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T1 topological rearrangement, i.e. switching of neighboring bubbles in a liquid foam,
is the elementary process of foam dynamics, and it involves film disappearance and
generation. It has been extensively studied as it is crucial in foam rheology or foam
collapse. T1 dynamics depends mainly on the surfactants used to generate the foam,
and several models taking into account surface viscosity and/or elasticity have been
proposed. By performing experiments in a cubic assembly of films, we go a step forward
in this global analysis and investigate experimentally the mechanism of formation of the
new film. In particular, the flow velocity field is probed by particle tracking and the
film thickness is measured by light absorption and interferometric measurements. Two
limit behaviors for the film are reported: it may 1) undergo an homogeneous extension,
or 2) resist elongation and remain at rest, new film being created from liquid exchange
with connecting meniscus. Both T1 dynamics and film thickness are shown to depend
on the competition between these two behaviors. Interestingly, their balance is set by
the surfactant solution used, but it is also shown to vary during a single T1 relaxation
process.

Key words:

1. Introduction

Liquid foams are concentrated dispersions of gas bubbles in a surfactant solution, the
surfactants being required to ensure their stability. As for other complex systems charac-
terized by their multi-scale structure, foam rheology has been extensively studied (Cohen-
Addad et al. 2013; Tcholakova et al. 2008) and it is well described by the Herschel-Bulkley
relationship for complex fluids. Different analytical and numerical models attempt to link
local properties of complex liquid to their macroscopic rheological behaviors (Tcholakova
et al. 2008; Cantat 2011; Martens et al. 2012). However, local responses and in particular
local timescales are required to implement modeling and predictions of macroscopic foam
rheology.

In the case of a dry liquid foam, the elementary process associated to foam flow is a
plastic event, the so-called T1 process where neighbouring bubbles switch positions. This
T1 process in a 2D configuration is associated with the disappearance of a liquid film,
the junction of two vertexes then a relaxation toward an equilibrium state through the
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creation of a new film. On the contrary to suspensions where deformations occur mainly
through the liquid phase, bubbles are highly deformable and we assume here, in the case
of dry foam, that the dynamics of the T1 is characterized by the film switching dynamics.
From a topological point of view, elementary T1 process in 3D foam would involve the
merging of two vertexes and their dissociation in a film surrounded by three of them.
This configuration also involves the formation of a new film (Hutzler et al. 2007).

Different experiments probed T1 dynamics in liquid foam. Experiments in 2D foam
(Durand & Stone 2006) and in four bubble clusters (Biance et al. 2009) have proposed
a generic mechanism of T1 relaxation and showed that its timescale is governed by a
balance between a driving force due to surface tension and a surface dissipation due to
viscoelastic properties of the interface. Modifying surfactant types tunes T1 characteristic
time over several orders of magnitude. An effect of bulk viscosity has been observed
(Biance et al. 2009), but it has been attributed to modifications of surface properties of
the surfactant solution. These studies are accompanied by theoretical work underlying the
exact contribution of elasticity and surface viscosity in the process (Grassia et al. 2012).
As surface dissipation is the main mechanism driving the T1 dynamics, the thickness of
the film and the structure of its flow is not discussed in these modelings.

These studies appear however controversial with results on macroscopic foam rheology,
where surfactant types modify not only the timescales involved but more fundamentally
the rheological process. Indeed, the Herschel Bulkley exponent is strongly affected by the
surfactants employed (Tcholakova et al. 2008). Moreover, recent experiments (Le Merrer
et al. 2012, 2013) in wet foams probed the dynamics of rearrangements by diffusive
light scattering and showed that the type of surfactant used alters both the dynamics
of T1 and its dependence with foam internal pressure and bubble radius. Even if foam
structure and in particular its internal pressure is crucial for predicting T1 dynamics,
local hydrodynamics of the freshly formed film is still lacking for predicting T1 relaxation
timescale. These global experiments suggest that a generic mechanism for T1 dynamics
might not be valid.

Finally, although T1 process analysis is essential to predict foam rheology, it has also
been proven to be a key point for understanding foam stability (Carrier & Colin 2003;
Biance et al. 2011) and in particular coalescence. Indeed, experiments show that dynam-
ical events within a foam can generate foam collapse via film rupture. However, during
the T1, the films appear to be thick (colored) that is far from the point of rupturing
observed in a film at rest. Moreover, another mechanism for film generation based on
pulling the film out of its reservoir by viscous dissipation has been proposed but not
experimentally studied.

