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Abstract. This paper studies the concepts of definability and canonicity in Boolean logic with a bi-
nary relation. Firstly, it provides formulas defining first-order or second-order conditions on frames.
Secondly, it proves that all formulas corresponding to compatible first-order conditions on frames
are canonical.

Keywords: Boolean algebra, modal logic, definability, canonicity.

1. Introduction

One of the central issues in region-based theories of space is the concept of connection between re-
gions [10, 11, 17, 18]. The theory of connection can be succinctly described as the study of regions
instead of points as the basic entities of geometry, with a particular emphasis on the study of the rela-
tion “a is in contact with b” for regions a and b in some space. For example, de Laguna [22] considers
the ternary relation “a connects b with ¢” and Whitehead [31] considers the binary relation “a is con-
nected with b”. In this setting, points can be defined as collections of regions. The idea to define points
as collections of regions in de Laguna’s framework and in Whitehead’s framework is very similar to
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the idea to define elements as ultrafilters in Stone’s representation theory of Boolean algebras. That is
the reason why the concept of connection can be abstracted within the context of Boolean contact al-
gebras where one considers a Boolean algebra B, the space of regions, and a binary relation C' on B,
the contact relation between regions. Several variants of Boolean contact algebras have been studied
later [6, 15, 21, 26, 29] and several representation theorems of these variants in proximity spaces and
topological spaces have been recently obtained [12, 13, 14, 16, 28].

Boolean logic with a binary relation (BLBR) can be considered as a quantifier-free logic for reasoning
about connection between regions [3, 4, 5]. Its language is a Boolean language with the Boolean con-
structs f, t, —, U and N to which the binary relation symbol § has been added. Within a Boolean contact
algebra (B, ('), the Boolean terms of the language defined over f, ¢, —, U and N are interpreted by ele-
ments of the Boolean algebra B whereas the binary relation symbol § added to the language is interpreted
by the binary relation C' on B. In spite of its simplicity, such a language turns out to be a useful tool
for describing relational structures [2] too. The truth of the matter is that the semantics of BLBR can be
presented in three different ways [27]: an algebraic semantics based on algebras of regions, a topological
semantics based on contact algebras of some classes of topological spaces and a Kripke-type semantics
based on Kripke structures regarded as adjancency spaces, the Kripke-type semantics having the advan-
tage of being close to the semantics for basic modal language and allowing the re-use of well-known
tools and techniques in modal logic (bisimulation, canonical model, filtration, etc).

This paper considers the concepts of definability and canonicity. It presents results that explain the dif-
ferences between our BLBR and a propositional modal logic. Concerning definability, we show that the
class of all connected frames is modally definable in our language whereas the class of all Church-Rosser
frames is not modally definable in our language. Concerning canonicity, a consistent extension L of the
minimal BLBR is said to be canonical iff every maximal L-consistent set of formulas in our language
defines a canonical frame that validates L. The most important differences between our BLBR and a
propositional modal logic being probably that our BLBR gives rise to uncountably many canonical mod-
els, we show that some consistent extension L of our BLBR is not canonical.

The section-by-section breakdown of this paper is as follows. Section 2 introduces the syntax and the
Kripke-type semantics of our BLBR. In Section 3, we redefine in our setting the concepts of bounded
morphisms and bisimulations. Section 4 considers the concept of definability. A variant of the technique
of the filtration is presented in Section 5. Section 6 describes a variant of the technique of the canonical
model. In Section 7, the concept of canonicity is studied. Section 8 presents the concept of compati-
ble formula. In Section 9, several open problems are suggested. We assume the reader’s familiarity with
well-known tools and techniques in modal logic (bisimulation, canonical model, filtration, etc). For more
on these see [7, 9]. In all our figures, true to tradition, black circles represent irreflexive possible worlds
whereas white circles represent reflexive possible worlds.

2. Syntax and Kripke-type semantics
We now recall the syntax and the Kripke-type semantics presented in [5].

2.1. Syntax

The language is defined using a countable set BV of Boolean variables (with typical members denoted
by p, q, r, etc).



Definition 2.1. (Terms)
We inductively define the set ¢t(BV') of terms (with typical members denoted by A, B, C, etc) as follows:

e Au=p|f|t|-A|(AUB)|(ANB).
For all terms A, let AY = —A and A! = A.

Definition 2.2. (Formulas)
We inductively define the set f(BV') of formulas (with typical members denoted by ¢, v, x, etc) as
follows:

e pu=A=B|AB|L|T|~¢|(@Ve)] (@A)

The other Boolean constructs are defined as usual. We obtain the formulas A # B and A6 B as abbrevi-
ations: A # B for =A = B and AJB for = AdB. The notion of subterm and the notion of subformula
are standard. We adopt the standard rules for omission of the parentheses.

Definition 2.3. (Free variables)

If A is a term then F'V(A) will denote the set of all Boolean variables occurring in A whereas if ¢ is
a formula then F'V(¢) will denote the set of all Boolean variables occurring in ¢. For all BV’ C BV,
t(BV") will denote the set of all A € ¢(BV) such that 'V (A) C BV’ whereas f(BV’) will denote the
setof all ¢ € f(BV) such that FV(¢) C BV".

Definition 2.4. (Substitution instances)

A substitution is a function o assigning to each Boolean variable p a term o(p). As usual, o induces
a function ()7 assigning to each term A a term (A)? and assigning to each formula ¢ a formula (¢)?
obtained from A and ¢ by uniformly replacing occurrences of Boolean variables by the o-corresponding
terms. A term B is a substitution instance of a term A iff there exists a substitution o such that (4)? = B
whereas a formula ) is a substitution instance of a formula ¢ iff there exists a substitution ¢ such that

(9)7 = .

