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Abstract: We present an analytical model of optical fluence for multiple 
cylindrical inhomogeneities embedded in an otherwise homogeneous 
turbid medium. The model is based on the diffusion equation and 
represents the optical fluence distribution inside and outside 
inhomogeneities as a series of modified Bessel functions. We take into 
account the interplay between cylindrical inhomogeneities by introducing 
new boundary conditions on the surface of inhomogeneities. The model is 
compared with the numerical solution of the diffusion equation with 
NIRFAST software. The fluences inside the inhomogeneities obtained by 
the two methods are in close agreement. This permits the use of the model 
as a forward model for quantitative photoacoustic imaging. 
©2014 Optical Society of America 
OCIS codes: (170.3660) Light propagation in tissues; (170.5120) Photoacoustic imaging; 
(290.1990) Diffusion. 
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1. Introduction 

The forward model of optical fluence in biological tissues is an important topic in diffuse 
optical tomography (DOT) [1–3] and in quantitative photoacoustic (PA) imaging [4–6]. 
There are three types of forward models: (1) Monte Carlo (MC) methods [7–9] are based on 
a stochastic model and therefore need significant computation time to achieve sufficient 
precision; (2) numerical methods, e.g., finite element (FEM) [10–16], involve matrix 
inversion and therefore are computationally costly; (3) analytical methods involve less 
computation time, and thus should be more suitable for real-time PA imaging. However, 
analytical modes only exist for simple cases. 
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Several studies have presented analytical models of optical fluence for homogeneous and 
inhomogeneous media and these models have been validated with experiments and 
simulations. Patterson et al. developed analytical models for semi-infinite and finite 
homogeneous tissue slab [17,18]. Boas et al. developed analytical models for an 
inhomogeneity embedded in an otherwise homogeneous turbid medium. They introduced 
boundary conditions that take into account the index of refraction mismatch between the 
embedded inhomogeneity and the background medium [19,20] and their model has been 
validated experimentally [21]. Some models were also based on the Born approximation [9], 
which is limited to small fluctuations of the optical properties. Ripoll et al. developed 
analytical models based on the Kirchhoff approximation [22,23], assuming that the total 
intensity at a certain point in the medium is equal to the sum of the incident field and the 
wave reflected from the plane tangent to the interface. These studies focused on DOT, and 
therefore the optical fluence is mainly investigated at the detector position. Relatively little 
work has been done on the analytical model of multiple inhomogeneities embedded in an 
otherwise homogeneous turbid medium, probably because this model can hardly be 
integrated in a DOT reconstruction process for tissues. Indeed, optical properties of tissues 
are very inhomogeneous. Furthermore, for DOT, the optical detectors are positioned onto the 
tissue surface, and therefore surface boundary conditions are mandatory. However, we 
believe that this model could be relevant for forward problems and inverse problems of PA 
imaging, since PA waves are only generated by absorbers inside tissues. The absorbers in 
tissues are mainly localized in anatomical structures. In particular, the main endogenous 
contrast for PA imaging is the blood vessels due to the strong absorption of hemoglobin. 
Hence, considering a model of inhomogeneities of absorption could be more relevant in PA 
imaging than in DOT. 

Blood vessels are roughly cylindrical and have a much stronger absorption coefficient 
than the background tissues. Furthermore, hemoglobin concentration can be assumed to be 
uniform inside the vessel. Therefore, the blood vessels can be considered as “cylindrical 
inhomogeneities.” In this paper we present an analytical model for multiple parallel 
cylindrical inhomogeneities embedded in an otherwise homogeneous turbid medium to 
analyze the factors that influence optical fluence distribution. The practical applications of 
this model are limited to the biological tissues where blood vessels can be assumed as 
“parallel vessels”. 

Analytical model for such configuration is a well-known problem in acoustics, 
electromagnetics and the light scattering of particles [24–31]. However, all these related 
works focused only on the analytical model corresponding to the physical quantity outside 
the “inhomogeneities”. It was assumed that a plane wave was incident on the 
“inhomogeneities” in acoustics, electromagnetics [24,25,27–31]. In the research of the light 
scattering of cylindrical particles, only single scattering has been considered based on the 
assumption that the interaction of particles can be neglected [26]. However, in biological 
tissues, PA waves are generated by the local absorption contrast introduced by 
“inhomogeneities” in biological tissues, thus the optical fluence inside inhomogeneities is a 
key point to analyze the PA waves. The objective of this study is to present a model that 
focuses on the optical fluence both outside and inside the inhomogeneities embedded in 
turbid medium. 

