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Abstract. Mathematical Morphology (MM) is founded on the mathe-
matical branch of Lattice Theory. Morphological operations can be de-
scribed as mappings between complete lattices, and complete lattices
are a type of partially-ordered sets (poset). Thus, the most elementary
requirement to define morphological operators on a data domain is to
establish an ordering of the data. MM has been very successful defining
image operators and filters for binary and gray-scale images, where it
can take advantage of the natural ordering of the sets {0, 1} and Z+.
For multivariate data, i.e. RGB or hyperspectral images, other orderings
such as reduced orderings (R-orderings) have been proposed. Anyway,
all these orderings are based solely on sorting the spectral set of values,
that is finding a useful permutation of the data samples. Here, we pro-
pose to define an ordering based on both, the spectral and the spatial
information, by means of a binary partition tree (BPT) representation of
images. This novel permutation ordering takes into account not only the
possible spectral ordering but also the hierarchies of spatial structures
encoded in the BPT.

Keywords: Mathematical Morphology, Lattice Theory, Ordering, Spec-
tral Spatial analysis, Binary Partition Trees, Permutations

1 Introduction

Mathematical Morphology (MM) [15, 10, 16, 7, 18] has been very successful defin-
ing image operators and filters for binary and gray-scale images. A very appeal-
ing characteristic of MM is that its mathematical support is well known. Lattice
Theory [5, 8, 9] gives the most general theoretical background for MM [13, 11].
Basically, morphological operations can be described as mappings between com-
plete lattices.

A binary relation % satisfying reflexivity, antisymmetry and transitivity prop-
erties is called an order, denoted by ≤. A non-empty set P endowed with an
order relation, 〈P ;≤〉, is a partially-ordered set or poset, denoted by P. A poset
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L = 〈L;≤〉 is a lattice if an infimum and a supremum exist for any pair of ele-
ments of L. Formally, a poset L = 〈L;≤〉 is a lattice iff inf H and supH exist for
any finite non-empty subset H ⊆ L. The lattice Duality Principle states that if
L = 〈L;≤〉 is a lattice, the dual Lδ = 〈L;≥〉 is a lattice too. A lattice can also be
described in an algebraic form by setting a∧ b = inf {a, b} and a∨ b = sup {a, b}.
Thus, the algebra 〈L,∧,∨〉 is equivalent to the lattice L, 〈L,∧,∨〉 ≡ 〈L;≤〉. In
MM, operators are defined over an important type of lattices, the complete lat-
tices. A lattice L = 〈L;≤〉 is complete iff inf H and supH exist for any subset
H ⊆ L. A complete lattice has both a smallest element called bottom, denoted
as ⊥, and a greatest element called top, denoted as >. All finite lattices are
complete lattices. From now on, we denote complete lattices by the symbols L
and M.

For every subset Y ⊆ L an erosion is a mapping ε : L → M that commutes
with the infimum operation, ε (

∧
Y ) =

∧
y∈Y ε (y). Similarly, a dilation is a

mapping δ : L → M that commutes with the supremum operation, δ (
∨
Y ) =∨

y∈Y δ (y). An anti-erosion operator, ε̄ : L→M, and an anti-dilation operator,

δ̄ : L→M, are defined as mappings holding ε̄ (
∧
Y ) =

∨
y∈Y ε̄ (y) and δ̄ (

∨
Y ) =∧

y∈Y δ̄ (y), respectively. Any mapping Ψ between complete lattices L and M can
be expressed in terms of supremums and infimums of these four morphological
operators [3].

Binary and gray scale images are complete lattices given the natural order of
the binary set, {0, 1}, and the positive integers, Z+, respectively (or the set of
real vectors, R, in general). The extension of MM to multivariate images is not
straightforward since pixels are (high dimensional) vectors without an intrinsic
natural total order. There are different strategies to build up an order from
multivariate data [4, 12, 17, 2]. The Marginal ordering (M-ordering) corresponds
to univariate orderings realized on every component of the given vectors:

∀x,y ∈ Rn, x ≤ y⇐⇒ xi ≤ yi, ∀i ∈ {1, . . . , n} (1)

