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Abstract

In this work, we present a new Finite Element framework for toroidal geometries based on a tensor product
description of the 3D basis functions. In the poloidal plan, different discretizations, including B-Splines and
cubic Hermite-Bézier patchs are defined, while for the toroidal direction both Fourier discretization and
cubic Hermite-Bézier elements can be used. In this work, we study the MHD equilibrium by solving the
Grad-Shafranov equation, which is the basis and the starting point of any MHD simulation. Then we study
the Anistropic Diffusion problem in both steady and unsteady states.

1 Introduction

The context of this work is the simulation and the modeling of nuclear fusion reaction as power source. The
aim of magnetic confinement fusion is to develop a power plant that gains energy from the fusion of deuterium
and tritium in a magnetically confined plasma. ITER, a tokamak type fusion experiment currently being built
in the South of France, is the next step towards this goal. One of the big challenge for the numerical simulation
In a tokamak is the modeling and the simulation of edge instabilities as disruptions or ELMs [11] [1]. These
instabilities which occurs a the boundary of the plasma generate a loss of energy and can damage critically
the wall of the Tokomak. For this reason it is necessary to understand the behavior of these instabilities and
find a way to control them using experiment and simulation. A physical model well suited to describe those
large scale instabilities is the set of magneto-hydrodynamic equations (MHD) with resistivity and bi-fluid
effects. Some code in the world work on this problem. One of this code is the JOREK code which solve some
reduced MHD models [2] based on assumption on the velocity and magnetic fields in a toroidal geometry.
The equations in the poloidal plane (circular, d-shape or x-point meshes) [8] [7] [6] are discretized using
bezier splines and the toroidal discretization use Fourier expansion. In this work we are interested by study a
small part of the equations used in JOREK which generate lot of numerical diffilcuties: the anisotropic diffusion.

The anistropic diffusion in the tokamak and JOREK context is a diffusion process mainly in the direction
of the magnetic field described by a constant toroidal part and a poloidal perturbation. At the limit (where the
ratio between the diffusion in the magnetic field direction and the isotropic diffusion tend to the infinity) the
problem is singular [10]. This singularity at the limit generate ill-conditioning, large error in the perpendicular
direction and other numerical problems. At the end, we want study the discretization of this operator with
splines on toroidal geometry to understand and identify the main numerical problems linked to this operator
and in the future proposed solution for the JOREK code.

In the first part of this paper we will details the construction of the 3D B-Splines (obtained by tensor product)
used in the finit element method. The second part is on the discretization of the elliptic Grad-Safranov operator.

∗Corresponding author: ahmed.ratnani@ipp.mpg.de
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This operator is important in the JOREK since we solve this operator to obtain the magnetic equilibrium and
the current in the MHD. To finish we will treat the anisotropic diffusion equation. These problems are study
on some geometry classic in the tokamak context : circular or d-shape poloidal section.

2 Bézier Finite Elements Method

In this section, we recall some basics from B-splines used to construct the meshes linked to the JOREK and
tokamak context and to discretize with finite element the equations.

2.1 B-Splines surfaces

We start this section by recalling some basic properies about B-splines curves and surfaces. We also recall some
fundamental algorithms (knot insertion and degree elevation). Later, those algorithms will be used to develop a
two grids solver for the Monge-Ampère equation. For a basic introduction to the subject, we refer to the book
[9].
A B-Splines family, (Ni)16i6n of order k, can be generated using a non-decreasing sequence of knots T =
(ti)16i6n+k.

Definition 2.1 (B-Splines series) The j-th B-Spline of order k is defined by the recurrence relation:

Nk
j = wkjN

k−1
j + (1− wkj+1)Nk−1

j+1

where,

wkj (x) =
x− tj

tj+k−1 − tj
N1
j (x) = χ[tj ,tj+1[(x)

for k ≥ 1 and 1 ≤ j ≤ n.

