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Abstract—The new I EEE 802.15.4e standard does not specify
how the schedule of medium accesses followed by wireless sensors
is built. That is why, we propose a distributed interference-
aware joint channel and time slot assignment, called DiSCA,
for a traffic-aware convergecast in multichannel wireless sensor
networks (WSNs). Unlike most previous studies, we consider
two cases of transmissions: without acknowledgment and with
immediate acknowledgment. We provide the minimum bound on
the number of time slots needed for a convergecast with a sink
equipped with multiple radio interfaces. Simulations results show
that DiSCA is close to the optimal in terms of the number of
slots and outperforms TMCP.

I. INTRODUCTION

Convergecast is a relevant pattern of communication in
Wireless Sensor Networks (WSNs): every node plays the role
of data source and possibly of router node through a routing
tree to deliver packets to the sink. Furthermore, in some
scenarios, delay constraints for data packets do not allow
intermediate processing on traffic in transit, like compres-
sion or aggregation. This data collection is called raw data
convergecast. In this context, nodes that are near the sink
should forward more packets than sensors far away. Hence,
the medium access should be scheduled to take traffic load
into account.

Two key issues for data convergecast raise: (1) minimized
latencies and guaranteed packet delivery (2) energy saving.
Minimized end-to-end delays ensure freshness of collected
data. Besides, guaranteed packet delivery leads to a more ac-
curate monitoring. As convergecast involves a large number of
sensors that may transmit simultaneously, collisions represent
a major challenge for bounded latencies. Indeed, collisions
lead to data losses. Retransmissions increase packet latency
and result on non-deterministic packet delivery times. Unlike
contention-based protocols which suffer from inefficiency due
to backoff and collisions, collision-free protocols guarantee
bounded latencies. In fact, these protocols ensure that any
transmission of a node does not interfere with any other
simultaneous transmission. It is achieved by allocation of
channels and time slots to nodes in such a way that these
interferences are avoided. In addition, a node is active only
when it is transmitting to its parent or receiving from its
children. Nodes turn off their radio otherwise in order to save
energy.

Limiting factors for a fast data collection are interferences.
Incel et al [1] proved that scheduling parallel transmissions
using multiple channels is more efficient than power control.

Basically, multichannel communications enable concurrent
transmissions on different channels. Hence, they drastically
reduce the data gathering delays.

The new standard / EEE 802.15.4e proposed the TimeSlot-
ted Channel Hopping (TSCH) [2] mode where nodes perform
channel hopping. This latter, combined with slotted medium
access, ensures collision-free communications and high reli-
ability against interferences. However, the standard does not
propose a mechanism to built a traffic-aware schedule that
assigns a channel and a time slot to each transmission. In this
paper, we cover this gap by proposing a distributed collision-
free scheduling algorithm that jointly optimizes the channel
and time slot assignment used by data gathering applications.

II. RELATED WORK

We can distinguish two approaches to remove interferences
between concurrent transmissions in the convergecast routing
tree. The first approach consists of two distinct phases:

(1) Channel allocation: channels are allocated to nodes (usu-
ally receivers) or links.

(2) Time slot assignment: interferences, that are not removed
by channel allocation, are avoided by assigning different time
slots to concurrent senders.

The second approach deals jointly with the time and fre-
quency allocation. This is the approach chosen in this paper.

Hereafter, we will only focus on distributed algorithms for
channel and slot assignment in WSNs. Such algorithms are
considered to be more scalable and reliable than centralized
ones. For centralized solutions, the interested reader can refer
to [1], [3], [4], [5].

Recently, many studies have resorted to multichannel com-
munications in order to deliver collected data in a short time.
In [6], Incel et al. derive a TDMA schedule that minimizes
the number of slots required for convergecast. They prove that
a lower bound for raw convergecast is max(2 * ny — 1, N)
where nj is the maximum number of nodes on any subtree
and N is the number of nodes in the network. In [7], we
extend this work considering heterogeneous traffic demands
and a sink equipped with multiple radio interfaces. In this
current work, we will compute these bounds for the immediate
acknowledgment policy. The solution proposed in [6] includes
two steps:

(1) a receiver based channel assignment: it removes all the
interference links in an arbitrary network.
(2) a distributed slot assignment: each node is assigned an



initial state (i.e. transmit, receive, idle) based on its hop-count
to the sink and the state of its branch (active or not).