To disentangle these observations, to define whether a generic mechanism for T1 dy-
namic is reasonable or not, and to define the conditions for film rupture, it appears crucial
to probe the structure of the film generated during a T1 process. By using a dedicated
soap film assembly to mimic a topological rearrangement in a real foam, this is the issue
which is tackled here.

2. Experiments

2.1. Experimental configuration

The topological rearrangement T1 is generated through a cubic Plateau’s frame (Weaire
et al. 2007; Barrett et al. 2008), constituted of a cube with two sides of fixed length Lf and
one sliding side of length Ls (figures 1(a) and 1(b)). When the frame, in a configuration
with Ls < Lf , is removed from a foaming solution, an assembly of eight foam films, joined
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Figure 1. (a) Picture of the frame with the micrometric screw and the mirror. (b) Film network
created in the frame before the T1 event (left), in the metastable configuration (middle), and at
the end of the rearrangement (right). (c) Image sequence of the freshly created film. Rc is the
radius of curvature of the Plateau border, and 2L the length of the film.

by eight liquid channels or menisci called Plateau borders (Cantat et al. 2010) converging
at one central vertical film, is formed (picture one of figure 1(b)). By increasing Ls quasi-
statically via a micrometer screw, the size of the central film decreases until the central
film disappears in a single eight-fold vertex of Plateau borders. This configuration is
unstable, and the network evolves spontaneously towards its new stable configuration,
which includes a freshly created film orthogonally to the previous one (figure 1(b)). Three
frame lengths Lf are tested (4, 8 and 16mm), and a slight asymmetry is added in order
to shape a horizontal film and reduce gravity effects. The frame is lighted from above,
and a direct image of the new film is captured with a high speed camera (Photron SA-4)
at up to 2000 fps. Figure 1(c) shows snapshots of the creation and growth of the new
film. The length of the film L is measured along the x-direction on the symmetry axis
of the film, and the radius of curvature Rc is defined by the projected minimal width of
the diagonal Plateau borders. The error on Rc is ±15% in absolute value, attributed to
variations obtained through different measurement methods. Rc is varied by withdrawing
liquid from the film assembly with a tissue.

2.2. Velocity profile

The local dynamics of the film expansion, usually inaccessible because the film is hidden
by closed bubbles, is followed by dispersion of Iriodin particles in the foaming solution,
whose diameter is on average 5 µm, at a volume fraction of the order of 0.1% (Merck
111 rutile fine satin). The addition of the particles has been checked to leave the T1
global dynamics unchanged, and variations of their size (same material, average diameter
below 100 nm) show no influence on the velocity profiles measured. The flow profile is
obtained by carrying on particle tracking with a Matlab routine developed in house
(Geraud et al. 2013). In this analysis, the particles are first detected by the localization
of the local intensity maxima of a filtered image. The individual particles are tracked by



4 P. C. Petit, J. Seiwert, I. Cantat and A.-L. Biance

minimizing their global displacement between two pictures. The velocity of the flow is
then deduced, as shown in figure 2(a), by fitting the particle positions obtained from n
successive pictures, spanning between 1.5ms and 80ms depending on the velocity range.
The velocity profile is however not resolved in the film thickness but corresponds to an
averaged value of the velocity at a given position within the film.

2.3. Thickness profile measurements

The local film thickness h(x, y, t) of the liquid film is measured by two techniques, de-
pending on the range of thicknesses observed. A first method, already described elsewhere
(Lastakowski et al. 2014) is based on light absorption, a dye (Brilliant Black BN, Sigma,
60%, No. 211842, 5g/L) being added to the solution. Grey level intensities of transmitted
light It are linked to film thicknesses through Beer-Lambert law (figure 2(b-c)):

It = TI0 exp(−αh) (2.1)

where α arises from the calibration on capillary tubing of controlled thickness (20, 30
and 50µm) filled with the solution and diluted solutions (up to 10 times), T from the
transmission coefficient of a colorless liquid film, and I0 from the image of the back-
ground. The comparison of thicknesses measured by absorption and interferometry with
a commercial interferometer (oceanoptics) shows a good agreement, with an error esti-
mated within 1µm. To reduce the noise, the thickness is calculated for an average of the
intensity on a square of side 3 pixels which gives a lateral resolution of 19±1µm. Finally,
when the thickness is shown as a function of x, the symmetries along the x and y-axis are
also taken into account to reduce the noise and the mean value between h(x,y), h(x,-y),
h(-x,y) and h(-x,-y) is plotted.