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree p = k − 1,

• Compact support; the support of Nk
j is contained in [tj , tj+k],

• If x ∈ ]tj , tj+1[, then only the B-splines {Nk
j−k+1, · · · , Nk

j } are non vanishing at x,

• Positivity: ∀j ∈ {1, · · · , n} Nj(x) > 0, ∀x ∈]tj , tj+k[,

• Partition of unity :
∑n
i=1N

k
i (x) = 1,∀x ∈ R,

• Local linear independence,

• If a knot ti has a multiplicity mi then the B-spline is C(p−mi) at ti.

The vectorial space spanned by these B-splines, which we denote Sk(T, I), where I denotes the interval [t1, tn+1],
is called the Schoenberg space.

Definition 2.2 (B-Spline curve) The B-spline curve in Rd associated to knot vector T = (ti)16i6n+k and
the control polygon (Pi)16i6n is defined by :

C(t) =

n∑
i=1

Nk
i (t)Pi

In (Fig. 1), we give an example of a quadratic B-Spline curve, and its corresponding knot vector and control
points.

We have the following properties for a B-spline curve:

• If n = k, then C is just a Bézier-curve,

• C is a piecewise polynomial curve,
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Figure 1: (left) A quadratic B-Spline curve and its control points using the knot vector T = {000 1
2

3
4

3
4

111}, (right) the
corresponding B-Splines.

• The curve interpolates its extremas if the associated multiplicity of the first and the last knot are maximum
(i.e. equal to k), i.e. open knot vector,

• Invariance with respect to affine transformations,

• Strong convex-hull property:

if ti ≤ t ≤ ti+1, then C(t) is inside the convex-hull associated to the control points Pi−p, · · · ,Pi,

• Local modification : moving the ith control point Pi affects C(t), only in the interval [ti, ti+k],

• The control polygon approaches the behavior of the curve.

Remark 2.3 In order to model a singular curve, we can use multiple knots or control points, i.e. Pi = Pi+1.

2.2 Fundamental geometric operations

By inserting new knots into the knot vector, we add new control points without changing the shape of the B-
Spline curve. This can be done using the DeBoor algorithm [3]. We can also elevate the degree of the B-Spline
family and keep unchanged the curve [4]. In (Fig. 2), we apply these algorithms on a quadratic B-Spline curve
and we show the position of the new control points.

2.3 Deriving a B-spline curve

The derivative of a B-spline curve is obtained as:

C′(t) =

n∑
i=1

Nk
i

′
(t)Pi =

n∑
i=1

(
p

ti+p − ti
Nk−1
i (t)Pi −

p

ti+1+p − ti+1
Nk−1
i+1 (t)Pi

)
=

n−1∑
i=1

Nk−1
i

∗
(t)Qi (2.1)

where Qi = p Pi+1−Pi
ti+1+p−ti+1

, and {Nk−1
i

∗
, 1 ≤ i ≤ n−1} are generated using the knot vector T ∗ which is obtained

from T by reducing by one the multiplicity of the first and the last knot (in the case of open knot vector), i.e.
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(a) (b) (c)

Figure 2: (a) A quadratic B-spline curve and its control points. The knot vector is T = {000, 1
2
, 3
4
, 3
4
, 111}. (b) The curve after

a h-refinement by inserting the knot {0.5} while the degree is kept equal to 2. (c) The curve after a p-refinement, the
degree was raised by 1 (using cubic B-splines).

by removing the first and the last knot.