The algorithm also assumes that either the parent orchestrates
the schedule of its children or any node should know the
number of remaining packets for each of its brothers. Besides,
the authors assume that after channel allocation, the only
remaining conflicts are inside the convergecast tree.

In [8], a distributed joint channel allocation of links and
packet scheduling for Software-Defined Radio, called CLDS
(Collision-free Distributed Scheduling) combines the use of an
access hash function with the inductive scheduling technique.
The hash function SHA-1 allows CLDS to know if a pair
of nodes will communicate or not on a channel and in the
current time slot. In addition, to be collision-free, a node needs
to exchange its links utilization with its interfering nodes.
However, CLDS is not designed for convergecast. Hence, the
end-to-end delays can be large due to an assignment of slots
that does not take into account the progression of data toward
the sink.

Authors of [9] propose DeTAS, a distributed traffic aware
scheduling solution for I EEE 802.15.4e T'SC H networks. In
DeTAS, all nodes follow a common schedule, called macro-
schedule, that is the combination of micro-schedules of each
destination-oriented tree graph rooted at the sink. Micro-
schedules minimize the number of slots needed to deliver data
to the sink. Their solution provides the smallest number of
slots for a sink with a single radio interface. However, DeTAS
can only operate correctly when all interfering links that do
not belong to the convergecast tree are eliminated.

In [10], we propose a simple distributed algorithm, called
Wave, based on successive waves, whose complexity is that of
a coloring algorithm. The macro-schedule consists of a jux-
taposition of the micro-schedules provided by each wave. To
reduce the number of slots needed by raw data gathering, we
will propose in this paper an optimized distributed scheduling
algorithm that allows micro-schedules to overlap.

This algorithm, called DiSCA, is self adpative to various
raw data convergecast features, such as homogeneous or
heterogeneous traffic generated per node, possible presence
of topology links in addition to those present in the routing
tree, number of sink’s children in the routing tree, number of
radio interfaces of the sink and number of available channels.
In addition, we also compute theoretical bounds for raw data
convergecast in case of immediate acknowledgment.

III. JOINT CHANNEL AND SLOT ASSIGNMENT PROBLEM

The joint channel and slot assignment problem in raw
data gathering supported by a multichannel WSN consists in
assigning to each node a time slot and a channel for each
of its transmissions toward the sink. All these transmissions
are needed to collect all the data produced by sensor nodes
under the assumptions given hereafter. This assignment must
minimize the number of slots allocated while ensuring that all
data produced by sensor nodes are delivered to the sink in a
single data gathering frame.

A. Definitions

We first introduce some definitions:

Definition 1: We focus on raw data convergecasts in a WSN
where nchannel > 1 channels are available at each node.

Definition 2: We define ninterf as the number of radio
interfaces of the sink, ninter f > 1. Any other node has only
one radio interface.

Definition 3: For any node u, we define Parent(u) the
parent of w in the routing tree. We denote Subtree(u) the
subtree of the routing tree that is rooted at node u. Let nchild
denote the number of children of the sink.

Definition 4: For any node u, we define Gen(u) the number
of packets generated by u to transmit its own data produced
in a data gathering frame. This number of packets may
differ from one node to another, that is why we speak of
heterogeneous traffic. Similarly, Trans(u) denotes the total
number of packets transmitted by w in a data gathering frame.
This number includes Gen(u) packets and the number of
packets received from its children that are forwarded to its
parent. Hence, Trans(u) = 3, c suptree(u) Gen(v).

Definition 5: For any node u, we define Con flict(u) the
set of nodes that are not allowed to transmit in the same slot
and on the same channel as u. Notice that in a raw data
convergecast, all the data transmissions are from a node to
its parent in the routing tree.

Definition 6: We consider two policies of acknowledgment:
either there is no acknowledgment or an immediate acknow-
ledgment is sent in the same time slot and on the same channel
as the packet it acknowledges.