The multivalued ordering is given by the independent ordering of each vector
component, so the M-ordering is also called component-wise ordering. The M-
ordering allows the use of MM but all the between components information is
ignored. Furthermore, the use of a M-ordering results in the apparition of vec-
tors which are not present in the original image, what is called the false color
problem. Another common approach is the Conditional ordering (C-ordering)
which establishes a priority between the vectors marginal components. The vec-
tors components are ranked and sequentially selected according to this rank.
Lexicographical ordering is the most known example of C-ordering:

∀x,y ∈ Rn, x ≤ y⇐⇒ ∃i ∈ {1, . . . , n} , (∀j < i, xj = yj) ∧ (xi ≤ yi) (2)

The C-ordering is useful when a natural priority exists among vector components,
which is not often the case of multi and hyperspectral images. Even when this is
suitable, the use of C-orderings as the lexicographical ordering, yields to the use
of only a few components dismissing the information contained in the ones left.
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One way to define a multivariate ordering that makes use of all the components
and interdependencies is by constructing a surjective mapping into a lattice
h : Rn → L so that we can assume an ordering induced by this mapping. The
h-ordering, ≤h, is defined as:

x ≤h y⇔ h (x) ≤ h (y) ;∀x,y ∈ Rn (3)

Some authors [1, 23] define h-orderings on the basis of a supervised classifier
trained with some pixel values. Discriminant function values and class a poste-
riori probabilities provide the surjective mapping h.

All the previous orderings, that allow to define complete lattices, and thereof,
to apply mathematical operators over binary, gray-scale or multivariate images,
are based on the ordering of the set of spectral values. Here, we propose to define
an ordering using not only the spectral information but also the spatial location
of the data vectors, and in particular, the spatial structures encoded in a binary
partition tree (BPT) representation of images [14]. We show the potential use of
this novel BPT-based spectral-spatial permutation ordering, and we discuss on
further extensions of the proposed ideas.

2 Binary Partition Trees

Hierarchical segmentation algorithms have proved to be very valuable to explore
and exploit the spatial content of images by providing a hierarchy of segmen-
tations working at different scales. The BPT is a hierarchical region-based rep-
resentation of an image in a tree structure [14]. Recently, some authors have
proposed the use of the Binary Partition Tree (BPT) to handle very high di-
mensional images such as hyperspectral images [20, 21, 19, 22].

In the BPT representation, the leaf nodes correspond to an initial partition
of the image, which can be the individual pixels, or a coarser segmentation map.
From this initial partition, an iterative bottom-up region merging algorithm is
applied until only one region remains. This last region represents the whole
image and corresponds to the root node. All the nodes between the leaves and
the root result of the merging of two adjacent children regions. An example of
BPT is displayed in Fig. 1. If the initial partition contains n leaf nodes, the BPT
representation contains 2n− 1 nodes.

Two notions are of prime importance when defining a BPT: i) the region
model MR which specifies how a region R is modelled, and ii) the merging
criterion, O(MRα ,MRβ ), which is a dissimilarity measure between the region
models of any two regionsRα andRβ . Each merging iteration involves the search
of the two neighbouring regions which achieve the lowest pair-wise dissimilarity
among all the pairs of neighbouring regions in the current segmentation map.
Those two regions are consequently merged.

Given a hyperspectral region R, with NR hyperspectral samples rj ∈ Rq,
j ∈ 1 . . . NR, the first-order parametric model MR is defined by the average of



4

Fig. 1. Construction of the Binary Partition Tree (BPT).

the hyperspectral samples r̄ in each band k = 1, . . . , q:

MR(k) d
= r̄(k) =

1

NR

NR∑
j=1

r
(k)
j . (4)

Using the first-order parametric model (4), a merging criterion is defined as
the Euclidean, dEUC, or the spectral angle distance, dSAD, between the average
values of any two adjacent regions:

OEUC

(
MRα ,MRβ

) d
= dEUC (r̄α, r̄β) =

√√√√ q∑
k=1

(
r̄
(k)
α − r̄(k)β

)2
, (5)

OSAM

(
MRα ,MRβ

) d
= dSAD (r̄α, r̄β) = arccos

(
r̄Tα r̄β
‖r̄α‖‖r̄β‖

)
. (6)

The building of a BPT may suffer from small and meaningless regions result-
ing in a spatially unbalanced tree. To overcome this limitation, a priority term is
included in the merging criterion that forces those regions smaller than a given
percentage of the average region size to be merged first [6, 19].