More generally, by introducing the B-splines family {Nk−j
i

∗
, 1 ≤ i ≤ n − j} generated by the knot vector T j

∗

obtained from T by removing the first and the last knot j times, we have the following result:

Proposition 2.4 The jth derivative of the curve C is given by

C(j)(t) =

n−j∑
i=1

Nk−j
i

∗
(t)P

(j)
i , where P

(j)
i =

p− j + 1

ti+p+1 − ti+j

(
P

(j−1)
i+1 −P

(j−1)
i

)
and P

(0)
i = Pi

By denoting C′ and C′′ the first and second derivative of the B-spline curve C, it is easy to show that:

Proposition 2.5 We have,

• C′(0) = p
tp+2

(P2 −P1), C′′(0) = p(p−1)
tp+2

(
1

tp+2
P1 − { 1

tp+2
+ 1

tp+3
}P2 + 1

tp+3
P3

)
,

• C′(1) = p
1−tn (Pn −Pn−1), C′′(1) = p(p−1)

1−tn

(
1

1−tnPn − { 1
1−tn + 1

1−tn−1
}Pn−1 + 1

1−tn−1
Pn−2

)
.

2.4 Multivariate tensor product splines

Let us consider d knot vectors T = {T 1, T 2, · · · , T d}. For simplicity, we consider that these knot vectors are
open, which means that k knots on each side are duplicated so that the spline is interpolating on the boundary,
and of bounds 0 and 1. In the sequel we will use the notation I = [0, 1]. Each knot vector T i, will generate
a basis for a Schoenberg space, Ski(T i, I). The tensor product of all these spaces is also a Schoenberg space,
namely Sk(T ), where k = {k1, · · · , kd}. The cube P = Id = [0, 1]d, will be referred to as a patch.
The basis for Sk(T ) is defined by a tensor product :

Nk
i := Nk1

i1
⊗Nk2

i2
⊗ · · · ⊗Nkd

id

where, i = {i1, · · · , id}.
A typical cell from P is a cube of the form : Qi = [ξi1 , ξi1+1] ⊗ · · · ⊗ [ξid , ξid+1]. In (Fig. 3), we apply knot
insertion and elevation degree algorithms on a quadratic B-Spline surface and we show the position of the new
control points.

Remark 2.6 A B-Splines surface can be converted to a list of Bézier patchs. In order to do so, we only need
to increase the multiplicity of internal knots to match the spline degree. Therefor, it is easy to extract B ézier
patchs for all logical elements. Finaly, we can elevate their degrees to a desired one.
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(a) (b) (c)

Figure 3: (a) A quadratic B-spline surface and its control points. The knot vectors are T1 = T2 = {000, 111}. (b) The curve after
a h-refinement by inserting the knot {0.5} in both directions, while the degree is kept equal to 2. (c) The curve after a
p-refinement, the degree was raised by 1 (using cubic B-splines).

2.5 Bézier-Hermite patchs

Let us consider a Bézier patch, defined by the following parametric surface

x(s, t) =

p,q∑
i,j=0

xijBi(s)Bj(t), s, t ∈ [0, 1] (2.2)

Computing derivatives of this surface on the four (logical) points {(s, t) = (0, 0), (0, 1), (1, 0), (1, 1)} leads to
x(0, 0) = x00, xs(0, 0) = 3(x10 − x00), xt(0, 0) = 3(x01 − x00), xst(0, 0) = 9(x00 + x11 − x01 − x10)

x(0, 1) = x03, xs(0, 1) = 3(x13 − x03), xt(0, 1) = 3(x03 − x02), xst(0, 1) = 9(x03 + x12 − x02 − x13)

x(1, 0) = x30, xs(1, 0) = 3(x30 − x20), xt(1, 0) = 3(x31 − x30), xst(1, 0) = 9(x30 + x21 − x20 − x31)

x(1, 1) = x33, xs(1, 1) = 3(x33 − x23), xt(1, 1) = 3(x33 − x32), xst(1, 1) = 9(x33 + x22 − x23 − x32)