B. Assumptions

In this paper, we adopt the following assumptions:

Assumption 1: The network topology and the routing tree
associated with the data gathering are given. Since the links
of the routing tree are used upstream to gather user data
and downstream to broadcast the computed schedule to all
nodes, these links must be symmetric. In addition, if the
immediate acknowledgement policy is adopted, symmetric
links are required.

Assumption 2: For any node u # sink, Gen(u) > 0 and
these Gen(u) packets are present in the buffer of u at the
beginning of the raw data gathering frame.

Assumption 3: For the sake of simplicity, the size of time
slots is constant and enables the transmission of one packet
and its acknowledgement if any.

C. Modeling interferences for data gathering

For any node u, the determination of Conflict(u) de-
pends on the policy used for the acknowledgment (immediate
acknowledgment or no acknowledgment).

Lemma 1: In data convergecast and in the absence of
acknowledgment, Con flict(u) contains:

a) the node wu itself,

b) the node Parent(u),

¢) all the children of w,

d) all the nodes that are 1-hop away from Parent(u),



e) all the nodes whose parent is 1-hop away from wu.

Proof: Any node u # sink cannot on the same channel
simultaneously:

« transmit to different nodes: case a in Figure 1.

o transmit and receive: case c¢ in Figure 1.

« receive from two different children: case d in Figure 1.
These rules also apply for Parent(u) (see case b for simul-
taneous transmission and receipt and case d for simultaneous
receipts in Figure 1). In addition, when u transmits, it inter-
feres with the transmission of any node v, whose parent is

one-hop away from w (see case e in Figure 1). [ |
u u Parent(u) u
>, Rx, T,
™ o o T, Rx, o
RXx, RX, G Child(u)
(@) (b) (c)
u Parent(u) u Parent(u) u Parent(u)
T Rx,
. BT Ry Y- @
T, —{Rx, T, ™™, — Rx,
v v \% Parent(v)
(d) (e)
Fig. 1. Conflicting transmissions without acknowledgment.

Lemma 2: In data convergecast with immediate acknow-
ledgment, Coon flict(u) contains:

a) the node u itself,

b) the node Parent(u),
¢’) all the nodes that are 1-hop away from wu,

d) all the nodes that are 1-hop away from Parent(u),

e) all the nodes whose parent is 1-hop away from u.

f) all the nodes whose parent is 1-hop away from

Parent(u).

Proof: The set Conflict(u) with immediate acknow-
ledgment is equal to the set Conflict(u) without acknow-
ledgment | J the set of nodes that are 1-hop away from u (see
case ¢’ in Figure 2) ] the set of nodes whose parent is 1-hop
away from Parent(u) (see case f in Figure 2). [ |

u Parent(u) u Parent(u)

Tx, —— Rx,

TX, — Rx,

T, — Rx Tx, — Rx
v v

(c) ®
Fig. 2. Additional conflicting transmissions with immediate acknowledgment.

Parent(v)

Corollary 1: With the immediate acknowledgment policy,
Conflict(u) contains the two additional cases depicted in
Figure 2.

IV. THEORETICAL BOUNDS

In this section and only in this section, we adopt some
additional assumptions that are used only for the computation
of theoretical bounds:

Assumption 4: No message loss and no node failure.

Assumption 5: No topology link in addition to those be-
longing to the routing tree.

We have shown in Corollary 1 that for any node u, the set
Conflict(u) with immediate acknowledgment is a superset
of Con flict(u) without acknowledgment. Hence, the number
of slots for a raw data convergecast with immediate acknow-
ledgment is higher than or equal to this obtained without
acknowledgment. Therefore, the lower bounds computed with-
out acknowledgment still hold for immediate acknowledgment
see Section IV-A. In Section IV-B, we then identify configu-
rations for which the number of slots is the same with both
acknowledgment policies.

We order the children of the sink by the decreasing order
of the number of their transmissions. The first child transmits
more messages to the sink than any other. It is called the most
transmitting child and it is denoted c1. A subtree is said active
in a slot ¢ if and only if the node at which it is rooted is either
transmitting or receiving in this slot.