This method however is limited to thick films, because light absorption passes under the
camera sensitivity for film thicknesses lower than 2µm. Consequently, an interferometric
method has been developed to measure the local thickness of ”thin” films. A monochro-
matic light (Sodium lamp associated to a pass-band filter) of wavelength λ0 =545nm
is partly reflected by the two interfaces of the new film with an incident angle θi=15◦,
and transmitted through a stereomicroscope to the high-speed camera. Fringes of equal
thicknesses h(x, y, t) are recorded, as shown in figure 2(d):

h(x, y, t) =
P

4n cos θr
λ0 (2.2)

with P = 2p+1 and P = 2p for constructive and destructive interferences respectively,
p the fringe order, n the refractive index of the foaming solution, and θr the refraction
angle (verifying sin θi = n sin θr). To measure the absolute value of the thickness, images
are recorded until the appearance of a common black film. As only extrema of the light
intensity are recorded, the incertitude of the measurements is given by 1/8 of the light
wavelength, i.e. 60nm. The spatial incertitude is also 1/4 of the distance between two
extrema. A comparison between the two methods carried on experiments with the same
parameters shows a good agreement, which confirms the validity of our experimental
investigation, as reported in figure 2 (e-f).

2.4. Surfactant solutions

To probe the effect of surface properties and surfactant types, different foaming solu-
tions are used in the experiments, whose compositions are presented in table 1. The
first class of surfactant solutions consists in a mixture of an anionic surfactant sodium
lauryldioxyethylene sulfate (SLES, product of Stepan Co., Northfield, IL; commercial
name STEOL CS-170), and a zwitterionic surfactant cocoamidopropyl betaine (CAPB,
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Figure 2. (a) Velocity of the particles 13ms after the creation of the fresh film, for a solution
of SDS with dye and 40% of glycerol. (b-c) Thickness measurement through light absorption
100ms after the creation of a film of a solution of SDS containing a dye. The light intensity (b)
and the corresponding thickness (c) are represented. Thickness bars are in µm. (d) Thickness
measurement through monochromatic interferences observed 28ms after the film creation for
a solution of SDS with dye and 10% of glycerol. (e) Evolution with time of the thickness at
the center of the new film measured by absorption (black line) and interferometry (red dot)
for two measurements with comparable evolution of film length, with a mixture of SDS (3g/L),
dodecanol (0.3 g/L), dye, and 10% of glycerol. (f) Thickness profile of the same films at t=800ms.

SDS SLES CAPB MAc Glycerol Dye η γ

A - 3.3 1.7 0.2 10 5 1.4 24
B - 3.3 1.7 0.2 30 5 2.2 24
C - 3.3 1.7 0.2 40 5 3.4 24
D - 3.3 1.7 0.2 50 5 5.1 24
E 4.8 - - - 10 5 1.4 37
F 4.8 - - - 40 5 3.4 37

Table 1. Solutions compositions and properties: concentration of SDS, SLES, CAPB, and MAc
(g.L−1), glycerol content (wt%), dye content (g.L−1), viscosity η (mPa.s) and surface tension γ
(mN/m) at room temperature (∼ 23◦C).

product of Goldschmidt, Essen, Germany; commercial name Tego Betaine F50), with the
addition of myristic acid (MAc, Fluka, purum g 98.0 GC, Cat. No. 70082), known to have
a high surface dilatational modulus, and thus to entail rigidity to liquid-gas interfaces
(Golemanov et al. 2008). The second class of surfactant solution contains an anionic sur-
factant, sodium dodecyl sulfate (SDS, Sigma, 98.5%, No. L4509) with various glycerol
contents to vary the bulk viscosity.
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Figure 3. (a-b-c) Velocity V of the particles normalized by the velocity of the Plateau border
VPB , as a function of the position normalized by half of the length of the film L at time t=380ms
(a), or at time t=10ms (b-c). All the data are measured along the x-axis. (d-e-f) Evolution of the
slope of the normalized velocity profile, calculated as the mean along the x and y-directions, with
time. (g-h-i) Thickness profiles of the liquid film during the rearrangement. (a-d) are obtained
for solutions A (first column); (b-e) and (c-f) for solutions E and F respectively (viscosities of
1.4 and 3.4mPa.s). These results are obtained with Rc = 280µm.

3. Experimental results

The liquid dynamics inside the freshly formed film has been studied for the different
surfactant solutions reported in Table 1, and two behaviors are observed, as depicted in
figure 3.