(2.3)
Now, let us introduce the following quantities


a00 = ‖x10 − x00‖, b00 = ‖x01 − x00‖, u00 = x10−x00

a00
, v00 = x01−x00

b00
, w00 = x00+x11−x01−x10

a00b00

a03 = ‖x13 − x03‖, b03 = ‖x03 − x02‖, u03 = x13−x03

a03
, v03 = x03−x02

b03
, w03 = x03+x12−x02−x13

a03b03

a30 = ‖x30 − x20‖, b30 = ‖x31 − x30‖, u30 = x30−x20

a30
, v30 = x31−x30

b30
, w30 = x30+x21−x20−x31

a30b30

a33 = ‖x33 − x23‖, b33 = ‖x33 − x32‖, u33 = x33−x23

a33
, v33 = x33−x32

b33
, w33 = x33+x22−x23−x32

a33b33

(2.4)

we have,
x10 = a00u00 + x00, x01 = b00v00 + x00, x11 = a00b00w00 + a00u00 + b00v00 + x00

x13 = a03u03 + x03, x02 = −b03v03 + x03, x12 = a03b03w03 + a03u03 − b03v03 + x03

x20 = −a30u30 + x30, x31 = b30v30 + x30, x21 = a30b30w30 − a30u30 + b30v30 + x30

x23 = −a33u33 + x33, x32 = −b33v33 + x33, x22 = a33b33w33 − a33u33 − b33v33 + x33

(2.5)
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Pluging these relations into (Eq. 2.2), we get

x(s, t) = x00M00(s, t) + a00u00N01(s, t) + b00v00P02(s, t) + a00b00w00Q03(s, t)

+x03M10(s, t) + a03u03N11(s, t) + b03v03P12(s, t) + a03b03w03Q13(s, t)

+x30M30(s, t) + a30u30N30(s, t) + b30v30P30(s, t) + a30b30w30Q30(s, t)

+x33M33(s, t) + a33u33N33(s, t) + b33v33P33(s, t) + a33b33w33Q33(s, t) (2.6)

where the new basis is (Eq. 2.7)

{
M00(s, t) = B0(s)B0(t) +B1(s)B0(t) +B0(s)B1(t) +B1(s)B1(t), N00(s, t) = B1(s)B0(t) +B1(s)B1(t)

P00(s, t) = B0(s)B1(t) +B1(s)B1(t), Q00(s, t) = B1(s)B1(t){
M03(s, t) = B0(s)B3(t) +B1(s)B3(t) +B0(s)B2(t) +B1(s)B2(t), N03(s, t) = B1(s)B3(t) +B1(s)B2(t)

P03(s, t) = −B0(s)B2(t)−B1(s)B2(t), Q03(s, t) = B1(s)B2(t){
M30(s, t) = B3(s)B0(t) +B2(s)B0(t) +B3(s)B1(t) +B2(s)B1(t), N30(s, t) = −B2(s)B0(t)−B2(s)B1(t)

P30(s, t) = B3(s)B1(t) +B2(s)B1(t), Q30(s, t) = B2(s)B1(t){
M33(s, t) = B3(s)B3(t) +B2(s)B3(t) +B3(s)B2(t) +B2(s)B2(t), N33(s, t) = −B2(s)B3(t)−B2(s)B2(t)

P33(s, t) = −B3(s)B2(t)−B2(s)B2(t), Q33(s, t) = B2(s)B2(t)

(2.7)

2.6 Software Implementation

CAID [13] is an open source multi-platform software that has been designed for IsoGeometric Analysis Pre and
Post Processing. Its design goal is to provide a fast, light and user-friendly designer and meshing tool. The later
is provided by Πgasus [14] which is an open source Python package for solving (system of) Partial Differential
Equations. Moreover, the user can write his own solvers and integrate them in CAID. One particular and
interesting capability of CAID is the macro-recording, which provides the user with a Python script of all his
interaction with CAID.