With regard to the minimum number of slots required, we
define two types of configurations:

e The T, configurations are traffic-balanced. By traffic-
balanced, we mean that each subtree of the sink delivers
approximately the same number of messages to the sink.
See Figure 3.a. The sink has to receive 3, ;.. Gen(u)
messages from its children. The number of simultaneous
transmissions to the sink is limited by the number of chil-
dren, the number of sink interfaces, as well as the number
of available channels (each interface using a channel
different from the channels used by the other active

interfaces). Hence, the number of slots needed is higher
u#sink Gen(u) ‘|'
min(Ninterf Nehild Nechannel) |’

e The T; configurations are dominated by the subtree

than or equal to S,, = |

requiring the highest number of transmissions.
See Figure 3.b. Each child, ¢, of the sink has
D vricsubtree(iy G€N(v)  packets to  receive and

vesubtree(s) G€n(v) packets to transmit. Moreover, let
us order the sink’s children according to the decreasing
order of the number of slots they need, that is,
Gen(i) + 23, 4 vesubtrec(iy Gen(v) for the sink
child 7. If the (mm(nmterf,nchild,nchannel) + 1)th
sink child requires the same number of slots as
cl the first one, then its schedule will require an
additional slot. Indeed, the schedule of this subtree
requires the same number of slots as the first one.
However, the (min(ninterf7nchildynchannel) + 1)th
sink child starts to transmit one slot later than the
first one, because at the first slot, all the available
interfaces of the sink or all the available channels
are used by the
first children of the

min(ninterfa Nechild, nchannel)
sink. Consequently, the



(min(Ninter f, Nehitd, Nehannet) + 1) sink child will end
one slot after. Hence the number of slots needed is given
by S; = Gen(cl) +25 ) Gen(v) + 6,

v#cl,vEsubtree(cl

where § = 1 if the (min(nmtwf, Nehilds nchannel) + 1)th
sink child requires the same number of transmissions as
cl and § = 0 otherwise.

(a) A T}, configuration. (b) A T} configuration.

Fig. 3. An example of two configurations with the same number of nodes
but whose number of slots differs.

A. Lower bounds valid whatever the acknowledgment policy

Lemma 3: The minimum number of slots required for raw
data gathering in a multichannel WSN generating heteroge-
neous traffic, whatever the acknowledgment policy, is lower
bounded by maxz(Sy, St).

Proof: The number of slots needed is determined by the
highest value between S,, and S;. [ |

B. Accurate bounds for the immediate acknowledgment

We now detail cases where the bounds given in the previous
section, are still valid with the immediate acknowledgment
policy.

Lemma 4: For raw data gathering in a multichannel WSN,
the only additional conflicts created by the choice of the im-
mediate acknowledgment policy are those occurring between
a node and one of its nephews (i.e. a child of a brother of the
node considered).

Proof: The additional conflicts introduced by the immedi-
ate acknowledgment policy are those illustrated by Figures 2.f
and 2.c’. We distinguish two cases:

o Conflict illustrated by Figure 2.f: Since in a data gathering
tree, any node different from the sink transmits only to
its parent in the tree and since there is no radio link other
than those present in the data gathering tree (Assumption
AS), this case can occur only when T'x1 is a node u
different from the sink, Rz1 is the parent of u, whereas
Rx2 is a brother of u and T'z2 is a child of Rz2.

o Conflict illustrated by Figure 2.c’: Such a conflict can
never occur, since in the tree no two one-hop neighbors
can transmit simultaneously to two different parents.
Hence, the only additional conflicts are those occurring
between a node different from the sink and one of its
nephews (see the collision caused by the transmissions
of nodes 2 and 7 in Figure 4). m

Lemma 5: The minimum number of slots required for raw
data gathering in a multichannel WSN having a star or line
topology, whatever the acknowledgment policy, is equal to
maz(Sy, St).

Collision

Fig. 4. Collision between a node and its nephew.

Proof: A star topology or a line topology does not create
any conflict between a node and its nephew because no node
has a nephew. Hence, the minimum number of slots does not
depend on the acknowledgment policy. From Lemma 3, it is
equal to maz(Sy, St). [ |

Theorem 1: When nchild < min(nchannel, ninterf) or
ninter f < min(nchild, nchannel), the minimum number of
slots required for raw data gathering in a multichannel WSN
generating heterogeneous traffic is the same with and without
the immediate acknowledgment.