Our model arises out of the solution of the diffusion equation that is the approximation of 
the Boltzmann transport equation. The model represents the optical fluence distribution in 
tissues as a function of the reduced scattering and absorption coefficients. The migration of 
light through biological tissues in this model can be treated as a wave that is called a diffuse 
photon density wave (DPDW) in literature [19]. In tissues with homogenous optical 
properties, the incident DPDW of light source propagates unobstructed. However, the 
presence of “inhomogeneities” in the optical properties leads to a distortion, modeled as a 
scattered DPDW [20]. Light that diffuses through a medium including “inhomogeneities” can 
be considered as a superposition of the incident wave and scattered waves [32,33]. In view of 
high scattering properties of biological tissues, this incident wave cannot be modeled as a 
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plane wave and the multiple scattering of “inhomogeneities” needs to be considered. The 
interplay between cylindrical inhomogeneities is incorporated by using new boundary 
conditions that take into account the multiple scattering of inhomogeneities. The model has 
been compared with the numerical solution obtained by use of NIRFAST software [10,11]. 
Close agreement of fluence inside inhomogeneities, which is the source of PA signal, permits 
the use of our model as a forward model needed in PA imaging. 

2. Theory 

The geometry of the problem is illustrated in Fig. 1. A point light source is incident on 
cylindrical inhomogeneities embedded in an otherwise homogeneous infinite turbid medium. 
The inhomogeneities have different optical parameter from background medium. 

2.1 Incident waves 

In PA imaging the acoustic propagation occurs on a timescale several orders of magnitude 
longer than the heat deposition. Therefore the time-integrated absorbed power density (i.e., 
the absorbed energy density) is the quantity of interest [5]. In most biological tissues the 
optical fluence obeys the diffusion equation [20]. In an infinite homogeneous medium, the 
time-independent diffusion equation has the form [34], 

 2 2 ( )( ) ( ) S r
r k r

D
∇ Φ + Φ = −  (1) 

and 

 '3 ( )s a ak j μ μ μ= ⋅ ⋅ + ⋅  (2) 

where 2 1j = − , '
sμ  is the reduced scattering coefficient, aμ is the absorption coefficient, 

1'3( )s aD uμ
−

 = +   is the diffusion coefficient, and ( )S r is the source term. 

The optical fluence at a detector position dr , ( , )inc s dr rΦ , in an infinite homogeneous 
medium for a point source at sr  has been given by other studies [17,19]. In this study we use 
the incident optical fluence at an arbitrary position r inside the medium, 

 ( )( , ) exp
4inc s s

s

S
r r jk r r

D r rπ
Φ = −

−
 (3) 

In the presence of cylindrical inhomogeneities, it is natural to analyze the problem in 
cylindrical coordinates that are defined with respect to each center of the cylinders, as in Fig. 
1. The z-axis of each cylindrical coordinate is the axis of each cylinder. The polar axis of all 
coordinates is parallel to the x-axis. Important notations are explained in Fig. 1, in particular i 
is index of ith cylinder and 'i  represents an arbitrary remaining cylinders, with respect to the 
ith cylinder. 

Based on the works of Jackson [35], the cylindrical expansion of ( , )inc sr rΦ with respect 
to the ith inhomogeneity center can be written as: 

 ( ) ( )2 0
exp ( ) cos( )

2
i i i i i

inc s n n
nout

S
dp j n p z I r K r

D
θ θ

π

+∞ ∞

< >
=−∞

 Φ = ⋅ − ⋅    (4) 

outD  is the diffusion coefficient of the background. nI  and nK  are modified Bessel functions 
of the first and the second kind, respectively. 2 2 1 2( )i i

outr p kρ< <= ⋅ − , 2 2 1 2( )i i
outr p kρ> >= ⋅ − , 

iρ<  and iρ>  are, respectively, the smaller and the larger values of i
sρ  and iρ , where i

sρ is 
the radial distance of the light source and iρ  is an arbitrary position (indicated by p) in the 
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medium with respect to the ith inhomogeneity center. n  and p  arise from the separation of 
variables. outk is the wave number of the background. iθ  and i

sθ  are the azimuth angles of a 
given position in the medium and of the light source, respectively, with respect to the ith 
inhomogeneity center. 