The first one is observed in experiments performed with solutions A-D (Table 1). The
velocity V (x, y = 0, t) of the liquid in the film along the x axis normalized by the velocity
of the surrounding Plateau borders VPB(t)= L̇(t) is reported in figure 3(a). The origin
of time is taken when the vertex is symmetrical (see fig1). Inside the film, the velocity
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is constant and equal to zero (within error bars) on 80 % of the film length. The zone
near the Plateau border region cannot be probed (because of internal reflexions due
to interface curvature preventing light collection), but velocity variations in this zone
are expected. If this profile is fitted by a linear relation, the resulting slope is equal to
0.1± 0.1, whatever the time at which it is taken, as shown in figure 3(d). The thickness
profile of the film is measured by interferometry, thicknesses reported varying between
100 nm and 500 nm, as shown in figure 3(g). It shows a maximum in the middle of the
film and a minimum near the surrounding Plateau borders, both decreasing when the
film length increases.

The second behavior is observed with solutions E and F (differing only by their glyc-
erol content). The normalized velocity profiles are represented in figure 3(b) and (c) for
viscosities of 1.4 and 3.4mPa.s respectively, at a time t=10ms. They both show a lin-
ear dependency up to 0.8x/L(t). However, the velocity profiles have slopes k equal to
0.45±0.2 and 0.75±0.2 for bulk viscosities of 1.4 and 3.4mPa.s respectively (figures 3(e)
and (f)). A homogeneous extension of the film would lead to k=1. Moreover, the slope
of the velocity profile is constant with time for the lower viscosity, while it increases for
higher viscosities. Thickness profiles, measured by absorption, show in figure 3(h) and (i)
a thinning of the entire film during its extension. At a given time, the thickness is maxi-
mal in the middle of the film, and presents a minimum close to the surrounding Plateau
borders. However, the profile is rounded for the lower viscosity, and almost flat for the
higher one. The thickness of the film is of the order of several micrometers, compared to
hundreds of nanometers for solution A-D.

The timescale of the topological rearrangement is also different for the two cases be-
cause of the variations of the relaxation duration. All the results are presented for the
frame of side 8mm. Similar results for the two other frames have been observed.

To summarize, the observations can be rationalized by considering two limiting cases:
• The first one concerns rigid interfaces, for which the formation of the new film is

made possible by the extraction of liquid from the Plateau borders, acting as reservoirs
during their movement. Indeed, the liquid inside the new film is initially in the Plateau
borders, and stays at rest after its creation. It corresponds to k = 0. This process of film
pulling from the Plateau border is sketched in figure 4(a), and has been proposed before
(Buzza et al. 1995; Biance et al. 2011; Seiwert et al. 2013). It corresponds fairly to the
case experimentally observed in figure 3d, with k = 0.1.
• In the case of highly mobile interfaces, the film is stretched and has no interaction

with the Plateau borders. The flow is purely elongational, and the slope of the velocity
profile is k = 1. The results observed in figure 3f with k = 0.75 corresponds approximately
to this second case.
Between these two cases, figure 3f shows an intermediate slope near 0.5 (k = 0.45), which
suggests a competition between the two mechanisms. In the next section, these behaviors
are studied in more details.

4. Discussion

4.1. Stretching or pulling: dimensional analysis

We observed two mechanisms of film formation during topological rearrangements. The
first one consists of the pulling of the film from the Plateau border whereas the second
one is an elongation of the film. In our experiments, both effects contribute as we do
not recover a purely elongation velocity profile in the case of mobile interfaces and a
strictly zero velocity profile in the case of rigid interfaces. The relative contribution of
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Figure 4. Two limit cases of film formation, with the state at t represented on the left, and the
state at t+ dt represented on the right. The color indicates different volumes of fluid, followed
during their deformation and motion. (a) Pulling: The thin film at t (in gray) is not deformed
and some of the fluid present in the Plateau border at t goes into the film at t+dt. The velocity
in the thin film is 0, so k = 0. (b) Stretching: There is no volume exchange between the film and
the Plateau border. The thin film of length 2L at t (in gray) is stretched at t + dt to reached

the length 2L + 2L̇dt. The velocity in the film is Vx = L̇x/L, corresponding to k = 1. Actual
deformation is a combination of these two limit cases, leading to 0 6 k 6 1.

these two mechanisms can be estimated from mechanical bulk and interfacial rheological
properties by scaling laws, considering that the less dissipative mechanism of extension
will be selected. Stretching is associated with surface elongation and therefore dissipation
by surface viscosity whereas pulling is associated with shear and bulk viscous dissipation.
Whereas the driving force for T1 relaxation process is mainly surface tension (f ∼ γ) up
to geometrical factors, the drag force (per unit length) associated to surface elongation
is mainly related to the surface viscosity η∗s (Durand & Stone 2006; Biance et al. 2009):

fe ∼ η∗s L̇/L. The drag force associated to film pulling reads fp ∼ γ(ηL̇γ )2/3 (Cantat 2013).
Both contributions are of the same order of magnitude when the length of the film is

Lc ∼ η∗s
η , which is in fact the Boussinesq length. For L < Lc, pulling is dominant as for

L > Lc, stretching contribution is larger. This scaling analysis underlines different points
and captures qualitatively our observations:

(a) When surface viscosity is dominant, stretching dissipation becomes larger than
pulling dissipation, and this last mechanism of film formation is selected, as observed in
the case of rigid interfaces.