Proof: We distinguish two cases.

e First case: If nchild < min(nchannel, ninter f): We can
build a schedule where the subtree rooted at any sink child ¢
is active in any slot ¢ with 1 < ¢ < Trans(c) and nodes are
scheduled according to their depth in the tree. Each child of
the sink is assigned both its own interface and its own channel.
In each brotherhood of depth 4h + 1, with h integer > 1, one
node u (the selection policy of this node in its brotherhood
is round robin) is assigned the same odd slot ¢ and the same
channel as the root of its subtree (if u has still packets to
transmit). Similarly, in each brotherhood of depth 4h + 3, one
node is assigned the same odd slot as the root of its subtree
(if this slot is needed) but with a different channel (e.g. the
channel of the root of the previous subtree). Alternatively in
the even slots and as long as they have packets to transmit,
in each brotherhood of even depth, one node is scheduled on
the channel used by its parent in the previous slot. Since in
the absence of acknowledgment, this schedule provides the
minimum number of slots required by the most demanding
subtree, given by S;, this schedule is optimal. Since there is
no slot where a node and its nephew are scheduled in the
same slot and on the same channel, according to Lemma 4,
this schedule is also valid if the immediate acknowledgment
is used. Hence, the first part of the theorem.

e Second case: If ninterf < min(nchild, nchannel): At
any slot at most min(nchannel, nchild, ninter f) = ninter f
children of the sink are scheduled. Let us consider any valid
schedule without acknowledgment that provides the minimum
number of slots and build a valid schedule for the immediate
acknowledgment. We distinguish two subcases:

o First subcase: there is no slot where a node and its
nephew transmit in the same slot and on the same channel.
Hence, according to Lemma 4, this schedule is also valid if
the immediate acknowledgment is used.



o Second subcase: there is a slot where a node and its
nephew, denoted neph, transmit in the same slot and on the
same channel. We focus on ¢ the smallest time slot where
this occurs. Since nchannel > ninterf, at most ninterf
uncles of neph are scheduled in the same slot but each on
its own channel. It is necessary to schedule the transmission
of node neph on a channel ch that is unused by the uncles
of neph scheduled in this slot. Such a channel exists since
nchannel > ninterf. Furthermore, we have to avoid the
creation of new conflicts: for instance a conflict between neph
and childyepn, a child of a child of neph, when childycpy, is
scheduled in the same slot and on the same channel ch as
neph. We then apply the following rules: any descendant of
neph at a depth = 4h + 4 with h integer > 0 is scheduled
on a channel already used by a child of the sink, whereas any
descendant of neph at a depth = 4h + 6 with & integer > 0
is scheduled on the channel ch. Hence, the conflict caused by
neph or any of its descendant is avoided. This method can be
applied to any conflicting node neph. Finally, we get a valid
schedule using the same number of slots as the initial one.
Hence, the immediate acknowledgment does not require any
additional slot. Hence, the second part of the theorem. [ |

Theorem 2: If nchannel < mninterf < nchild and
nchannel x max(St, Sn) > >, wen Gen(u) + Rev(c),
the minimum number of slots required for raw data gather-
ing in a multichannel WSN generating heterogeneous traffic
is equal to max(St, Sy), with and without the immediate
acknowledgment, where Rcv(c) denotes the number of packets
received by the most receiving child of the sink.

Proof: The quantity nchannel x maxz(St, S,) denotes
the number of transmission opportunities available for the
children of the sink. The number of messages that must be
transmitted to the sink is equal to ) . gy Gen(u). Each
of this transmission uses a distinct interface and channel. If
nchannel < ninterf < nchild, the only possibility for any
child of a sink child is to transmit on a channel already used by
one of its uncles. To avoid such a conflict, we should have:
nchannel x max(Sy, Sn) > > ,c wen Gen(u) + Rev(c),
where ¢ denotes the most receiving child of the sink. In such
a case, the conflict is avoided and the number of slots is the
same with and without immediate acknowledgment; it is equal
to max(Sy, St). Hence, the theorem. [ |

We now prove the existence of 73 and 7, configurations
that both require different numbers of slots, depending on the
acknowledgment policy.