2.7 Hermite-Bézier Finite Elements Method

In classical Bézier [2] (and more generaly in IsoGeometric [5]) Finite Elements method, the isoparametric
approach is used while degrees of freedom are related to the control points 2.10. In the sequel, we consider a
2D domain Ωh ⊂ Ω and its associated triangulation Qh such that⋃

e∈Qh

e = Ωh and e1

⋂
e2 = ∅, ∀e1, e2 ∈ Qh, s.t. e1 6= e2 (2.8)

where every element e ∈ Qh denotes a Bézier patch.

x(s, t) =
∑
e∈Qh

p,q∑
i,j=0

xijBi(s)Bj(t) (2.9)

uh(s, t) =
∑
e∈Qh

p,q∑
i,j=0

uhijBi(s)Bj(t) (2.10)

Hermite-Bézier elements are therefor obtained by a change of basis within each element (Bézier patch), where
we replace x in (Eq. 2.6) by x := (x, uh).

Remark 2.7 The assembing procedure is done on the logical domain [0, 1]2. Therefore, all derivatives are
computed on the logical domain and must be transported to the physical domain.
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3 Grad-Shafranov solver

The first model treated is the Grad-Safranov operator. This operator is obtained using the MHD equilibrium
(uniform flow) in a cylindrical geometry. The MHD equilibrium is described by the force balance, the Ampere’s
law in addition to the magnetic divergence constraint (Eq. 3.11)

J×B = ∇P
∇×B = µ0J

∇ ·B = 0

(3.11)

In tokamak geometries and cylindrical coordinate system (Fig. 4), the magnetic field B can be expressed as
B = ∇ϕ ×∇ψ + g∇ϕ, where ψ is the poloidal flux function. This choice correspond to a magnetic field with
a main part constant in the toroidal direction plus a poloidal perturbation which depend of ψ. The current
density J can also be written, in the same form, as J = RJϕ∇ϕ+ 1

µ0
∇g ×∇ϕ.

Figure 4: The toroidal plasma configuration

Using B ·∇P = 0 it is easy to see that the pressure is a function of the flux ψ. On the other hand, J ·∇P = 0
implies that the function g is also a flux function. Inserting these relations in the balance force equation yields
to the second order nonlinear elliptic equation, knwon as Grad-Shafranov-Shlüter equation (Eq. 3.13):

∆∗ψ = R∂R

(
1

R
∂Rψ

)
+ ∂2

zzψ = −µ0R
2 d

dψ
P − g d

dψ
g (3.12)

3.1 Finite Elements solver for Grad-Shafranov equation

To simplify the weak form associated to the Grad-Safranov operator, we solve a modified version multiplying
by 1

R2 :

1

R2
∆∗ψ =

1

R
∂R

(
1

R
∂Rψ

)
+ ∂2

zzψ = −µ0
d

dψ
P − 1

R2
g
d

dψ
g (3.13)

In the sequel, we rewrite the right hand side term as

F(R,Z, ψ) = −µ0
d

dψ
P − 1

2R2

d

dψ
g2 (3.14)

The Picard algorithm can be written as

• ψ0 is given,
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• knowning ψn, we solve:

1

R2
∆∗ψn+1 = F(R,Z, ψn) (3.15)

Let φ ∈ Vh ⊂ V a test function. Multiplying it by the Grad-Shafranov equation 3.13 and integrating by
parts, in the cylindric coordinates, leads to

∫
Ω

1

R
∇ψn+1 · ∇φ dΩ =

∫
Ω

F(R,Z, ψn)φ dΩ (3.16)

3.2 Numerical results

A first validation is done on an analytical solution on a square domain, using Collela’s mapping (Eq. 3.17)
approximated by Hermite-Bézier patchs.

x = F (η) = (η1 + α sin(k1η1) sin(k2η2), η2 + α sin(k1η1) sin(k2η2)). (3.17)

The right hand side and the nonlinear function F are computed so that the solution vanishes on the boundary,
where F contains a quadratic dependence on ψ. In (Fig. 6) and (Tab. 1), we show the expected convergence
order, while in (Fig. 5), the numerical solution and the numerical error are shown. (Fig. 6) shows also the
evolution of the L2 and H1 norms depending on Picard’s iterations. As we may notice, our Picard’s algorithm
converges after 6 iterations, but this does not seem to be the rule for other choices of the geometry and the
function F .