(b) When bulk viscosity is dominant, stretching of the film will be more favorable as
observed for the more viscous films where the elongation process is more robust.

(c) During the process, as L is increasing, the ratio of both contributions varies, the
pulling being predominant for small L (short times) then replaced by elongation as the
film grows in size. Thus the slope of the velocity profile is expected to increase with time,
as observed in figure 3(c).
One can note that this sequence of events (pulling followed by extensional flow) differs
with experiments reported recently on the elongation of an already formed soap film
on a frame (Seiwert et al. 2013), where an extensional flow, attributed to Marangoni
stress establishment, is followed by a pulling mechanism. However, in this case, the film
is stretched from an already formed film with a non-negligible size L at a prescribed
rate. These different initial conditions are crucial to understand the physical mechanism
at stake during the film generation. Indeed, to ensure pulling of a Frankel’s film, an
interfacial stress gradient (a Marangoni stress) must be established at the film surface
to balance bulk viscous stresses (Cantat 2013). This necessary stress is very low and can
have different origins. One of them, an inhomogeneous repartition of surfactants on the
film surface, requires a small extension (L/L0) of the film at the beginning of the process
of less than 1 % (Seiwert et al. 2013). In the case of a topological relaxation, the initial
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Figure 5. (a) Minimal thickness of the film normalized by the radius of curvature of the Plateau
border, as a function of the capillary number Ca = ηV/γ. The curve gather measurements for
the frame of side 8mm with η = 1.4mPa.s and 240 < Rc < 320µm (x), η = 1.4mPa.s and
160 < Rc < 240µm (4), η = 1.4mPa.s and 110 < Rc < 160µm (?), η = 2.2mPa.s and
240 < Rc < 320µm (∗), η = 2.2mPa.s and 110 < Rc < 160µm (+), η = 3.4mPa.s and
240 < Rc < 320µm (�), η = 5.1mPa.s and 240 < Rc < 320µm (O), and for the frame of side

4mm with η = 1.4mPa.s (o). The dashed line corresponds to Frankel’s law h/Rc = 2.68Ca2/3 and

the straight line corresponds to a fit of the data with h/Rc = 4.5Ca2/3. (b) Scheme representing
Plateau border radius of curvature variations due to out-of-equilibrium shape of film assembly,
the angle varying between π/2 at the beginning of the relaxation process to 2π/3.

size L0 of the film is very small and this critical elongation is instantaneously reached
during the vertex dissociation, and can not be captured experimentally. Then, the pulling
mechanism is established, until surface elongation requires less dissipation i.e. when the
elongation rate is decreased (lower velocity, larger films). During this last step of film
elongation, rheological properties of the interface due to so-called Marangoni effects must
be taken into account. For simplicity, the effect of surface elasticity has been neglected
as only a dependency of the stress with elongation rate, through surface viscosity, has
been taken into account. A careful study of full interfacial rheological properties would
be needed to conclude on this point, which is not in the scope of this study.

4.2. Pulling: the case of liquid extracted from Plateau borders

In the case of solutions A-D (Table 1), film generation and film thickness profile are
mainly governed by exchange between the film and its adjacent meniscus (PB). In this
type of exchange, the film thickness is given by a balance between capillary suction
and viscous entrainment, as in the common well-known Frankel’s situation (Mysels &
Frankel 1978) of a film withdrawn at constant velocity from a bath. The thickness of the
entrained film is predicted to linearly depend on the radius of curvature of the meniscus
and to depend on the entrainment velocity through a capillary number h ∼ RcCa

2/3.
Similarly to this approach, we plot in figure 5 the local minimal thickness normalized by
the radius of curvature of the Plateau border, participating to capillary suction, versus
the instantaneous capillary number based on Plateau border velocity measured through

L (Ca = ηL̇
γ ). We performed the experiments for different liquid viscosities and different

radii of curvature of the Plateau border. All the curves appear to collapse on a master
curve, the thickness of the film being in good agreement with the capillary number at
the power 2/3. However, the obtained prefactor is 4.5± 1.2, whereas the value predicted
by Frankel’s theory is 2.68. This discrepancy can be attributed to several factors.
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4.2.1. Steady state approximation and finite size of the film

Frankel’s law describes the pulling of an infinite flat film at a constant velocity. The
assumptions rely on steady state approximation, stating that the velocity is not varying
with time and that the pulled film is flat far from the meniscus. In our cases, velocity
variations indeed induce film thickness variations and this steady state approximation can
be discussed. Low Reynolds number (Re<1) and slender slope approximation ( ∂h/∂x�
1/100) allow us to use Stokes equation and to recover unsteady state thin film equation
evolution (Cormier et al. 2012; Seiwert et al. 2013), described below (eq. 4.5).