Let us consider the example depicted by Figure 3 where
both configurations have the same number of nodes. Fur-
thermore, we assume two channels, two radio interfaces for
the sink and an homogeneous traffic. We have nchannel <
ninter f < nchild in both configurations. For the T}, configu-
ration (see Figure 3.a), we have S,, =8 > S; = 7, 8 slots are
needed without acknowledgment and 9 slots with immediate
acknowledgment. For the T} configuration (see Figure 3.b),
we have S; = 9 > 5,, = 8. Hence, 9 slots are needed without
acknowledgment, but 10 slots are required with immediate

acknowledgment. We notice that neither 73 nor 7, meets
nchannel x max(St, Sn) > >, wen Gen(u) + Rev(c),
explaining why the number of slots differs according to the
acknowledgment policy.

V. A DISTRIBUTED CHANNEL AND SLOT ASSIGNMENT

We are interested in a joint channel and slot assignment
algorithm that minimizes the number of slots needed by raw
data convergecast, taking advantage of the multichannel WSN
but without making any assumption regarding:

« the network links: additional links to the routing tree may

exist in the topology creating additional conflicts.

« the multichannel topology: the topology of the network
may differ from one channel to another. However, the
connectivity is assumed on any channel.

o the acknowledgment policy: it is optimized for the ab-
sence of acknowledgment and for the presence of imme-
diate acknowledgment.

DiSCA is a distributed algorithm where any node only
knows the information related to itself and its conflicting
nodes. The i*"* iteration schedules the ! transmission of each
node having at least ¢ transmissions to perform. Each iteration
provides a micro-schedule and micro-schedules can overlap
to reduce the total number of slots. It proceeds in successive
iterations applying the following rules:

Rule 1: For any node u # sink, DiSCA defines
the static priority of any node as follows: Prio(u) =
2 vesubtree(w) Gen(v) = Trans(u). If two nodes have the
same priority, the node with highest depth in the routing tree
is scheduled first. If both nodes have the same depth, the node
with the smallest identifier is favored.

Rule 2: DiSCA in distributed mode proceeds in successive
iterations too. As illustrated in Algorithm 1, on any node u,
the i*” iteration schedules the i*" transmission of any node v €
Conflict(u) with unscheduled transmissions. More precisely,
the ' transmission of any node u # sink with Trans(u) >
1 > 1 is scheduled in iteration ¢ if and only if:

o the i transmission of any node v € Coonflict(u) such
that Prio(v) > Prio(u), with 1 < i < Trans(v) is
already scheduled,

e and if i > 1, the (i — 1)** transmission of any node
v € Conflict(u), whatever its priority, with 1 <i—1 <
Trans(v), is already scheduled.

Rule 3: The i*" transmission of u is scheduled in the first
slot ¢ and on the first channel ch (channels being visited in
round robin order) where the following conditions are met:

o u has a packet to transmit in this slot,

e w has an available interface,

« the parent of u has an available interface,

« the transmission of u does not conflict with the transmis-
sion of any node already scheduled in the slot ¢ and on
the channel ch.

Rule 4: Each node u whose ‘" transmission is scheduled

in slot ¢ and on channel ch notifies its conflicting nodes with
the SlotC'hAssigned message (see Algorithm 1).



Algorithm 1 DiSCA algorithm

1: Input: nchannel channels; a routing tree 7" where the local node u
has a set of conflicting nodes Con flict(u), a number of available radio
interfaces Availlnter(u) and a priority Trans(u)=number of packets
that node v should transmit.

: Output: ScheduledNodes: Channel and time slot assignment for local
node u and Con flict(u) per slot and channel

: Initialization:

: Slot(u) < 0 /*number of slots already assigned to node u*/

. LastTxzSlot(u) < 0 /*the last slot assigned to u*/

: EarliestPcktSlot(u) < 0 /*the smallest slot in which u has generated
/ received a packet not yet transmitted.*/

[N B OS] [\

%

: Channel and slot assignment for node v

9: SortedNodesList(u) « the set {u}UConflict(u) sorted by decreas-
ing priorities.