 
Fig. 1. Horizontal cross section of the geometry. Cylindrical inhomogeneities of absorption 
coefficient embedded in an otherwise homogeneous infinite turbid medium. i is index of ith 
cylinder and i’ represents an arbitrary remaining cylinders. Cylindrical coordinate systems 
have their origins at the center of each inhomogeneity. The source is noted by S. P indicates 
an arbitrary point within the medium, and its coordinates values with respect to each cylinder 
coordinate system are indicated. The z-axis is along the axis of each inhomogeneity and 
comes out of the cross section. 

2.2 Scattered waves 

If the individual cylindrical inhomogeneities are sufficiently far from each other, the 
interplay between cylindrical inhomogeneities can be neglected and the boundary conditions 
given by Li et al. [36] are valid. 

If the cylindrical inhomogeneities are closer, the physical interpretation of their interplay 
is shown in Fig. 2. incΦ , the optical fluence incident on the ith inhomogeneity, produces the 

first-order scattered wave, ( )1
scat

i Φ  (see Fig. 2(a)). In the same manner all the remaining 

cylinders produce first-order scattered waves, ( )'

'
1

scati

i Φ , which are incident on the ith 

cylinder and produce the second-order scattered wave, (2)i
scatΦ . Proceeding in this way, one 

can obtain the l-order scattered waves, ( )i l
scatΦ , with l from 1 to infinity. 

 
Fig. 2. Physical interpretation of the different orders of scattering waves by the ith 
inhomogeneity: (a) the incident wave produces the first-order scattered wave by the ith 
inhomogeneity; (b) the sum of first-order scattered waves from the remaining cylinders 
produces the second-order scattered wave by the ith inhomogeneity. 
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According to this physical interpretation, the second order of scattering, (2)i
scatΦ , can be 

interpreted as arising out of the consecutive scattering of the incident wave by two different 
inhomogeneities. ( )i l

scatΦ  arises out of the scattering of the incident wave by l consecutive 
scattering process. Therefore, ( )i l

scatΦ  approaches 0 when l approaches infinity. This enables 
the truncation by considering only the first t orders of scattering to generate a solution, where 
t is a positive integer. 

On the basis of the general solution given by Walker et al. [20] and of Eq. (3), the l-order 
scattered wave from the ith cylinder can be expressed as follows: 

 ( ) ( )

0
exp( ) cos( ) ( ) ( )i l i i l i

scat n n
n

dp j n p z B p K xθ
∞ ∞

=−∞

Φ = ⋅ ⋅ ⋅ ⋅ ⋅   (5) 

And the sum of the first t orders of scattering waves from the ith cylinder iSCt, can be 
expressed as follows: 

 
0

exp( )cos( ) ( ) ( )i t i i t i
n n

n

SC dp j n p z B p K xθ
∞ ∞

=−∞

= ⋅ ⋅ ⋅ ⋅ ⋅   (6) 

With 

 ( )

1
( ) ( ).

t
i t i l

n n
l

B p B p
=

=   

Correspondingly, the fluence inside the ith cylinder has the form, 

 
0

exp( ) cos( ) ( ) ( )i t i i t i
in n n

n

dp j n p z C p I yθ
∞ ∞

=−∞

Φ = ⋅ ⋅ ⋅ ⋅ ⋅   (7) 

Here, 2 2 1 2( )i i
outx p kρ= ⋅ − , 2 2 1 2( )i i i

iny p kρ= ⋅ − , i
ink  is the wave number inside the ith 

cylinder, ( )i t
nB p , ( ) ( )i l

nB p  and ( )i t
nC p  are unknown coefficients that are determined by use 

of boundary conditions. 