Unsteady effect could thus be a priori non-negligible. However comparing the exper-
imental data to the unsteady solution obtained by the numerical resolution of eq. 4.5
does not lead to a better agreement, thus excluding such possibility.

4.2.2. Out of equilibrium Plateau border shape and radius of curvature

During the topological rearrangement, the Plateau border is out of equilibrium and
its shape can be therefore distorted, as depicted in figure 5(b). This shape distortion
should result in a variation of Plateau border radius of curvature. A simple geometric
analysis shows that for angles of the two adjacent films varying between π/2 and 2π/3,
the radius of curvature can increase up to 40 %. Taking this effect into account, the
discrepancy with Frankel’s law is about a factor 1.4, instead of the factor 1.8 obtained
from our experimental observations.

4.3. Elongation of the film

4.3.1. Self-similarity

To check that particles act as passive tracers and that the velocity profile proposed
is valid, we test volume conservation through self-similarity in the elongated part of the
film. Because the interference pattern appears circular (figure 2d), the analysis proposed
in the following is performed in axisymetric geometry. A direct comparison of the radial
velocity V obtained in the modeling will be performed with experimental velocity V
measured on the x-axis. For the two experiments with solutions E and F (Table 1), the
flow is assumed to be almost plug like within the film, and the velocity to follow a partial
elongational profile as observed before:

V (r, t) = k
r

L(t)

∂L(t)

∂t
(4.1)

where k is the slope of the velocity profile. The 2D liquid volume conservation within
the film implies, assuming an axisymmetric film:

r
∂h

∂t
(r, t) +

∂V hr

∂r
(r, t) = 0 (4.2)

The combination of equations (4.1) and (4.2) gives:

∂h

∂t
(r, t) = −k L̇(t)

L(t)

(
2h(r, t) + r

∂h

∂r
(r, t)

)
(4.3)

One solution satisfying this equation reads:

h(r, t) =
1

L(t)2k
f

(
r

L(t)k

)
(4.4)

The function f is an arbitrary function, which is the shape of the film conserved during
the elongation.
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Figure 6. (a)-(b) Self-similarity of thickness profiles measured by absorption for solutions of
SDS and dye at viscosities of 1.4 (a) and 3.4mPa.s (b) with Rc = 280µm (from figure 3(h) and
(i)). k is adjusted to superimpose the thickness profiles, and is here equal to 0.36 and 0.95 for
1.4mPa.s and 3.4mPa.s respectively.

The thickness profiles, multiplied by L(t)2k, taken at different times, are represented
as a function of x/L(t)k in figure 6(a) for a viscosity of 1.4mPa.s. It shows a good self-
similarity between the thickness profiles, which confirms that particles follow the liquid
flow inside the film. The value of k used to adjust the profiles is 0.36±0.06 for a viscosity
of 1.4mPa.s. A shown in figure 6(b), results are similar for a higher viscosity of 3.4mPa.s,
as we observe again a self-similarity with a factor k = 0.95± 0.25 for times higher than
10ms. However, the first profiles do not superimpose, which is attributed to the increase
of the slope of the velocity profile with time for the higher viscosity, as represented in
figure 3(f). For the two viscosities, the factors k = 0.36 and k = 0.95 are compatible
with the slope of the velocity profiles obtained on Fig. 3(b) and (c), k=0.45 and k=0.75
respectively. It allows to verify the volume conservation and thus the validity of the
velocity profiles measured.

Moreover, the thickness profiles shown in figure 6 exclude the 100µm adjoining the
meniscus. In fact, the profile wings do not superimpose through the law of volume con-
servation, which is consistent with a slope of the velocity profile lower than 1 and liquid
exchange between the Plateau borders and the film.