2.2. Kripke-type semantics

Definition 2.5. (Frames)

A frame is an ordered pair F = (W, R) where W is a non-empty set of possible worlds and R is a binary
relation on W. For all z € W, let R(x) be the set of all y € W such that Ry, R (x) be the set of
all y € W such that vt R*y and R*(z) be the set of all y € W such that x R*y, R being the transitive
closure of R and R* being the reflexive-transitive closure of R.

Definition 2.6. (Valuations)

A valuation based on a frame F = (W, R) is a function V' assigning to each Boolean variable p a subset
V(p) of W. As usual, V induces a homomorphism (-)"" from the algebra of terms into the Boolean
algebra of 1W’s subsets assigning to each term A a subset (A)" of W as follows:

()Y =V(p),
(HY =0,
o« () =W,



o (A =W\ (4)Y,
e (AUB)Y = (A)V U (B)Y and
e (ANB)Y =AYV Nn(B).

Definition 2.7. (Models)
A model is an ordered triple M = (W, R, V') where F = (W, R) is a frame and V is a valuation based
on F.

Definition 2.8. (Satisfiability)
The satisfiability of a formula ¢ in a model M = (W, R, V'), in symbols M = ¢, is defined as follows:

e M A=Biff(A)Y = (B)Y,

e M = ASB iff there exists 2,y € W such that zRy, z € (4)" and y € (B)Y,
o M1,

° M':T,

M = —¢ iff M I~ o,

MEoVYiff M = ¢or M =9 and

MEANYIff M = ¢and M = 9.

Asaresult, M |= A # Biff (A)V # (B)Y and M = AjB iff forall z,y € W, if 2Ry then z ¢ (A)V
ory & (B)V.

Example 2.9. Let M = (W, R,V) and M’ = (W', R', V') be the models defined as follows: W =
{0}; R=0; V(p) =0; W ={0}; R = 0; V'(p) = {0}. The reader may easily verify that = cannot
be eliminated from the language, seeing that M = p = f, M’ £ p = f and for all =-free formulas ¢,
M= piff M = o,

Example 2.10. Let M = (W, R, V) and M’ = (W', R’, V") be the models defined as follows: W =
{0}; R=0; V(p) = 0; W = {0}; R = {(0,0)}; V'(p) = (). The reader may easily verify that §
cannot be eliminated from the language, seeing that M |= t&t, M’ [~ t6t and for all §-free formulas ¢,
M= $iff M = 6.

Definition 2.11. (Validity and satisfiability)

Let F be a frame. A formula ¢ is valid in F, in symbols val(F, ¢), iff for all models M based on F,
M = ¢. If there exists a model M based on F such that M |= ¢ then we say that ¢ is satisfiable in
F, in symbols sat(F,¢). A set I' of formulas is valid in F, in symbols val(F,T"), iff for all models
M based on F, M = ¢ for every formula ¢ such that ¢ € T". If there exists a model M based on F
such that M |= ¢ for every formula ¢ such that ¢ € I' then we say that I is satisfiable in F, in symbols
sat(F,T). Let C be a class of frames. A formula ¢ is valid in C, in symbols val(C, ¢), iff for all frames
Fin C, val(F, ¢). ¢ is said to be valid if ¢ is valid in the class of all frames. If there exists a frame
F in C such that sat(F, ¢) then we say that ¢ is satisfiable in C, in symbols sat(C, ¢). ¢ is said to be
satisfiable if ¢ is satisfiable in the class of all frames. For all classes C of frames, let val(C) be the set
of all formulas ¢ such that val(C, ¢) and sat(C) be the set of all formulas ¢ such that sat(C, ¢). For all
formulas ¢, let Cg“l be the class of all frames F such that val(F, ¢) and C;;at be the class of all frames
F such that sat(F, ¢).



Definition 2.12. (Modal equivalence)
Let M = (W,R,V)and M’ = (W', R', V') be models. If M and M’ are such that for all formulas ¢,
M [ ¢ iff M’ = ¢ then we say that M and M’ are modally equivalent.

Example 2.13. Take the case of the models M i, = (Wyin, Rfin, Vyin) and Ming = (Wing, Riny,
Vin f) defined as follows: Wy;, is the set of all finite subsets of BV'; Ry, is the universal relation on
W ¢in; for all Boolean variables p and for all © € Wy, € Vi, (p) iff p € x; Wy, 5 is the set of
all infinite subsets of BV'; R;, is the universal relation on W;,r; for all Boolean variables p and for
all v € Wins, x € Ving(p) iff p € . As the reader is asked to show, M ;, and M, ¢ are modally
equivalent.

2.3. Standard translation into a first-order language

By now, the reader should have noticed an important difference between the above Kripke-type seman-
tics and the semantics for the basic modal language: in the above Kripke-type semantics, satisfaction is
a binary relation between models and formulas whereas in the semantics for the basic modal language,
satisfaction is a ternary relation between models, possible worlds and formulas. Such a difference relates
to the way we have defined the satisfiability of the formulas A = B and AJ B in models. This way im-
plies that in every model, the operators [U] and (U) being interpreted by the universal binary relation on
the set of all possible worlds and the operators O and < being interpreted by the binary relation R on the
set of all possible worlds, A = B corresponds to [U](A <+ B) and AdB corresponds to (U)(A A OB).
The following translation of our language into a first-order language illustrates this correspondence. Let
L'(BV) be the first-order language with equality which has the unary predicates Py, Py, . .. correspond-
ing to the Boolean variables pg, p1, ... in BV and the binary predicate R; corresponding to the modal
operator & and £'(f)) be the first-order language with equality which has the binary predicate R; cor-
responding to the modal operator §. Positive first-order formulas in £!((}) are inductively defined as
follows:

e ax=u=v|Rsu,v) | (aVp)]|(aApB)|Yua | Jua.
Quantifier-free first-order formulas in £!(()) are inductively defined as follows:
e v:=u=v|Rsu,v)| L|-al(aVp).