2.3 Boundary conditions 

As explained by Fig. 2, we can see that i
incΦ  produces ( )1

scat
i Φ  and that ( )'

'
1

scati

i Φ  produces 
( )2
scat

i Φ . Thus, ( )'

'
1i

inc scati

iΦ + Φ  produces ( )22
1

li
scatl

iSC
=

= Φ . Proceeding in this way, and 

considering the first t orders of scattered waves, we can see that 
'

'
1i i t

inc i
SC −Φ +  produces 

( )
1

ti t i l
scatl

SC
=

= Φ . Thus the fluence outside the ith cylinder can be written as: 

 
'

'

1i t i i t i t
out inc

i

SC SC −Φ = Φ + +  (8) 

It is noteworthy that i t
outΦ include three terms that are incident waves, the sum of the first 

t orders of scattering waves from the cylinder in question and the sum of the first t-1 orders 
of scattering waves from the remaining cylinders, respectively. Boundary conditions require 
that: (1) the flux normal to the boundary of the ith cylinder must be continuous; (2) the optical 
fluence must be continuous across the boundary of the ith cylinder. They can be written as: 
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 i i i i

i i i i

i t i i t
out out in ini i

a a

i t i t
out ina a

D D
ρ ρ

ρ ρ

ρ ρ= =

= =

   ∂ ∂Φ = Φ   ∂ ∂   

   Φ = Φ   

 (9) 

Solving the system of linear equations we have, 

 ( )
( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

' ' '

2 ' '2

i
out n n n b b in n n n b bi t

n i
out out n b n b b in n b n b b

D S a SC I y y D S a SC I y xS
B p

D D K x I y x D K x I y yπ
⋅ + ⋅ ⋅ − ⋅ + ⋅ ⋅

= ⋅
⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

 (10) 

and 

 ( )
( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

' ' '

2 ' '2
out n n n b b out n n n b bi t

n i
out out n b n b b in n b n b b

D S a SC K x x D S a SC K x xS
C p

D D K x I y x D K x I y yπ
⋅ + ⋅ ⋅ − ⋅ + ⋅ ⋅

= ⋅
⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

 (11) 

Where 2 2i
b outx a p k= ⋅ − , 2 2i

b iny a p k= ⋅ −  and 2 2i
b s outz p kρ= ⋅ − . 

 
( ) ( ) ( ) ( )

( ) ( ) ( )' '

'
1

exp( ( ) )

1 exp( ( ) ) ( )

i
n n b s n m s m b

m

n ii i t
n n b n m mi

m

S a I x j n m I z K z

SC I x j n m K z B p

θ

θ

∞

−
=−∞

∞
−

−
=−∞

= ⋅ − ⋅ − ⋅ ⋅ ⋅

= − ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅




  

 
( ) ( ) ( ) ( )

( ) ( ) ( )' '

'

' '

' ' 1

exp( ( ) )

1 exp( ( ) ) ( )

i
n n b s n m s m b

m

n ii i t
n n b n m mi

m

S a I x j n m I z K z

SC I x j n m K z B p

θ

θ

∞

−
=−∞

∞
−

−
=−∞

= ⋅ − ⋅ − ⋅ ⋅ ⋅

= − ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅




  

Where, 2 2i
s s outz p kρ= ⋅ − , 

'

'
2 2ii

outi
z r p k= ⋅ − , 

'ii r  and 
'iiθ  are, respectively, the radial 

distance and the azimuth angle of the center of the ith inhomogeneity with respect to the 
center of the 'thi  inhomogeneity. 

Therefore, the unknown coefficients ( )i t
nB p  and ( )i t

nC p  can be determined by a 
recurrence process. The initial terms, 1 ( )i

nB p , are given in the study of Walker et al. [20], and 
therefore not written here. Since ( )i l

scatΦ  approaches 0 when l approaches infinity, and since 
the number of cylindrical inhomogeneities, N, is finite, then: 

 ( )
( )1 1, 1,2,...,lim

i t
n

i t
t n

B p
i N

B p+
→∞

= =  (12) 

Considering Eq. (12), the stop condition of the recurrence process can be written as: 

 
( )
( )1 1 1, 2,...,

i t
n

i t
n

B p
i N

B p
ε+ − ≤ =  (13) 

ε  is an arbitrarily small quantity that depends on the required precision. 
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Obviously no boundary conditions are defined for the tissue surface because the medium 
is infinite in the model. This could be problematic for DOT but not for PA imaging because 
the PA signal is produced inside absorption inhomogeneities. 