4.3.2. Limitation of the self similarity

At the beginning of the T1, when the film is not created yet, the shape of the liquid
meniscus at the eight-fold vertex point is almost circular and at first order well described
by a parabolic shape. The minimal thickness of liquid is observed in the middle of the
vertex at r=0. Then during the film formation process, a bump in the middle of the
film appears, reminiscent to dimples observed during film drainage (Chan et al. 2010).
The thickness becomes maximal in the middle of the film and minimal near the Plateau
borders (see Fig. 3(e)), so the curvature of the liquid interfaces at the point r=0 is
positive initially and negative at later times. Moreover, the profiles obtained at the two
different viscosities do not have the same shape, the higher viscosity corresponding to
a flatter profile. The curvature inversion occurs at early time and is not visible on Fig.
6. It can not be predicted with the elongationnal model discussed in section 4.3, as it
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does not respect the self similarity associated with this simple model. Moreover, the
elongational model of section 4.3 does not predict nor explain the value of the parameter
k, which is an adjustable parameter of this first approach. In the case of the higher
viscosity (3.4mPa.s), the slope of the velocity profile is near 1, which is the expected
value for a purely extensional process (see Fig. 4). However, in the case of the lower
viscosity (1.3mPa.s), the slope of the velocity profile is near 0.5 and the contribution of
the pulling process can not be neglected anymore. In the complex dynamics involving
both processes the central part of the film is elongated and the shape is thus self similar,
but new film is extracted from the Plateau border, with a thinner thickness. This is
consistent with the observation made on Fig. 6a: the central part is self similar, but
the film length, even in rescaled units, increases with time. The value of k, the curvature
inversion at short time, and more generally the prediction of the whole film shape are not
captured by the simple elongation model discussed in 4.3 and required a more detailed
modeling proposed in the following.

4.4. Combination of the two mechanisms

4.4.1. Unsteady lubrication model

The Frankel’s theory assumes an infinite viscosity at the interface (or equivalently an
infinite Gibbs elasticity), that is Marangoni effects which are so strong that the interfacial
extension is of negligible amplitude; this leads to the prediction used in section 4.2 for the
film thickness. In contrast the stretching case proposed in section 4.3 is only possible if
the interfacial stress is negligible. In order to combine these two limiting cases in a more
complete theory, we need to take into account the interfacial rheology. Both the viscous
and elastic properties of the film should in principle be considered. For sake of simplicity,
we only consider viscous aspect here. We thus define the surface viscosity η∗s = ηs+κs,with
ηs the shear interface viscosity and κs the dilatational interface viscosity.

The time evolution of the film is obtained from the lubrication equations, which take
into account the capillary suction of the meniscus and the Marangoni flow induced by
the interfacial stress gradients. Two equations, detailed in appendix, govern the coupling
between the interfacial velocity vs and the film thickness h(r, t), in axisymetric geometry:

ht = −1

r
∂r

[
γ

3η
rh3

(
hrrr + ∂r

(
hr
r

))
+ rvsh

]
(4.5)

where the surface velocity is set by stress balance at the interface (see appendix):

vs,rr + ∂r

(vs
r

)
= − γ

η∗s
h

(
hrrr + ∂r

(
hr
r

))
(4.6)

These equations require different boundary conditions. The solution must match asymp-
totically a static meniscus with a constant given mean curvature c0 = 1/Rc whose profile
is described by :

hasymptotic = hl +
c0r0(t)2

2
ln

(
r

rl

)
+
c0
4

(
r2 − r2l

)
(4.7)

This shape reaches a minimum value at r = r0(t) and its mean curvature is c0 everywhere.
rl is an arbitrary reference point, and the thickness at this point is hl. This point rl will
be chosen much larger than r0 and will be used as the matching point between the
dynamical solution determined numerically and the static meniscus. The experimental
velocity of the meniscus is taken into account in the simulation to impose the boundary
condition at r = rl. Indeed, the value of r0 is modified at each time step according to this
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(d) (e) (f) 

Figure 7. (a-d) Experimental thickness profiles (black lines) compared with simulated thickness
profiles obtained from integration of equations (4.5) and (4.6) (red dashed lines). The blue dashed
line is the initial profile for the simulation, calculated from the corresponding experimental profile
in black. Thicknesses are reported in dimensionless units H = h/(Rc(3Ca)2/3), as a function of

the dimensionless position X = x/(Rc(3Ca)1/3). (b-e) Experimental thickness in the middle of
the film as a function of the simulated central thickness, corresponding to X = 0 on figures (a)
and (d). (c-f) Experimental minimal thickness as a function of the minimal thickness obtained
with our simulation (o), and as a function of the Frankel’s prediction (�). The measurements
(a-b-c) correspond to the low viscous case (1.3mPa.s) with a radius of curvature of 250 µm and
λ = 0.02, and (d-e-f) to the high viscous case (3.4mPa.s) with a radius of curvature of 224 µm
and λ = 0.07. Red line corresponds to a linear fit, whose slopes are close to one (0.97, 1.14, 0.98
and 1.13 for (b), (c), (e), (f) respectively). Results are obtained for solution F (top line) and G
(bottom line).

experimental velocity, and the thickness derivatives at r = rl are obtained with eq. 4.7.
Symmetry conditions are applied at r = 0. The initial thickness profile h(r, 0) is calculated
from an initial experimental thickness profile hexp(x, 0). The only adjustable parameter

is the dimensionless parameter λ = 3ηRc

η∗s
. The numerical resolution of equations 4.5 and

4.6 is performed using a standard implicit method as in Kondic (2003).