Definition 2.14. (Standard translation of terms)
If u is a first-order variable and A is a term then the corresponding first-order formula ST'(u, A) in
L1(BV) is inductively defined as follows:

o ST(u.p) = Pa(u).
o ST(u, f)=1,

o ST(u,t)=T,

e ST(u,—A) =-ST(u, A),

e ST(u,AUB) = ST(u,A)V ST (u, B) and
o ST(u,ANB) = ST (u,A) N ST (u, B)



Definition 2.15. (Standard translation of formulas)
If ¢ is a formula then the corresponding first-order sentence ST (¢) in £!(BV) is inductively defined as
follows:

o ST(A=B)=VYu(ST(u,A) <+ ST (u, B)),

o ST(A6B) = Fu(ST(u, A) N Fv(Rs(u,v) AN ST (v, B))),

o ST(L)=1,

o ST(T)=T,

o ST(~) = ~ST(®),

o ST(pV ) =ST(¢p)V ST (v) and

o ST(6 A ) = ST(9) A ST()
Proposition 2.16. Let M = (W, R, V') be a model. For all terms A, for all z € W and for all formu-
las ¢,

e ¢ (A)Viff M = ST(u, A)[z] and
e M= ¢iff M = ST(¢).

Proof:
The first item follows by induction on A and the second one follows by induction on ¢. O

The decidability of the 2-variable fragment of any first-order language with equality has been obtained
by Mortimer [23]. The membership in N EX PTIM FE of its satisfiability problem has been established
by Gridel et al. [20]. Hence, the embedding of our language into £*(BV) considered in Proposition 2.16
implies that if C is a class of frames definable by a first-order sentence with at most 2 variables then the
following decision problem is decidable in nondeterministic exponential time:

input: a formula ¢,

output: determine whether sat(C, ¢).

3. Bounded morphisms and bisimulations

We recall the definitions of two relations between models presented in [5]: bounded morphisms and
bisimulations. We will see that the satisfiability of formulas is invariant under these two relations.

3.1. Bounded morphisms
We first define bounded morphisms for our language.

Definition 3.1. (Bounded morphisms)

Let M = (W,R,V) and M’ = (W', R, V') be models. A bounded morphism from M to M’ is a
surjection f from W to W' such that (i) for all z, y € W, if xRy then f(z)R' f(y), (ii) forall 2,y € W,
if 2’ R'y’ then there exists x,y € W such that f(z) = 2/, f(y) = v/ and 2Ry and (iii) for all Boolean
variables p and for all z € W, x € V(p) iff f(z) € V/(p). If there exists a bounded morphism from M
to M’ then we say that M’ is a bounded morphic image of M.



Proposition 3.2. Let M = (W, R, V) and M’ = (W', R', V') be models. If M’ is a bounded morphic
image of M then for all terms A, for all z € W and for all formulas ¢,

o zc (A)Viff f(z) € (A)V and
o M ¢iff M = 6.

Proof:
The first item follows by induction on A and the second one follows by induction on ¢. O

By Proposition 3.2, we know that every model is modally equivalent to all its bounded morphic images.
Is the converse true? That is, if two models are modally equivalent, must one of them be a bounded
morphic image of the other? The answer is “no”.

Example 3.3. Take the case of the models M y;, and M, s defined in Example 2.13. As the reader is
asked to show, M ;, and M, s are modally equivalent but neither is M ;, a bounded morphic image
of My s nor is M, a bounded morphic image of M ;),.

3.2. Bisimulations
We now define bisimulations for our language.

Definition 3.4. (Bisimulations)

Let M = (W,R,V)and M’ = (W', R, V") be models. A bisimulation between M and M’ is a binary
relation Z between W and W such that (i) for all z € W, there exists ' € W' such that zZ/, (ii) for all
2’ € W', there exists # € W such that xZ2/, (iii) for all =,y € W, if 2 Ry then there exists 2’,y’ € W'
such that zZx/, yZy' and 2’ R'y/, (iv) for all 2/, ¢’ € W', if 2/ R’y then there exists x,y € W such that
xZx', yZy' and xRy and (v) for all Boolean variables p, for all z € W and for all 2/ € W’ such that
xZx',x € V(p)iff ' € V/(p). If there exists a bisimulation between M and M’ then we say that M
and M’ are bisimilar.

We first prove a simple result.

Proposition 3.5. Let M = (W, R,V) and M’ = (W', R, V') be models. If the binary relation Z
between W and W’ is a bisimulation between M and M’ then for all terms A, for all z € W, for all
2/ € W' and for all formulas ¢,

o ifxZa' thenz € (A)V iff2’ € (A)V" and
o« M it M = o,

Proof:
The first item follows by induction on A and the second one follows by induction on ¢. O

The relation of the previous section, bounded morphism, is a bisimulation.

Proposition 3.6. Let M = (W, R, V) and M’ = (W', R', V') be models. If M’ is a bounded morphic
image of M then M and M’ are bisimilar.



Proof:

Let f be a bounded morphism from M to M’. Let Z be the binary relation between W and W’ such
that for all x € W and for all 2/ € W', xZx" iff f(z) = a’. As the reader is asked to show, Z is a
bisimulation between M and M. 0

By Proposition 3.5, we know that bisimilar models are modally equivalent. Is the converse true? That is,
if two models are modally equivalent, must they be bisimilar? The answer is “no”. Take the case of the
models M y;,, and M, defined in Example 2.13. As the reader is asked to show, Mz, and M, are
modally equivalent but M ¢;,, and M, ¢ are not bisimilar.

3.3. Bounded morphisms, bisimulations and modal equivalence

It is not possible to prove the converse to Proposition 3.2 in the case of finite models.