3. Numerical phantoms 

Our aim was to investigate the validity of this new model when used as a forward model in a 
quantitative PA imaging reconstruction process. The quantity of interest is the optical fluence 
inside the cylindrical absorption inhomogeneities, which represent the blood vessels. Indeed 
the PA signal is directly linked to the absorbed energy into the blood vessels, which is 
proportional to the product of the absorption coefficient and the optical fluence. We used 
NIRFAST software [10,11] as the gold standard for the characterization of the optical fluence 
into cylindrical inhomogeneities. 

Several numerical phantoms were defined so as to validate the model. They were all 
based on a cube ( 34 4 4cm× × ), and a point light source was positioned 0.1 cm ( '1 sμ ) from 
the border. The distance between nodes was taken as 0.05 cm ( '0.5 sμ ) for NIRFAST 
simulations. Optical properties of phantoms were close to the typical parameters of biological 
tissues [37] in the near-infrared region. The reduced scattering coefficient was constant in the 
whole medium (background and inhomogeneities), ' 110s cmμ −= . 

The first three sets of phantoms include two inhomogeneities to investigate the influence 
of different parameters of inhomogeneities (depth, size, and absorption) on the interaction 
between inhomogeneities. The last two phantoms include multiple inhomogeneities to 
validate our model for more complex cases. 

For each phantom we simulated the optical fluence distribution with NIRFAST. This 
solution is denoted “NIRFAST” and is used as the gold standard. We then simulated the 
optical fluence distribution with the analytical model in each phantom, considered in this 
case as an infinite cube. ε  was set to 310− , which fixed a value of tmax by use of Eq. (13). We 
evaluated the influence of the orders of scattering wave by simulating different analytical 
solutions with increasing values of t. The optical fluence distribution corresponding to, t = 1, 
was denoted “1-order.” We calculated the optical fluence distribution as the value of t 
increased from 2 to tmax, these solutions were denoted “t-order”. n in our analytical model 
arises from the separation of variables and should be infinity in theory. In the following 
simulation results, the values of n ranges from −20 to 20. The upper limit of n can be fixed 
by a method similar to Eq. (13). In this paper, it was calculated by following equation, 

 5( ) ( 5)
10 .

( 5)
inc inc

inc

n n

n
−Φ − Φ +

<
Φ +

  

In order to evaluate quantitatively the error of the proposed model compared with the 
chosen standard, we calculated the mean relative error (MRE) with the following equation: 

 
1

1 n
i i

i i

x y
MRE

N y=

−
=   (14) 

In this paper, MRE measured the optical fluence distribution difference between the 
result calculated by the analytical model, x, and the reference result calculated by NIRFAST, 
y. The MRE is calculated only into the inhomogeneities. The MRE is normalized to the local 
reference result y. Therefore, this parameter evaluates local errors. It is the more relevant 
way of evaluating the ability of the model for use in PA imaging. Global parameters would 
neglect deep parts of the inhomogeneities that receive lower optical fluence, and are then the 
more challenging part of PA imaging. 
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4. Results and discussion 

4.1 Two inhomogeneities with different depth 

This set of simulation examples shows the interaction of two inhomogeneities with different 
depth. Two columns in Fig. 3 show two phantoms and the corresponding results. The 
position of inhomogeneities (denoted by c1 and c2) and light source are shown in the top 
rows, Fig. 3(a) and Fig. 3(d). The corresponding depths of the c1 center are 2.1 cm and 2.3 
cm, the depth of the c2 center in Fig. 3(a) and Fig. 3(e) is 1.5 cm. The absorption coefficient 
of all inhomogeneities is 0.8 cm−1. The radius of all inhomogeneities is 0.3 cm. The 
corresponding fluence distribution along the line y = 0 cm is shown in the second rows of 
Fig. 3(b) and Fig. 3(e). The curves of MRE versus the order of scattering are given in Fig. 
3(c) and Fig. 3(f). The resolved tmax values are 4 and 3, the difference of tmax indicates that a 
higher order of scattering needs to be considered if the two inhomogeneities are closer. The 
tmax values were determined as c1 was moved toward the -x direction along the dotted line in 
Fig. 3(a). Figure 4 shows the curve of tmax versus the depth of the c1 center. This curve shows 
that a higher order of scattering needs to be considered if the depth of the c1 center decreases. 
This is due to the fact that the scattering wave is an outgoing wave, which is reduced as the 
distance of propagation increases. 

