameter λ, the histogram

f(x) =
1

k

∑
pi∈{pixels}

1

λn
K

( ||x− I(pi)||I(pi)
λ

)
(3)

is preferred to the classical histogram. We think that the hypothesis on λ is
reasonable in practice, its validation is a subject of further research. Note that
the higher the resolution of the image is, the smaller is λ and then the more the
hypothesis becomes reasonable.

5.1 Metric interpolation and Euclidean approximation

LetM be topological space, homeomorphic to an open subset of Rn. Let φ be an
homeomorphism from Uφ ⊂ Rn toM. A set of scalar products Gci is given for
a set of points (ci) ∈ M. We consider here the problem of interpolation of the
�eld of metrics. Let F1 and F2 be two smooth metric �elds that coincide with



the observed ellipses at the points (ci). Despite the intuition, if no assumption
is made on φ regarding the Riemannian distance, there are no criteria that
enables to prefer F1 or F2. The problem of metric tensor interpolation is thus
a di�cult problem. In this paper, we adopt an elementary solution. Ellipses are
represented in the projective ab plane. A Delaunay triangulation with respect
to the canonical Euclidean metric of the plane is performed on the set (ci). At
a point p in the triangle cicjck the parameters of the interpolated ellipse Ep are
linearly interpolated between the parameters of Eci , Ecj , and Eck with respect to
the barycentric coordinates of p. If p does not belong to one of the triangles of
the Delaunay triangulation, we set Ep = Eq where q is the projection of p on the
convex hull of the set of centers.

5.2 Experimental results

The RIT-DuPont dataset [6] shows that the perceptual metric is dependent of
the luminance. Nevertheless, for visualization purpose we choose to abandon
the luminance information in order to work with two dimensional data. The
Macadam ellipses were measured at a �xed luminance, in the CIE chromaticity
diagram. The ellipses are transported in the L = 40 of the Lab space. Forgetting
the luminance coordinate, one obtains then a transport of the Macadam ellipses
in the projective ab plane. Remind that the proposed framework is independent
of the dimension and can be used in three dimensional spaces with standard
datasets of ellipsoids.

Fig. 1 presents the transported Macadam ellipses in the projective ab plane,
the Delaunay triangulation of the set of centers and the interpolation of the
ellipses. Fig. 3 represents the density of the Riemannian measure with respect
to the Lebesgue density of the plane. Recall that the expression of the density
is given by

√
det(G) where G is the metric tensor derived from the ellipse.

Fig. 4 presents the histograms of the image of Fig. 2. (c) and (d) have to
aim to study the density f with respect to the perceptual Riemannian volume
measure. The main di�erence between (c) and (d) is that in (d) the shape of the
kernel follows the Riemannian metric. The density with respect to the Euclidean
measure is visibly di�erent from the histogram with respect the Riemannian mea-
sure. The amplitude of the upper spot, representing white colours, is signi�cantly
decreased when using the Riemannian measure. Perceptually, this results from
the fact that the eyes have an higher sensitivity around white than around blue.

6 Conclusion

Given a set of ellipses representing the perceptual metric on colours, we proposed
an approach for histogram computation that takes into account the Riemannian
structure of the perceptual metric without introducing supplementary compu-
tational complexity. Indeed, the step of ellipses interpolation only has to be
achieved once and does thus not introduce computational complexity. The rel-
evance of the approach is conditioned by the relevance of the set of perceptual



ellipses and the quality of the interpolation. The deep problem of metric tensor
interpolation has been partially left aside and will be subject of future research.
The second topic of our future research will be on the convergence of the pro-
posed histogram to the density of the underlying random variable with respect
to the interpolated Riemannian metric.
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(a) (b) (c)

Fig. 1. (a): Macadam ellipses transported in the projective ab plane, (b): Delaunay
triangulation, (c): ellipses interpolation

Fig. 2. color photography

(a) (b)

Fig. 3. (a): local density change induced by the interpolated ellipses, (b): Zoom adapted
to colours present in Fig. 2

(a) (b) (c)

Fig. 4. The histogram of the image of Fig. 2 is computed using: the canonical Euclidean
metric of the ab projective plane in (a), the canonical metric followed by a division by
the local density of the perceptual metric in (b) and the formula (3) in (c).