10: if Reception of a SlotChAssigned(slot,ch,v, Parent(v)) Message
then

11:  Forward the SlotChAssigned Message to the conflicting nodes

12:  if v € Conflict(u) then

13: Update ScheduledNodes

14:  end if

15:  if v = Child(u) then

16: Update Availlnter f(u, slot)
17: Update EarliestPcktSlot(u)

18:  else if (v = Parent(u)) || (Parent(v) = Parent(u) & v # u)
then

19: Update Availlnter f(Parent(u), slot)
20:  end if
21: end if

22: if (Slot(u) < Trans(u) ) & ( Vv € SortedNodesList(u) such that
Trans(v) > Trans(u), Slot(v) > Slot(u)) then

23:  ch <+ 1, tx + false

24:  nChannelReached < false

25:  t < max(LastTxSlot(u), Earliest PcktSlot(u))

26:  while (Availlnter(u,t) = 0 || AvailInter(Parent(u),t) =
0 || tz = false) do

27: /* Find a time slot with available interface for u & Parent(u) */

28: t+—t+1

29: repeat

30: if ((Conflict(u) () ScheduledNodes(t,ch) = () ) then

31: /* Node u can be scheduled in slot ¢ on channel ch */

32: tx < true;

33: AvailInter(u,t) + Availlnter(u,t) — 1

34: AvailInter(Parent(u), t) —
AvailInter(Parent(u),t) — 1

35: ScheduledNodes(t, ch) < ScheduledNodes(t, ch) U {u}

36: else

37: if (ch < nchannel) then

38: ch <— ch + 1 // try the next channel

39: else

40: nChannel Reached < true

41: tx < false

42: end if

43: end if

44: until (tz || nChannel Reached )

45:  end while

46:  Update of LastTxzSlot(u)

47:  Update of EarliestPcktSlot(u)

48:  Slot(u) < Slot(u) + 1

49:  Transmit the SlotChAssigned(slot, ch, u, Parent(u)) Message to
the 1-hop neighbors of wu.

50: end if

Notice that for any node wu, its conflicting nodes
Conflict(u) are an input of the DiSCA algorithm. The
determination of this set depends on the policy used for the
acknowledgment (immediate acknowledgment or no acknow-
ledgment). Hence, the same algorithm is applied whatever the
policy used for the acknowledgment, but with different inputs.

This algorithm is given (see Algorithm 1).

VI. PERFORMANCE EVALUATION

We evaluate the performance of DiSCA using our simula-
tion tool based on GNU Octave [11]. We compare the number
of slots required by DiSCA with the optimal (i.e. the theo-
retical bound) and that obtained by TMCP [3], MODESA [5]
and Wave [10]. The number of nodes varies from 10 to 100.
The first node is designated as the sink and all other nodes
generate packets and send them to the sink. We use the Galton-
Watson process as a branching stochastic process to generate
random trees. The number of children per node is at most
equal to 3. In addition, we assume that the only existing links
are those in the tree. We suppose that all the nodes except
the sink have a single radio interface and we vary the number
of sink radio interfaces from 1 to 3. The number of available
channels vary from 2 to 3. We also distinguish two subcases:
homogeneous and heterogeneous traffic generated by nodes.
In addition, in order to show how the convergecast structure
can impact the schedule length, we differentiate the two types
of configurations 7; and T),. In the following, each result is
the average of 20 simulation runs for small topologies (< 30
nodes) and 100 runs for large topologies.

A. Comparison with TMCP

We first compare DiSCA with TMCP [3], a famous central-
ized scheduling algorithm for data convergecast.
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Fig. 5. DiSCA versus TMCP: homogeneous traffic

We assume a homogeneous traffic where each node, except
the sink, generates one data packet. As illustrated by Figure 5,



DiSCA outperforms clearly TMCP. Indeed, in data gathering
trees with 100 nodes, DiSCA requires 12% (respectively
10.5%) slots less than the number required by TMCP in T;
configurations (respectively 7,, configurations).

Indeed, TMCP partitions the network on multiple disjoint
subtrees (vertex-disjoint). There is no channel reuse in the
same subtree. In contrast, DiSCA allows non-conflicting nodes
(even in the same subtree) to use same channels. Another
drawback of TMCP is that the number of channels should be
equal or higher to the number of subtrees. This is because, in
TMCP, each subtree operates on a different channel. There is a
problem when we do not have a sufficient number of channels
to schedule all subtrees in parallel. The scheduling of a whole
(or multiple) subtree should be delayed. In contrast, DiSCA
uses the available channels to schedule nodes. Besides, unlike
TMCP, DiSCA does not require that the sink is equipped with
a number of radio interfaces equal to the number of sink
children.