Example 3.7. To illustrate the truth of this, one has only to consider the finite models M = (W, R, V)
and M’ = (W', R, V') defined as follows: W = {1,2,3}; R = 0; V(p) = {1} and V(q¢) = {2,3};
W' ={1,2,3}; R = 0; V'(p) = {1,2} and V'(q) = {3}. As the reader is asked to show, M and M’
are modally equivalent but neither is M a bounded morphic image of M’ nor is M’ a bounded morphic
image of M.

Nevertheless, it is possible to prove the converse to Proposition 3.5 in the case of finite models. The next
proposition is about an analogue of the Hennessy-Milner theorem in modal logic.

Proposition 3.8. Let M = (W,R,V) and M’ = (W', R', V') be finite models. If M and M’ are
modally equivalent then M and M’ are bisimilar.

Proof:

Let Z be the binary relation between W and W’ such that for all z € W and for all 2’ € W', xZx' iff
for all Boolean variables p, x € V(p) iff 2/ € V/(p). Let us show that Z is a bisimulation between M
and M’.

Let x € W. Consider an enumeration Ag, A1, ... of all terms A such that 2 € (A)". Hence, for
all non-negative integers n, z € (Ag N ... N An)V. Therefore, for all non-negative integers n, M’ |=
Apn...N A, # f. Consequently, for all non-negative integers n, there exists x/, € W' such that
zl € (A0)Y N...N(A,)"". Since W' is finite, there exists 2/ € W' such that for all non-negative
integers n, ' € (Ag)V N ... N (A,)"". As the reader is asked to show, zZzx’.

The second condition of bisimulations may be checked in a similar way.

Let z € W and y € W be such that xRy. Consider an enumeration Ay, Aq, ... of all terms A
such that z € (A)" and an enumeration By, By, ... of all terms B such that y € (B)". Hence,
for all non-negative integers n, z € (A4gN...N A,)  andy € (Byn...N B,)V. Therefore, for
all non-negative integers n, M’ = (Ag N ... N A,)d(Bo N ... N B,). Consequently, for all non-
negative integers n, there exists 7,1/, € W’ such that 2/, R'y/,, 2/, € (A9)V' n...N (4,)" and
Yl € (By)V' n...n (B, . Since W' is finite, there exists z’, 3’ € W’ such that 2/ R’y and for all
non-negative integers n, 2’ € (Ag)V' N...N (A4,)" andy € (By)V' N...N(B,)"". As the reader is
asked to show, zZz" and yZv/'.

The fourth condition of bisimulations may be checked in a similar way.

The fifth condition of bisimulations is immediate. O



4. Modal definability and modal undefinability

In the setting of equivalence relations, modal definability and modal undefinability of first-order definable
classes of frames have been investigated by Balbiani and Tinchev [2]. In the general setting, we study
below the modal definability and the modal undefinability of several classes of frames.

4.1. Preliminary definitions

Definition 4.1. (Modal definability)

Let C be a class of frames. We shall say that C is modally definable by the formula ¢ iff for all frames F,
Fisin C iff val(F, ¢). C is said to be modally definable by a formula iff there exists a formula ¢ such
that C is modally definable by ¢. We shall say that C is modally definable by the set I' of formulas iff
for all frames F, F is in C iff val(F,T"). C is said to be modally definable by a set of formulas iff there
exists a set I' of formulas such that C is modally definable by I'.

4.2. Modal definability

Definition 4.2. (Reflexivity, seriality, density, etc)

Let F = (W, R) be a frame. We shall say that (i) F is reflexive iff for all z € W, x R, (ii) F is serial iff
for all x € W, there exists y € W such that x Ry, (iii) F is dense iff for all x,y € W, if x Ry then there
exists z € W such that x Rz and z Ry, (iv) F is connected iff for all x,y € W, if x # y then there exists
a positive integer /N and there exists a sequence (zo, ..., zx) in W such that zyp = x, zy = y and for all
positive integers k, if & < N then z;_1 Rz, (V) F is non-2-colourable iff possible worlds in W cannot
be coloured by colours from a given set of 2 colours such that each two possible worlds connected by R
have different colours and (vi) F is looping iff for all x € W, there exists a positive integer IV and there
exists a sequence (yo, ..., yn) in W such that yo = x, yn = x and for all positive integers k, if k < N
then yi._1 Ryz.

Remark that properties (i), (ii) and (iii) are first-order definable whereas properties (iv), (v) and (vi) are
not first-order definable. Note also that properties (i), (ii) and (iii) are modally definable in the ordinary
language of modal logic (Op — p, Op — <p, OOp — Op) whereas properties (iv), (v) and (vi) are not
modally definable in the ordinary language of modal logic.

Proposition 4.3. The following classes of frames are modally definable by the associated formulas: (i) the
class of all reflexive frames (p Z f — pdp), (ii) the class of all serial frames (p £ f — pdt), (iii) the
class of all dense frames (pdg — pdr V —rdq), (iv) the class of all connected frames (p Z f N —p #
f — pd — p), (v) the class of all non-2-colourable frames (p U q) =t A (pNq) = f — pop V ¢dq)
and (vi) the class of all looping frames ((p N —q) #Z f — pd — q V g0 — q).

Proof:

See [3, 4, 5] for that part of the proof concerning reflexivity, seriality, density, connectedness and non-2-
colourability.

Let F = (W, R) be a frame. Suppose F is looping. Hence, for all x € W, there exists a positive
integer N and there exists a sequence (yo, . ..,yn) in W such that yo = x, yn = x and for all positive
integers k, if k < NN then yi_1 Ryy. Let V be a valuation based on F. The reader may easily verify that
W,R,V)E(@N—q) #Zf—pS—qVqe —q.