4.2 Two inhomogeneities with different size 

This set of simulation examples shows the interaction of two inhomogeneities with different 
radius. The position of the inhomogeneities (denoted by c1 and c2) and light source are 
shown in Fig. 5(a) and Fig. 5(e). The corresponding radius of c1 is 0.5 cm and 0.7 cm, the 
radius of c2 in Fig. 5(a) and Fig. 5(e) is 0.3 cm. The absorption coefficient of all 
inhomogeneities is 0.8 cm−1. The corresponding fluence distribution along the line y = 
−0.5cm is shown in Fig. 5(b) and Fig. 5(f). The fluence distribution along the line y = 0.5cm 
is shown in Fig. 5(c) and Fig. 5(g). The resolved tmax values are 3 and 5. The curve of MRE 
versus the order of scattering is given in Fig. 5(d) and Fig. 5(h). The tmax values were 
determined as the radius of c1 was changed from 0.1 cm to 0.7 cm. Figure 6 shows the curve 
of tmax versus the radius of c1. This curve shows that the order of scattering to be considered 
increases with the increase in the radius of c1. This is due to the fact that the interaction of c1 
and c2 is improved as the radius of c1 increases. In this set of simulations the center of two 
inhomogeneities is fixed because the source of scattering waves can be considered as the 
center of inhomogeneities according to Eq. (5). 

4.3 Two inhomogeneities with different absorption coefficient 

This set of simulation examples shows the interaction of two inhomogeneities with different 
absorption coefficient. The position of the inhomogeneities (denoted by c1 and c2) and light 
source are shown in Fig. 7(a) and Fig. 7(e). The corresponding absorption coefficients of c1 
are 0.4 cm−1 and 0.8 cm−1, and the absorption coefficient of c2 in Fig. 7(a) and Fig. 7(e) is 0.8 
cm−1. The radius of all inhomogeneities is 0.3 cm. The corresponding optical fluence 
distribution along the line y = −0.5 cm is shown in Fig. 7(b) and Fig. 7(f). The optical fluence 
distribution along the line y = 0.5 cm is shown in Fig. 7(c) and Fig. 7(g). These curves of 
optical fluence indicate the higher the absorption coefficient of c1 is, the faster the optical 
fluence decays. This is due to the fact that the rise of absorption results in an increase of 
wavenumber. The resolved tmax value is 4. The curve of MRE versus the order of scattering is 
given in Fig. 7(d) and Fig. 7(h). The tmax values were determined as the absorption of c1 was 
changed from 0.1 cm−1 to 0.9 cm−1. Figure 8 shows the curve of tmax versus the absorption 
coefficient of c1. This curve shows that tmax is slightly influenced by the absorption value. 
We did not note any significant influence of the absorption coefficient properties variation. 
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Fig. 3. Comparison between the analytical model and NIRFAST for two inhomogeneities with 
different depth. Top row ((a) and (d)): Horizontal cross section of the first numerical phantom 
of two cylindrical inhomogeneities with different depth (depths of the c1 center in (a) and (e) 
are 2.1 cm and 2. 3cm, depths of the c2 center in (a) and (e) are 1.5cm) in a homogeneous 
background (µa = 0.2cm−1 and µ’s = 10cm−1). Second row ((b) and (e)): Horizontal cross 
section of the optical fluence distribution through y = 0cm; the dashed lines indicate the 
positions of the inhomogeneities c1 and c2. Third row ((c) and (g)): MRE corresponding to 
the area [-1.2cm, 1.2cm ] × [-1.2cm, 1.2cm ]. 