Notice however that in the comparative performance eval-
uation, the number of available channels and the number of
sink interfaces are always higher than or equal to the number
of sink children. In other words, we are always in a favorable
context for TMCP.

B. Comparison with optimal schedule, Wave and MODESA

We compare here DiSCA with the optimal schedule and our
previous published studies Wave and MODESA.
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Results depicted in Figure 6 show that DiSCA is at most
11% away from the optimal. This is due to the very accurate
definition of the conflicting links, taking into account both
the transmitter and the receiver. Moreover, DiSCA needs less
slots than Wawve in both types of configuration to complete
data convergecast. Hence, these simulation results show that
DiSCA is more efficient than Wawve.

MODESA, a centralized time slot and channel assignment,
provides better results than DiSCA as shown in Figure 6,
because it uses a dynamic priority to schedule nodes. Never-
theless, the distributed mode of MODESA would require many
more control messages than DiSCA because, after each slot,
the priority of each transmitter and each receiver is updated
and transmitted to the conflicting nodes. Whereas, the priority
is sent only once in DiSCA.

C. Impact of immediate acknowledgment

We evaluate the impact of immediate acknowledgement. As
expected the number of slots required when the immediate ac-
knowledgement is used is higher than without, for both DiSCA
and Wave (see Figure 7). However, the gap remains small
thanks to the accurate definition of conflicting transmissions
(less than 3% for DiSCA).
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D. Impact of heterogeneous traffic

In this set of simulations, each node generates a number of
packets randomly drawn in [1,5] per slotframe. We compare



DiSCA with TMCP, Wawve and the optimal schedule in terms
of number of slots needed to complete convergecast.
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traffic

As illustrated in Figure 8, the number of slots per slotframe
needed by all algorithms is higher than in the traffic homoge-
neous scenario. However, we observe the same trend as with
homogeneous traffic. We also notice that 7; configurations
are more greedy in number of slots than T,,. For example,
for 100 nodes, T,, configurations need 67% of the number of
slots needed by 7; configurations. This motivates the need
to avoid an overloaded branch in the routing tree and to
prefer routing trees balancing traffic over branches. Moreover,
DiSCA needs 14% (respectively 10%) less slots than TMCP
in T configurations (respectively 7,, configurations).

E. Impact of the number of sink interfaces and channels

Figure 9 depicts the results obtained with DiSCA when the
number of sink interfaces varies. When the sink is equipped
with multiple interfaces, we also observe a reduction of the
number of slots: with 3 interfaces, the number of slots is
reduced by 8% for T,, configurations and 6% for T, config-
urations. The minimum number of sink interfaces should be
equal to the minimum of nchannel and nchild to obtain the
best performances.

VII. CONCLUSION

In this paper, we have studied raw data convergecast in
multichannel WSNs, where wireless sensors generate hetero-
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geneous traffic collected by a sink that may be equipped with
multiple radio interfaces. We have defined very accurately the
conflicting transmissions, taking into account the acknowl-
edgement policy. We have determined bounds on the minimum
number of slots required when the immediate acknowledgment
policy is used. We have proposed DiSCA, a distributed joint
time slot and channel assignment algorithm. DiSCA does not
suppose that all interfering links have been removed by chan-
nel allocation. Furthermore, DiSCA supports scheduling with
a sink equipped by multiple radio interfaces. Unlike TMCP,
DiSCA is self-adaptive to various raw data convergecasts
(e.g. homogeneous/heterogeneous traffic generated by nodes,
number of radio interfaces of the sink, presence of topology
links in addition to those present in the routing tree, number of
available channels). It obtains the best performances when the
number of radio interfaces of the sink is equal to the minimum
between the number of available channels and the number of
sink’s children.

Simulations results show that DiSCA is close to the lower
bounds for raw data convergecast in various configurations
and for different acknowledgement policies. This performance
evaluation shows that DiSCA is able to schedule medium
access in multi-hop ITEEE 802.15.4e TSCH based networks.
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