Let F = (W, R) be a frame. Suppose F is not looping. Hence, there exists x € W such that for all
positive integers N and for all sequences (yo,...,yn) in W, if yo = x and yy = x then there exists
a positive integer k£ such that & < N and not y;_1Ryx. Let V be the valuation based on F defined as
follows: V(p) = R*(z) and V(¢) = R" (x). The reader may easily verify that (W, R, V) £ (pN—q) #
f—=pd—qVaqg—aq. O

4.3. Modal undefinability

Definition 4.4. (Next-reflexivity, transitivity, irreflexivity, etc)

Let F = (W, R) be a frame. We shall say that (i) F is next-reflexive iff for all z € W, there exists
y € W such that xRy and y Ry, (ii) F is transitive iff for all x,y € W, if there exists z € W such that
xRz and z Ry then x Ry, (iii) F is irreflexive iff for all z € W, not x Rx, (iv) F is Church-Rosser iff for
all z,y,z € W, if xRy and xRz then there exists ¢ € W such that y Rt and zRt, (v) F is McKinsey
iff for all subsets X of W and for all z € W, there exists y € W such that zRy and R(y) C X or
R(y) N X = 0, (vi) F is converse well-founded iff for all infinite sequences (g, z1,...) in W, there
exists a positive integer k such that not x;_q Rxy, (vii) F is 2-colourable iff possible worlds in W can
be coloured by colours from a given set of 2 colours such that each two possible worlds connected by R
have different colours and (viii) F is non-Hamiltonian iff for all positive integers N and for all sequences
(zo,...,zn) in W, if xg = xx then there exists = € W such that card({k: k is a positive integer such
that k < Nandx = xp_1}) # 1.

Remark that properties (i), (ii), (iii) and (iv) are first-order definable whereas properties (v), (vi), (vii)
and (viii) are not first-order definable. Note also that properties (ii), (iv) and (v) are modally definable in
the ordinary language of modal logic (Op — OOp, COp — OOp, OOp — OOp) whereas properties
(i), (iii), (vi), (vii) and (viii) are not modally definable in the ordinary language of modal logic.

Proposition 4.5. The following classes of frames are not modally definable by a set of formulas: (i) the
class of all next-reflexive frames, (ii) the class of all transitive frames, (iii) the class of all irreflexive
frames, (iv) the class of all Church-Rosser frames, (v) the class of all McKinsey frames, (vi) the class
of all converse well-founded frames, (vii) the class of all 2-colourable frames and (viii) the class of all
non-Hamiltonian frames.

Proof:

(i) Suppose the class of all next-reflexive frames is modally definable by a set of formulas. Hence, there
exists a set I" of formulas such that for all frames F, F is next-reflexive iff val(F,T’). Let F = (W, R)
and 7/ = (W', R') be the frames defined as follows: W = WU {w}; R = {(4,7): i, € NU {w}
are suchthat i # jori =wand j = w};, W = WU {wy, w2 }; R = {(4,7): 4,j € NU {wy,wy} are
such that ¢ # j}. Obviously, F is next-reflexive and F” is not next-reflexive. Therefore, val(F,T") and
not val(F',T). Since not val(F',T), there exists a model M’ = (W', R, V') based on F' such that
M’ £ ¢ for some formula ¢ such that ¢ € T'. Since W' is infinite and F'V(¢) is finite, there exists
i1,72 € W’ such that i1 # iy and for all Boolean variables p € FV(¢), i1 € V/(p) iff iy € V/(p).
Without loss of generality, let us assume that iy = wy and io = wy. Let M = (W, R, V') be a model
based on F such that for all Boolean variables p € FV(¢), if V/(p) C W then V(p) = V'(p) else
V(p) = (V'(p) " W) U {w}. Since val(F,T') and ¢ € ', M = ¢. Now, we consider the binary
relation Z between W and W' defined as follows: Z = {(i,7): i € N} U {(w,w1), (w,w2)}. The reader



may easily verify that Z is a bisimulation between M and M’ if one restricts the language to F'V (¢).
Consequently, by Proposition 3.5, M £ ¢ or M’ |= ¢: a contradiction.

(ii) Suppose the class of all transitive frames is modally definable by a set of formulas. Hence, there
exists a set I' of formulas such that for all frames F, F is transitive iff val(F,I'). Let F = (W, R)

Figure 1.

and 7' = (W', R’) be the frames defined as follows (see also Figure 1): W = W; R = {(2¢,2i + 1):
i€ N}; W =N; R = {(i,i + 1): i € N}. Obviously, F is transitive and F’ is not transitive.
Therefore, val(F,T") and not val(F',T). Let f be the surjection from W to W’ defined as follows:
f(2i) =idand f(2i + 1) =i+ 1. The reader may easily verify that f is a bounded morphism from F to
F'. Consequently, by Proposition 3.2, not val(F,T') or val(F',T"): a contradiction.

(iii) The argument concerning the class of all irreflexive frames is similar. It suffices to consider the

Figure 2.

frames 7 = (W, R) and 7' = (W', R’) defined as follows (see also Figure 2): W = N; R = {(i,i+1):
i€ N}; W= {0}; R = {(0,0)}; together with the surjection f from W to W’ defined as follows:
f@)=0.

(iv) The argument concerning the class of all Church-Rosser frames is similar. It suffices to consider
the frames 7 = (W, R) and 7' = (W', R') defined as follows: W = W; R = {(2¢,2i + 1): i €
N}U{(2i+1,2i+1):i e N}; W =N; R = {(0,i +1): i e N}U{(i + 1,7+ 1): i € NI}; together
with the surjection f from W to W’ defined as follows: f(2i) =0and f(2i 4+ 1) =i+ 1.