Figure 5: Numerical solution and its error for GS equation on a square domain, using Collela’s mapping with a grid 64× 64.

L2 3.09669 3.2561 3.6696 3.8603
H1 2.4120 2.5738 2.8099 2.9358

Table 1: L2 and H1 convergence orders, for the GS equation on a square domain, using Collela’s mapping.

In the sequel, we present different simulations based on characteristic parameters describing the cross-
section for ITER, ASDEX-Upgrade and JET tokamaks. These parameters are: the inverse aspect-ration ε, the
elongation κ and the triangularity δ. They are given by the following formulae (Eq. 3.18):

R0 = Rmin+Rmax
2

ε = Rmax−R0

R0
= R0−Rmin

R0

κε = Zmax
R0

1− δε = R(Z=Zmax)
R0

and


ψ(Rmax, 0) = 0

ψ(Rmin, 0) = 0

ψ(R(Z = Zmax),±Zmax) = 0

(3.18)
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Figure 6: L2 and H1 errors (left) after convergence (right) and their evolutions, for the GS equation on a square domain, using
Collela’s mapping.

Figure 7: Geometric definition of the parameters ε, κ and δ.

where in the last equation, we consider a given flux surface (in our case, defined by ψ(R,Z) = 0) and R as a
function of Z.
In the following test, we consider the right hand side function

F(R,Z, ψ) = R2 (3.19)
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which gives the analytical solution [12],

ψ(R,Z) =
R4

8
+ d1 + d2R

2 + d3(R4 − 4(RZ)2) (3.20)

Pluging (Eq. 3.18) in (Eq. 3.20) leads to the following system for d1, d2 and d3:1 (1 + ε)2 (1 + ε)4

1 (1− ε)2 (1− ε)4

1 (1− δε)2 (1− δε)4 − 4(1− δε)2κ2ε2

d1

d2

d3

 = −1

8

 (1 + ε)4

(1− ε)4

(1− δε)4

 (3.21)

In figure (Fig. 8), we plot the computaional domain and the numerical solution for ITER, ASDEX-Upgrade
and JET relevant parameters. In figure (Fig. 9) we show two different meshes generated by CAID. In the

Figure 8: Coputational domain and the analytical solution for: (left) ITER (R0, ε, κ, δ) = (1, 0.32, 1.7, 0.33), (middle) ASDEX-
Upgrade (R0, ε, κ, δ) = (1.645, 0.311, 1.77, 0.0932), (right) JET (R0, ε, κ, δ) = (2.924, 0.323, 1.87, 0.141)

next section, we shall present the impact of these meshes on the numerical solution of the Anisotropic Diffusion
problem. In (Fig. 10) we plot the L2 and H1 norms for MESH2. In this case, the theoretical convergence order
is not achieved; the reason is the bad approximation of the boundary when ∂Rψ = 0 or ∂Zψ = 0.

Figure 9: ITER like relevant parameter domain: (left) MESH1 (right) MESH2.
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Figure 10: Convergence order for Iter like relevant parameter domain.

4 Anisotropic Diffusion

In this section, we are interested in the resolution of the anisotropic diffusion problem for both steady and
unsteady cases. The anisotropic diffusion time evolution problem is

∂tu = ∇ · (K∇u) + f, x ∈ Ω (4.22)

where u describes the temperature inside a tokamak, the conductivity K = κ‖K‖ + κII is a 3 by 3 tensor. The
later is a sum of two contributions, first parallel component is given by:

κ‖K‖ = κ‖
BBT

‖B‖2

for prescribed magnetic field B, κ‖ is a parallel diffusion coefficient. The second component κII is a standard

isotropic diffusion. We are interested in highly anisotropic configurations with
κ‖

κI
' 106 � 1.