4.4.2. Comparison with experimental results

A comparison between the experimental and integrated profiles is shown in figure 7(a)
for the lower viscosity, and in figure 7(d) for the higher viscosity. The initial profile (blue)
is the initial condition for the simulation. In both cases, the same value of λ is kept at
all time steps and allows to capture the profile evolution.

Indeed, the evolution of the experimental thickness is represented as a function of the
integrated thickness in the middle hmid (7(b) and (e)) and at the border of the film hmin

(7(c) and (f)): the relations are almost linear, with slopes close to 1. The comparison of
hmin with the thickness predicted by the Frankel’s law (in green) highlights the unsteady
property of the T1 dynamics, whereas the introduction of λ in simulations and the
variations of the middle thickness with time highlights the elongation of the film.

The values obtained for the parameter λ are 0.025±0.005 and 0.07±0.005 for viscosities
of 1.3 and 3.4mPa.s respectively, which corresponds to surface viscosities of 0.08 ± 0.04
and 0.04±0.03mPa.m.s. These measurements are ten times smaller than values reported
in literature (Liu & Duncan 2003). Discrepancies can be attributed to the presence of
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the dye in the solution or to the non Newtonian properties of the interfaces, probed at
larger deformation rate and shorter timescales than usually.

5. Conclusion

These new experiments underline that film generation during a topological rearrange-
ment is a complex process. Depending on the nature of the surfactants used, and therefore
on the rheological properties of the liquid and interfaces, different mechanisms of film
formation are found. For very dissipative interfaces, a pulling mechanism from the adja-
cent Plateau border is observed, the film nourished throughout the extraction process.
On the contrary, for almost stress free interfaces, a self similar elongation and subsequent
thinning of the central film is observed, connection with Plateau borders taking place
only on the edge of the films. By numerically solving unsteady thin film equation, the
film profile can be recovered and therefore the surface viscosity of the interfaces can be
deduced. These results underly that a general mode of dissipation during a T1 process
is not valid, and are a new starting point for T1 dynamic studies in these various cases,
as well as for defining conditions for film rupture during these dynamical events (Carrier
& Colin 2003; Biance et al. 2011).

This project has been funded by CNES through convention CNRS/CNES number
127233 and by Région Rhone Alpes through ARC contract 13-010053-01. J. S. acknowl-
edges financial support from Région Bretagne (CREATE MOUSPORE) and Agence
Nationale de la Recherche (ANR-13-PDOC-0014-01-HYDROSURFDYN).

Appendix

This appendix establish the set of coupled partial differential equation governing the
time evolution of the film thickness h(r, t) and of the interfacial velocity vs(r, t). The radial
velocity in the film v(r, z, t) is governed by the lubrication equations in an axisymmetric
geometry. The pressure P (r, t) only depends on the radial coordinate r and is fixed by the
Laplace pressure jump at the interface. In the following, the subscript r, z or t denotes
a partial derivative with respect to the corresponding variable.

P = −γ
(
hrr +

hr
r

)
(5.1)

The Stokes equation Pr = ηvzz is integrated three times with respect of the transverse
coordinate z to compute the radial flux Q at the position r:

Q = 2πr
γ

3η
h3

(
hrrr + ∂r

(
hr
r

))
+ 2πrhvs (5.2)

The integration constants are given by the symmetry conditions vr(r, 0) = 0 and by the
relation v(r, h) = vs(r).

The mass conservation imposes

ht = −1

r
∂r

[
γ

3η
rh3

(
hrrr + ∂r

(
hr
r

))
+ rvsh

]
(5.3)

The problem is closed with the Marangoni relation, i. e. the condition of tangential
stress continuity at the interface:

ηvz(r, h) = η∗s

(
vs,rr + ∂r

(vs
r

))
(5.4)

which leads to
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vs,rr + ∂r

(vs
r

)
= − γ

η∗s
h

(
hrrr + ∂r

(
hr
r

))
(5.5)

Equation 5.3 and 5.5 are solved numerically, with appropriate condition at t = 0, r = 0
and r →∞, discussed in the text.
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