(v) The argument concerning the class of all McKinsey frames is similar. It suffices to consider the
frames F = (W, R) and 7' = (W', R') defined as follows (see also Figure 3): W = W; R = {(4,1):
i eNFU{(26,2i+1):i e N}; W =N, R = {(i,i): i € N}U{(i,i + 1): i € N}; together with the
surjection f from W to W’ defined as follows: f(2i) =iand f(2i +1) =i+ 1.

(vi) The argument concerning the class of all converse well-founded frames is similar. It suffices to
consider the frames 7 = (W, R) and ' = (W', R) defined as follows (see also Figure 1): W = N



Figure 3.

R={(2,2i +1): i e N}; W =N; R’ = {(4,i + 1): i € N}; together with the surjection f from W
to W' defined as follows: f(2i) =dand f(2i+1) =i+ 1.

(vii) The argument concerning the class of all 2-colourable frames is similar. It suffices to consider
the frames 7 = (W, R) and 7' = (W', R") defined as follows: W = {0,1}; R = {(0,1),(1,0)};
W' = {0}; R = {(0,0)}; together with the surjection f from W to W' defined as follows: f(0) = 0
and f(1) = 0.

(viii) The argument concerning the class of all non-Hamiltonian frames is similar. It suffices to consider
the frames 7 = (W, R) and 7/ = (W', R') defined as follows: W = N; R = {(i,7 + 1): i € N};
W' ={0,1}; R = {(0,1),(1,0)}; together with the surjection f from W to W' defined as follows:
f(i) =1imod 2. 0

5. Finite models

This section introduces a variant of the technique of the filtration. This variant is used in next section
for proving results about the canonical model. See [3, 4, 5] for the proofs of the results Section 5.1 and
Section 5.2 contain.

5.1. Filtration models

Definition 5.1. (Filtrations)

Let M = (W, R, V) be amodel and BV' C BV be a set of Boolean variables. Let =gy be the binary
relation on W such that for all z,y € W, x =gy~ y iff for all Boolean variables p € BV’, x € V(p)
iff y € V(p). Remark that =gy is an equivalence relation on W such that for all z,y € W, x =gy y
iff for all terms A € t(BV'), z € (A)" iffy € (A)". We denote the equivalence class of x € W with
respect to =gy by | « |gy-. If the model M' = (W', R', V') is such that (i) W/ = {| x |gy/: x € W},
(i) for all x,y € W, if zRy then | = |gys R | y |pv/, (ii) for all z,y € W, if | = |y R' | y |pv:
then for all terms A, B € t(BV'), if z € (A)" and y € (B)" then M = AJB and (iv) for all Boolean
variables p € BV', V'(p) = {|  |py': © € V(p)} then we say that M’ is a filtration of M through
BV'.

Here, the first result is

Lemma 5.2. If BV is finite then card({| z |gy: x € W}) < 2¢ard(BVY),

The next proposition duplicates the filtration theorem in modal logic.



Proposition 5.3. Let M = (W, R,V) and M’ = (W', R, V') be models and BV' C BV be a set of
Boolean variables. If M’ is a filtration of M through BV” then for all terms A € ¢(BV’), forall z € W
and for all formulas ¢ € f(BV’),

e I C (A)V lff’ x ‘BV’E (A)V/ and

o M iff M |= ¢,

5.2. Finest filtration and coarsest filtration

Definition 5.4. (Finest and coarsest filtrations)

Let M = (W, R, V) be a model and BV’ C BV be a set of Boolean variables. As the reader is asked
to show, the model M/ = (W/ R/ V') defined as follows: W/ = {| = |gy»: @ € W}; for all
z,y € W, |z |gy R |y |y iff there exists z,¢ € W such that z =gy 2, y =gy t and zRt; for
all Boolean variables p € BV, V/(p) = {| = |gy: € V(p)}; and the model M® = (W€, R®, V°)
defined as follows: W¢ = {| z |py:: x € W}; forall z,y € W, | z |gy R¢ | y |y~ iff for all terms
A,B € t(BV"),ifz € (A)Y and y € (B)Y then M |= AJB; for all Boolean variables p € BV,
Ve(p) = {| = |py:: « € V(p)}; are filtrations of M through BV’. We call M/ the finest filtration of
M through BV’ and M€ the coarsest filtration of M through BV".

Here, the first result is

Proposition 5.5. Let M = (W, R,V) and M’ = (W', R, V') be models and BV' C BV be a set of
Boolean variables. If M’ is a filtration of M through BV” then for all z,y € W,

° 1f| x |BV’ Rf | Y |BV’ then|x |BV’ R | Y |BV’ and

o if |z |y R' |y |y then |z |gy: R° |y |y

The next proposition is about an analogue of the finite model property in modal logic.

Proposition 5.6. Let ¢ be a formula. If ¢ is satisfiable then there exists a finite model M’ = (W', R, V")
such that

o card(W') < 2¢0rd(FV(9)) and
o M'[=¢.

5.3. New results about filtration models

In addition to the above results about filtration models, we have the following new result.

Proposition 5.7. Let M = (W, R, V') be amodel and BV’ C BV be a set of Boolean variables. If BV’
is finite then for all 2,y € W, | = |y RY | y |y iff | = |y R° |y | By

Proof:

Suppose BV is finite. Letz € W and y € W.

If| « |gyr R | y |y then by Proposition 5.5, | = |gy R | y |gy.

If| 2 |gyr R |y |y then for all terms A, B € t(BV'), ifz € (A)V and y € (B)" then M |= ASB.