Circular Plasma For circular cross section plasma, the Grad-Shafranov equation associated to the nonlinear
right hand side F(R,Z, ψ) = R2, leads to

ψ(R,Z) = Cψ ln

[
1 +

r2

a2

]
, with Cψ =

a2

2R0q0

General case In the general case, we need to solve the equilibrium (Grad-Shafranov) for the potential ψ in
order to define the magnetic field.

4.1 The Elliptic Anisotropic Diffusion equation

We start by solving the following anistropic diffusion problem (Eq. 4.23)

−∇ ·K · ∇u = f, x ∈ Ω (4.23)

Let φi be a test function. Multiplying (Eq. 4.23) by φi and integrating by parts leads to∫
Ω

κ‖

‖B‖2
(B · ∇u)(B · ∇φi) + κI∇u · ∇φi =

∫
Ω

fφi (4.24)
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Using the expansion u =
∑n
j=1 ujφj , we get

n∑
j=1

uj

(∫
Ω

κ‖

‖B‖2
(B · ∇φj)(B · ∇φi) + κI∇φj · ∇φi

)
=

∫
Ω

fφi (4.25)

which leads to the linear system MU = F where

Mij =

∫
Ω

κ‖

‖B‖2
(B · ∇φj)(B · ∇φi) + κI∇φj · ∇φi, and Fi =

∫
Ω

fφi, ∀i, j ∈ [1, n] (4.26)

Remark 4.1 For validation, we take any function u that vanishes on the boundary and then compute f =

−∇ ·K · ∇u. In the case of circular cross section plasma, we take uexact = 1 − (R−R0)2+Z2

a2 . The solution for

an annulus cross section plasma, an analytical solution is uexact =
(

1− (R−R0)2+Z2

a2

)(
(R−R0)2+Z2

a2center
− 1
)

We show in (Fig. 11), the L2 error norm for different meshes and values of κ‖. GMRES was used with a
Jacobi preconditioner for a tolerance tolr = 10−11. Block-Jacobi preconditioner was also tested and results
were quite equivalents. We may notice that for a diffusion > 104 the solver does not converge, because of the
bad conditioning of the linear system. This is can be viewed in (Fig. 12), where we show the evolution of the
residual error for the Krylov solver.

Figure 11: Anisotropic Diffusion operator: L2 error norm depending on κ‖ for different meshes.

4.2 Time evolution problem

For the time depending problem, we consider the following implicit scheme

un+1 − un

∆t
−∇ ·

(
K∇un+1

)
= f,

which leads to
un+1 −∆t ∇ ·

(
K∇un+1

)
= un + ∆tf. (4.27)

Let φi be a test function. Multiplying (Eq. 4.27) by φi, integrating by parts and using the expansion of
u =

∑n
j=1 ujφj , leads to the following linear system problem

MIUn+1 =MEUn + F

12



(a) (b)

(c)

Figure 12: Anisotropic Diffusion operator: evolution of the residual error for the Krylov solver, for a mesh (a) 8 × 8 × 8, (b)
16× 16× 16 and (c) 32× 32× 32

where for i, j ∈ [1, n], we have

MIij =

∫
Ω

φiφj + ∆t

(
κ‖

‖B‖2
(B · ∇φj)(B · ∇φi) + κI∇φj · ∇φi

)
(4.28)

MEij =

∫
Ω

φiφj (4.29)

Fi =

∫
Ω

∆tfφi (4.30)
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4.2.1 Steady case

In the sequel, we are interested in the steady state solution of the Anisotropic Diffusion problem on a circular
cross section domain with a mesh type MESH1 and MESH2. In order to avoid the polar-like singularity at
the center of the plasma in MESH1, we consider an annulus domain of minimum radius rmin = 0.1, while the
maximum radius rmax is kept equal to 1 for both meshes. The source terms are computed as the solution of
the Elliptic Anisotropic Diffusion equation, for κ‖ = 0 with the following analytical solutionsuexact = 1− (R−R0)2+Z2

a2 , for MESH1

uexact =
(

1− (R−R0)2+Z2

a2

)(
(R−R0)2+Z2

a2center
− 1
)
, for MESH2

(4.31)