 
Fig. 4. Curve of tmax versus the depth of the c1 center. 
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Fig. 5. Comparison between the analytical model and NIRFAST for two inhomogeneities with 
different radius. Top row ((a) and (e)): Horizontal cross section of the numerical phantom of 
two cylindrical inhomogeneities with different radius (radius of c1 in (a) and (e) is 0.5cm and 
0.7cm, respectively, radius of c2 in (a) and (e) is 0.3cm) in a homogeneous background (µa = 
0.2cm−1 and µ’s = 10cm−1). Second row ((b) and (f)): Horizontal cross section of the optical 
fluence distribution through y = −0.5cm; the dashed lines indicate the positions of the 
inhomogeneities c1. Third row ((c) and (g)): Horizontal cross section of the optical fluence 
distribution through y = 0.5cm; the dashed lines indicate the position of the inhomogeneity c2. 
Fourth row ((d) and (h)): MRE corresponding to the area [-1.2cm, 1.2cm ] × [-1.2cm, 1.2cm ]. 

 
Fig. 6. Curve of tmax versus the radius of c1. 
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Fig. 7. Comparison between the analytical model and NIRFAST for two inhomogeneities with 
different absorption. Top row ((a) and (e)): Horizontal cross section of the numerical phantom 
of two cylindrical inhomogeneities with different absorption coefficient (µa of c1 in (a) and (e) 
is 0.4cm−1 and 0.8 cm−1, respectively, µa of c2 in (a) and (e) is 0.8 cm−1) in a homogeneous 
background (µa = 0.2cm−1 and µ’s = 10cm−1). Second row ((b) (f)): Horizontal cross section of 
the optical fluence distribution through y = −0.5cm; the dashed lines indicate the positions of 
the inhomogeneities c1. Third row ((c) (g)): Horizontal cross section of the optical fluence 
distribution through y = 0.5cm; the dashed lines indicate the position of the inhomogeneity c2. 
Fourth row((d) and (h)): MRE corresponding to the area [-1.2cm, 1.2cm ] × [-1.2cm, 1.2cm ]. 

 
Fig. 8. Curve of tmax versus absorption coefficient of c1. 
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4.4 Multiple inhomogeneities 

In this set of simulations, the first phantom had five identical cylindrical inhomogeneities 
(denoted c1 to c5 in Fig. 9(a)) embedded within the cube. They had a radius of 0.3 cm and an 
absorption coefficient µa of 0.8 cm−1. The second phantom had three different cylindrical 
inhomogeneities embedded within the cube. Their radius were set in the range 0.3 cm to 0.5 
cm and their absorption coefficient in the range 0.4 cm−1 to 0.8 cm−1 (see Table 1). Figure 
9(a) and Fig. 10(a) show, respectively, the horizontal cross sections of the first and second 
phantoms. 

Table 1. Parameters of the second numerical phantom 

Inhomogenei
ty 

Position (x, y) Radius (cm) Absorption (cm-1) 

c1 (0.5, 0) 0.5 0.8
c2 (−0.5, 0.7) 0.4 0.6
c3 (0, −0.7) 0.3 0.4

Figure 9(a) shows the horizontal cross sections of the first phantom. The tmax value was 
found to be 5. The configuration of the inhomogeneities was symmetrical about the line, y = 
0. Figure 9(b) and Fig. 9(c) show the optical fluence distribution through the horizontal cross 
sections corresponding to lines y = −0.7cm and y = 0cm, respectively. We can clearly see 
that the analytical solutions obtained by only considering first order and first two orders of 
scattering waves had large errors. This means that the higher-order (larger than second order) 
scattering waves need to be considered in this case. 

The MRE corresponding to the fluence distribution in the area [-1.2cm, 1.2cm ] × [-
1.2cm, 1.2cm ] is given in Fig. 9(d). The two remaining inhomogeneities had the same 
behavior because of the symmetry of the phantom. The curve of MRE versus the order of 
scattering used in the simulation confirms that a higher order of scattering has to be 
considered. 

In the second phantom we considered a geometry including inhomogeneities with 
different parameters. The tmax value was found to be 5. Figure 10(b), Fig. 10(c), and Fig. 
10(d) show the optical fluence distribution through the lines y = 0.7 cm, y = 0 cm, and y = 
−0.7 cm, respectively. The analytical solutions obtained by only considering first order and 
first two orders of scattering waves still had larger errors. Simulation results showed that the 
analytical solution inside and outside the inhomogeneities was in good agreement with the 
NIRFAST solution when t = tmax. The curves of the MRE corresponding to the area [-1.2cm, 
1.2cm] × [-1.2cm, 1.2cm] versus the number of order, Fig. 10(e), confirm the observation. 