Since BV is finite, there exists a term A, € ¢(BV’) such that forall z € W, z € (A4,)V iffz =gy 2
and there exists a term B, € t(BV’) such that for all t € W, t € (B,)" iff y =gy t. Hence,
M = A,6B,. Therefore, there exists z,t € W such that zRt, 2 € (A4,)" andt € (B,)". Consequently,

|z gy RY |y |y 0

Hence, if BV is finite then the finest filtration through BV’ and the coarsest filtration through BV’
coincide. Moreover,

Proposition 5.8. Let M = (W, R,V) be a model, BV’ C BV be a set of Boolean variables and
BV'" C BV be a set of Boolean variables. If BV is finite and BV’ C BV then the filtration of M
through BV is a homomorphic image of any filtration of M through BV".

Proof:

Suppose BV is finite and BV’ C BV”. Let MBV' = (WBY' RBV' VBV') be the filtration of M
through BV’ and MBV" = (WBV” RBV" VBV") be any filtration of M through BV". Let f be the
surjection from W5EY" to WBY" defined as follows: f (] x |pyn) =| = |gys. The reader may easily

verify that f is an homomorphism from M? V7 to MBY! O

6. Axiomatization and canonical model construction

This section introduces a variant of the technique of the canonical model. This variant is used in next
section for proving results about canonicity. See [3, 4, 5] for the proofs of the results Section 6.2 and
Section 6.3 contain.

6.1. Axiomatization

We first define the notion of logic for our language.

Definition 6.1. (Logics)
We shall say that a set of formulas is a logic iff it is closed under the following rules of inference:

e modus ponens: from ¢ and ¢ — 1 infer ¥ and
e substitution: from ¢ infer (¢)?,

it contains all instances of tautologies of the classical propositional logic, the theory of Boolean algebras
— i.e. all instances of axioms for non-degenerate Boolean algebras in terms of = — and all instances of
the following formulas:

o A0B—>A#fABZJ,
e (AUB)SC +» ASC'V B5C and
o AS(BUC) ¢+ ASB v ASC.

We will use L, M, N, etc, for logics.

Remark that for all classes C of frames, val(C) is a logic.



Definition 6.2. (Classes of frames defined by logics)
The class of (finite) frames defined by a logic L is the class of all (finite) frames JF such that for all
formulas ¢, if ¢ € L then val(F, ¢).

Obviously, the set of all logics is a partially ordered set with respect to set inclusion.

Definition 6.3. (Particular logics)

Seeing that the intersection of any collection of logics is again a logic and the closure under modus
ponens of the union of any collection of logics is again a logic, there exists a least logic, denoted Ly,
and there exists a greatest logic, denoted L,,,,. Note that L,,,, is the set of all formulas. Of course, a
logic L is the set of all formulas iff there is a formula ¢ such that ¢ € L and —¢ € L iff L € L. A logic
L will be defined to be consistent iff 1 ¢ L. For all formulas ¢, let L be the least logic containing ¢.

6.2. Canonical model

Let = be a set of terms. x is said to be consistent iff for all non-negative integers n and for all terms
Aq,..., A, € x,the formula A; N...N A, = f is not derivable from the theory of Boolean algebras.
We shall say that x is maximal iff for all terms A, A € x or —A € z. Let L be a logic. We shall say
that a set of formulas is an L-theory iff it is closed under the rule of modus ponens and it contains L.
We willuse I, A, A, etc, for L-theories. For all sets X of formulas, let L + X be the set of all formulas
¢ such that there exists a non-negative integer n and there exists formulas 1, ...,, € 3 such that
P A... AN, — ¢ € L. Obviously, L + 3 is the least L-theory containing 3. Let us be clear that the set
of all L-theories is a partially ordered set with respect to set inclusion. The least L-theory is L and the
greatest L-theory is the set of all formulas. Let I' be an L-theory. Of course, I" is the set of all formulas
iff there is a formula ¢ such that ¢ € I'and —¢ € T"iff L € I". T" will be defined to be consistent iff
1L ¢ T'. We shall say that I" is maximal iff for all formulas ¢, ¢ € I" or ~¢ € I'. Three lemmas support
the technique of the canonical model for L: the Lindenbaum’s lemma, the diamond lemma and the truth
lemma. The next lemma duplicates the Lindenbaum’s lemma in modal logic.

Lemma 6.4. Let ' be a consistent L-theory. There exists a maximal consistent L-theory A such that
I C A

The next lemma duplicates the diamond lemma in modal logic.

Lemma 6.5. Let I be a maximal consistent L-theory. For all terms A, B,

o if A £ f € T then there exists a maximal consistent set = of terms such that A € x and for all
terms A’, if A’ € 2 then A’ # f € T and

e if A)B € I then there exists maximal consistent sets x, y of terms such that A € x, B € y and
for all terms A’, B',if A’ € x and B’ € y then A'6B’ € T.

Let I' be a maximal consistent L-theory. The canonical model for I' is the ordered triple Mp =
(Wrp, Rp, V) where Wp is the set of all maximal consistent sets = of terms such that for all terms
A,if A € xthen A # f € I'; Rr is the binary relation on Wr such that z Rry iff for all terms A, B,
if A€ xand B € ythen A0B € I'; Vr is the function assigning to each Boolean variable p the subset
Vr(p) of Wr such that x € Vi (p) iff p € x. The pair Fr = (Wr, Rr) is called the canonical frame for
I". The next lemma duplicates the truth lemma in modal logic.



Lemma 6.6. For all terms A and for all formulas ¢,
o v € (A)Tiff A€ xand
e Mr E¢iffg el

The next result says that the frames of the filtrations of M through finite sets of Boolean variables
validate L.

Proposition 6.7. Let I" be a maximal consistent L-theory, M’ = (W', R', V') be a model and BV’ C
BV be a set of Boolean variables. If BV is finite and M’ is the filtration of M through BV’ then
val(W',R'), L).

6.3. Completeness

The key result concerning completeness is the following

Proposition 6.8. Let ¢ be a formula. If ¢ ¢ L then there exists a finite frame F such that val(F, L) and
not val(F, ¢).