3 BPT-based spectral-spatial permutation ordering

Given a BPT representation of an image, the leaves are sorted from left to
right following the hierarchical structure in an arbitrary way, normally selected
according to implementation aspects. In other words, in the construction of the
tree there is no ordering between sibling nodes. In this work, we propose to
impose an ordering among nodes in the tree. Specifically, the ordering is done
on the leaves of the tree. Given an image with n leaf nodes, i.e. with n pixels,
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there are n− 1 merging operations need to build the BPT. Each of the merging
operations implies a decision about the sorting of nodes that are being merged.
Thus, there are 2n−1 possible permutations of the BPT leaves. Next, we propose
a criterion to select one among all the possible permutations of the leaves using
the hierarchical spatial structures encoded in the BPT representation and to use
such permutation to define a BPT-based spectral-spatial permutation ordering
of the image pixels.

3.1 BPT sorting

Let Π =
{
π(k)

}2n−1

k=1
be the set of all the possible permutations of the leaves

of a given BPT representation of an image, where each π(k) =
[
π
(k)
1 , . . . , π

(k)
n

]
,

denotes a permutation that sorts the n leaves from left-to-right (see Fig. 2).

(a) (b)

Fig. 2. Two examples of possible random sortings of the BPT leaves: (a) π1 =
[4, 5, 1, 2, 3]; and (b) π2 = [2, 1, 4, 3, 5].

We propose as a criterion to select one among the set of possible sortings,
Π, of a given BPT, a top-down approach where at each node, the child node
with minimum dissimilarity to the parent node is set to the left. The pseudo-
code of this method that we have termed as the minimum dissimilarity top-down
BPT sorting is given in Fig. 1. The proposed method sorts the BPT recursively
starting from the root node. The recursion goes down by looking for the children
of the node and calling himself to sort the sub-trees defined by each of the child
nodes. The recursion stops when the node is a leaf node. Then, it goes back
comparing the region models of the child nodes with respect to the region model
of the parent node, setting to the left the sorted indexes of the child node with
minimum region dissimilarity.
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Algorithm 1 Minimum dissimilarity top-down BPT sorting pseudo-code

1. T ← BPT (X) . BPT construction
2. R0 ← root (T ) , . Top-down initialization
3. π ← sortBPT (R0) . recursive sorting algorithm

function sortBPT (R)
[Rc1 ,Rc2 ]← children (R) . Children nodes
if isLeaf (Rc1) then

π1 = [ω (Rc1)] . ω (·) returns node’s index
else

π1 = sortBPT (Rc1) . Sort child node
end
if isLeaf (Rc2) then

π2 = [ω (Rc2)] . ω (·) returns node’s index
else

π2 = sortBPT (Rc2) . Sort child node
end
if d (R,Rc1) ≤ d (R,Rc2) then . Compare region models

π = [π1,π2]
else

π = [π2,π1]
end
return π

end

3.2 BPT-based spectral-spatial ordering

Once we have sorted the leaves of a given BPT representation of an image X,
that is, once we have selected a permutation π of the leaves, we propose to take
advantage of it to define a permutation π-ordering:

x ≤π y⇔ πω(x) ≤ πω(y); ∀x,y ∈ X, (7)

where ω (·) is a function that given a pixel returns the index of the leaf containing
it. Using the π-ordering, an erosion (dilation) over a pixel will move pixel values
toward the ones located in leaves on the left (right) of the sorted BPT defined
by the permutation π.

4 Examples

In order to show the potential use of the proposed minimum-dissimilarity top-
down BPT sorting algorithm and the π-ordering defined on base to the sorting
of the BPT leaves, we have applied the proposed methodology to the logo of the
ISMM conference in binary and RGB versions, and also on a grayscale and RGB
image from the COREL dataset.
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(a) (b)

Fig. 3. Application of the proposed BPT-based ordering methodology to the logo of
the ISMM conference: (a) original binary logo, (b) original RGB logo.

4.1 ISMM logo

Fig. 3 shows the binary and RGB versions of the ISMM logo. In Fig. 4 we
compare the result of applying erosion and dilation operations using a 11 × 11
square structural element, given a conventional component-wise ordering and the
proposed π-ordering from a BPT representation of the images obtained using
the first-order parametric model (4) and the Euclidean distance (5). Figs. 4(a-d)
show the results obtained by the conventional component-wise ordering, while
Figs. 4(e-h) depicts the results obtained by the proposed π-ordering.