These results also demonstrate the relevance of the new analytical model for the 
investigation of real vasculature, which presents numerous blood vessels with different sizes, 
depths, and absorption coefficients. Indeed oxy-hemoglobin and deoxy-hemoglobin have 
very different absorption coefficients, and thus the oxygen saturation of blood vessels greatly 
influences its absorption coefficient. From the MRE curves we can see that the increasing 
number of the order of scattering considered, t, optimizes the analytical solution. MRE falls 
sharply when t goes from 1 to 2, and it falls more slightly when t goes from 2 to tmax. This 
means that the scattered waves are weakened with increasing orders. As we mentioned 
previously, this property enables the convergence of the recurrence process. 

To compare our analytical model in terms of computation speed, we implemented the 
algorithms with Matlab (R2011b) and they were run on an ordinary computer (Intel(R) 
core(TM) i7-2760QM CPU @ 2.40GHz). It took 642 s to run the first example by using 
NIRFAST software compared with 54 s with the analytical model. This is a 12-fold 
improvement in computation speed, which means that the analytical model is more likely to 
be used for real-time imaging when implemented in a faster computing environment. 

In all the results, the fluence was given within the interval [-1.2 cm, 1.2 cm] not within 
the interval [-2 cm, 2 cm], and the fluence distribution was normalized by its maximum 
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value. In the area close to the border, there were larger errors due to different boundary 
conditions. 

The index of refraction is considered as a constant in the whole media. If one wants to 
consider the variation of the index of refraction, the boundary conditions at the surface of a 
certain cylinder need to be modified to incorporate Fresnel reflection [20]. If the point source 
is replaced with a light beam, the source term can be considered as being composed of many 
point sources, which means that the analytical solution of a beam source can be obtained by 
an integral of the solution of the point source. It is noteworthy that our model can also be 
used to research the influence of scattering coefficient on optical fluence distribution, though 
the scattering coefficient in all numerical phantoms used in simulations has been assumed as 
a constant in whole medium. 

 
Fig. 9. Comparison between the analytical model and NIRFAST. (a)Horizontal cross section 
of the first numerical phantom with five cylindrical inhomogeneities (µa = 0.8cm−1 and µ’s = 
10cm−1) in a homogeneous background (µa = 0.2cm−1 and µ’s = 10cm−1). (b) Horizontal cross 
section of the optical fluence distribution through y = −0.7cm; the dashed lines indicate the 
positions of the inhomogeneities c1 and c3. (c) Horizontal cross section of the optical fluence 
distribution through y = 0cm; the dashed lines indicate the position of the inhomogeneity c5. 
(d) MRE corresponding to the area [-1.2cm, 1.2cm] × [-1.2cm, 1.2cm]. 
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Fig. 10. Comparison between the analytical model and NIRFAST. (a) Horizontal cross section 
of the second numerical phantom with three cylindrical inhomogeneities (see Table 1 for 
optical properties) in a homogeneous background (µa = 0.2cm−1 and µ’s = 10cm−1). (b) 
Horizontal cross section of the optical fluence distribution through y = 0.7cm; the dashed lines 
indicate the positions of the inhomogeneities c3. (c) Horizontal cross section of the optical 
fluence distribution through y = 0cm; the dashed lines indicate the positions of the 
inhomogeneities c1. (d) Horizontal cross section of the optical fluence distribution through y 
= −0.7cm; the dashed lines indicate the positions of the inhomogeneities c3. (e) MRE 
corresponding to the area [-1.2cm, 1.2cm ] × [-1.2cm, 1.2cm ]. 

4. Conclusion 

In this paper, we proposed an analytical model of the optical fluence distribution for multiple 
cylindrical inhomogeneities embedded in an otherwise homogeneous turbid medium based 
on new boundary conditions taking into account the scattering waves of the inhomogeneities. 
The scattering waves were determined by combining a recurrence process with a proposed 
stop condition. The model was compared with the solution of NIRFAST software for 
numerical phantoms. The close agreement between the two methods used to simulate the 
optical fluence distribution into absorption inhomogeneities permits the use of our model as a 
forward model needed in quantitative PA imaging. 
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