Numerical simulations were done with time steppings dt = 5.10−3, 1 and a final time Tfinal = 0.5, 20 respectively.
GMRES and Jacobi preconditioner were used. In (Fig. 13 15), we show the final L2 and H1 norms as functions
of κ‖ for different meshes while in (Fig. 14 16), we show the time evolution of the L2 and H1 norms. Finaly, in
table (2), we show the power approximation, h-dependance, of the L2 and H1 norms between the grids 8×4×4
and 16×8×8. As we can notice, the convergence order is conserved at the final time. Dure to our observations,
this convergence order should be better for finer grids.

Figure 13: Short time behavior of L2 and H1 error norms for different values of κ‖ at time Tfinal = 0.5 and dt = 5.10−3 using
MESH1

κ 0 1 103 104 105 106

L2 norm
Initial time (t = 0) 3.675 3.675 3.684 3.689 3.69 3.68
Final time (t = 0.5) 3.544 3.544 3.55 3.55 3.55 3.544

H1 norm
Initial time (t = 0) 2.925 2.925 2.918 2.911 2.907 2.906
Final time (t = 0.5) 2.865 2.865 2.858 2.85 2.845 2.843

Table 2: Steady state h-depdence of the L2 and H1 norms between the grids 8 × 4 × 4 and 16 × 8 × 8

4.2.2 Evolution of a Gaussian Pulse

In this last section, we are interested in the time evolution of a Gaussian pulse, without source term, for the
initial condition
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Figure 14: Short time behavior of L2 and H1 error norms evolution for the Steady Anisotropic Diffusion using MESH1 for
dt = 5.10−3 and a grid 16× 8× 8.

Figure 15: Long time behavior of L2 and H1 error norms for different values of κ‖ at time Tfinal = 20 and dt = 1 using MESH1

u(t = 0,x) = e−
1
σ2

((R−R1)2−R2
1ϕ

2−Z2) (4.32)

where R1 = 3.5, σ = 0.1, κI = 0 and κ‖ = 1. In this case, energy on any given toroidal surface should be
conserved. In order to validate our simlation, we compute the mean value of the numerical solution on a toroidal
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Figure 16: Long time behavior of (first line) L2 and (second line) H1 error norms evolution for the Steady Anisotropic Diffusion
using MESH1 for and dt = 1 and a grid (left) 16× 8× 6 and (right) 32× 16× 6.

surface

ū(t, r) =

∫ 2π

0

∫ 2π

0

Ru dϕdθ (4.33)

5 Conclusions

We have developed a finite element context for toroidal geometries. This finite element context includes B-splines
and Bezier-Hermite formulations of the approximated space defined on quadrangular (2D) and hexahedral (3D)
patches. The construction of the approximated space take advantage of the tensor product decomposition
related to 3D toroidal geometries. When possible, C1 continuity is enforced at the patches interfaces and
curved isoparametric formulation has been performed. This numerical strategy, applied to Grad-Shrafranov
elliptic equation, gives the expected third order of convergence. For anisotropic diffusion, we have observed the
usual asymptotic error for very strongly anisotropy. Future work will focus on this behavior to improve the
accuracy either by meshes alignment or by asymptotic preserving preconditioning.
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Figure 17: Gaussian pulse test: evolution of
∫ 2π
0 u dϕ for MESH1 and a grid 32× 32× 6 at time t = 0, 10, 25, 50.
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Figure 18: Gaussian pulse test: evolution of
∫ 2π
0 u dϕ for MESH1 and a grid 32× 32× 6 at time t = 0, 10, 25, 50 for Z = 0.
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