For the binary logo, the conventional ordering results in shrinking the white
areas and enlarging the black ones for the erosion operation, and the contrary
for the dilation. However, the morphological operations using the proposed π-
ordering enlarge or reduce the geometrical structures of the logo independently
of the foreground and background colors. That is, it works directly on the fore-
ground and background structures independently of the binary encoding used to
represent them in each case. For the RGB logo, we were interested in highlight
that the proposed π-ordering naturally operates with multivariate data. The
conventional component-wise ordering can not handle the multivariate RGB in-
formation properly, modifying the colors of the geometrical structures, while the
proposed π-ordering is able to return the expected result.

4.2 Real image

Next, we provide a comparison using a real image from the COREL database.
In all cases, we make use of a 11 × 11 square structural element. Fig. 5 de-
picts the gray-scale and RGB versions of the image. Fig. 6 depicts the results
obtained using conventional gray-scale and RGB component-wise morphologi-
cal operations compared to the proposed π-ordering. The potential use of the
proposed π-ordering could be appreciated in the background. This is composed
of sand with multiple randomly located dark and bright spots, probably corre-
sponding to small rocks, salt grains and other small particles in the sand. Using
conventional morphological operators it is not possible to get rid of both dark
and bright structures, while using the proposed methodology, either both struc-
tures are enlarged or reduced. Here, we want to highlight more the potential
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Application of the erosion and dilation operations to the ISMM logos using
a square 11 × 11 structural element: (a) conventional erosion of the binary logo, (b)
component-wise erosion of the RGB logo, (c) conventional dilation of the binary logo,
(d) component-wise dilation of the RGB logo, (e) proposed erosion of the binary logo,
(f) proposed erosion of the RGB logo, (g) proposed dilation of the binary logo, and (h)
proposed dilation of the RGB logo.
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(a) (b)

Fig. 5. Real image obtained from the COREL database: (a) gray-scale image, and (b)
RGB image.

of the proposed BPT-based spectral-spatial π-ordering to work on the spatial
structures encoded in the BPT representation.

5 Discussion

We would like to point-out some aspects and open discussions of the proposed
methodology we are working on:

– We have proposed a definition of a permutation ordering, which could be
understood as a kind of a reduced ordering, where the function h (·) corre-
sponds to the permutation indexes. However, it could be also understood the
other way around, where the reduced orderings are particular cases of a more
general class of permutation orderings, where each proposed h (·) definition
yields to a permutation of the data samples, and in particular, of the image
pixels.

– We have also focused on a BPT-based definition of the proposed π-ordering,
taking advantage of the spectral-spatial representation of the image that
the BPT methodology provides. However, the same underlined methodology
could be defined for any structure that encodes a hierarchy of partitions, or
that at least, in the case of trees, their leaves form a partition of the data.

– Finally, we have not be on time to provide results on which these authors
think it could be a key point on the use of the proposed BPT-based spectral-
spatial π-ordering: the possibility of using the hierarchical structure of the
tree to define structure elements based on sub-tree properties and to provide
intuitive ways to define spatially selective mask images.
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(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

Fig. 6. Comparison of the conventional gray-scale (row 1) and the conventional RGB
component-wise ordering (row 3) morphological operations, with respect to the pro-
posed BPT-based spatial-spectral π-ordering (rows 2 and 4) obtained using a square
11×11 structural element: (a) erosion, (b) dilation, (c) closing, (d) opening, (e) closing
by reconstruction, and (f) opening by reconstruction.
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6 Conclusions

We have proposed a novel spectral-spatial permutation ordering taking advan-
tage of the hierarchical structure of the BPT representation of an image. The
proposed π-ordering, makes use of the sorted leaves of the BPT representation.
We have also provided a top-down recursive algorithm to sort the BPT leaves.
As far as the authors know, this is the first time that an ordering taking into
account both, the spectral and the spatial information of the pixels of an image,
is proposed. The proposed ordering allows to perform morphological operations
that work on the spatial structures of the image encoded in the BPT represen-
tation. We have provided some examples of the potential use of the proposed
ordering using binary, gray-scale and RGB images. It is worthy to note, that
in addition to the novel spatial properties of the morphological operations, the
proposed ordering naturally deals with multivariate data, i.e. RGB images, once
a BPT representation of the image is given. Further work will explore the the-
oretical properties of the proposed ordering and potential new research avenues
provided in the discussion section.
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