By Proposition 6.8, it follows that every consistent logic is complete with respect to its class of finite
frames. As a result,

Proposition 6.9. The logics obtained by adding to L,,;, the following formulas are complete with
respect to the associated classes of frames: (i) p Z f — pdp (the class of all reflexive frames),
(i) p £ f — pdt (the class of all serial frames), (iii) pdg — pdr V —rdq (the class of all dense frames),
(iv)p #Z fA—p # f — pd—p (the class of all connected frames), (V) (pUq) = tA(pNq) = f — pdpVqdq
(the class of all non-2-colourable frames) and (vi) (p N —¢q) # f — pd — q V qd — q (the class of all
looping frames).

7. Canonicity

This section introduces and studies the concept of canonicity.

7.1. Preliminary discussion

Let L be a logic. If L is consistent then | ¢ L. Hence, L is a consistent L-theory. By Lemma 6.4,
there exists a maximal consistent L-theory I" such that L C T'. Let Mp = (Wp, Rp, V) be the
canonical model for I" and M’ = (W', R', V") be the filtration of Mp through (). By Proposition 6.7,
val(W’',R'),L). Let A = {¢: ¢ is a formula such that M’ = ¢}. Obviously, A is a maximal consis-
tent L-theory. Let Ma = (Wa, Ra, Va) be the canonical model for A. The reader may easily verify
that W’ contains exactly one possible world, say z’, and W contains exactly one possible world, say
xa. Moreover, 2’ R'x’ iff A Raxa. Consequently, (W', R') is isomorphic to the canonical frame for
A. Hence, A is a maximal consistent L-theory such that (W', R’) is isomorphic to the canonical frame
for A. It follows immediately from the above discussion that for all consistent logics L, there exists a
maximal consistent L-theory I" such that val(Fr, L).



Definition 7.1. (Canonical logics)
Let L be a logic. L is said to be canonical iff for all maximal consistent L-theories I', val(Fr, L).

In order to prove the completeness of a logic with respect to the class of all its canonical frames, the
concept of canonicity is essential. More precisely,

Proposition 7.2. Let L be a logic. If L is canonical then L is complete with respect to the class of all its
canonical frames.

Proof:

Suppose L is canonical. Let ¢ be a formula such that ¢ ¢ L. By Lemma 6.4, there exists a maximal
consistent L-theory I" such that ¢ ¢ I'. Since L is canonical, val(Fr, L). Since ¢ ¢ I', by Lemma 6.6,
not val(Fr, ¢). 0

However, there are non-canonical logics. See Section 7.3 for examples of such non-canonical logics.

7.2. Examples of canonical logics

What about the concept of canonicity defined above? Let us try to develop some intuitions concerning it
by considering a number of examples of canonical logics. Consider L,,;,, the least logic. Since L,,;;, is
valid in all frames, L,,;,, is canonical. In other respect,

Proposition 7.3. The following logics are canonical:
e val(Crey) Where C,.y is the class of all reflexive frames,
e val(Cser) Where Cge, is the class of all serial frames and

e val(Cgep) Where Cgep, is the class of all dense frames.

Proof:

Reflexive frames. Let L,.; be the logic obtained by adding to L,,;,, the formula p # f — pdp. By
Proposition 6.9, val(Cref) = Lrey. Let I' be a maximal consistent L, -theory. By Proposition 4.3, it
remains to show that the canonical frame Fr = (Wp, Rr) for I is reflexive. Let z € Wr. For all terms
A,B,if A€ xand B € xthen AN B € z. Hence, (AN B) # f € I'. Therefore, using the axiom
(ANnB)# f—=(ANB){(ANB),(ANB)§(AN B) € I'. Consequently, A0B € I'. Thus, zRrz.
Serial frames. Let L., be the logic obtained by adding to L,,;, the formula p = f — pdt. By
Proposition 6.9, val(Cser) = Lger. Let I' be a maximal consistent Lg.,-theory. By Proposition 4.3, it
remains to show that the canonical frame Fr = (Wrp, Rr) for I is serial. Let x € Wp. Consider an
enumeration Ay, Ay, ... of all terms A such that A € x and an enumeration By, B1, ... of all terms.
Hence, for all non-negative integers n, Ag N ... N A, € x. Therefore, (AgN...NA,) £ f € T.
Consequently, using the axiom (Ag N ... NA,) Z f — (AgN...NA,)0t, (AgN...NA,)dt € T.
Thus, there exists a sequence (5, ..., ;) in {0, 1}* such that (4gN... ﬁAn)d(ng n... ﬂBﬁS) el.
By Konig’s infinity lemma for trees, there exists a sequence (5o, f1, - . .) in {0, 1}* such that for all non-
negative integers n, (ApN...N An)é(BgO N...NBJ") eT. Lety = {Bgo, Bfl, ...}. The reader may
easily demonstrate that y € Wt and z Rry.



Dense frames. Let L., be the logic obtained by adding to L,,;, the formula péq — pdr V —rdq. By
Proposition 6.9, val(Cgen) = Lgen- Let I' be a maximal consistent Lge,-theory. By Proposition 4.3,
it remains to show that the canonical frame Fr = (Wp, Rr) for ' is dense. Let z € Wy and y €
Wr be such that xRry. Consider an enumeration Ag, Aq, ... of all terms A such that A € z, an
enumeration By, Bi, ... of all terms B such that B € y and an enumeration Cy, C1, ... of all terms.
Hence, for all non-negative integers n, AgN...N A, € zand ByN...N B, € y. Therefore, (49 N
..M AR)S(ByN...N By) € I'. Let S be the set of all sequences (77, ...,7") in {0,1}* such that
(AgN...N An)é(ng N...N Cﬁ) ¢ I' and S* be the set of all sequences (77, ..., ") in {0, 1}* such
that (AgN. . .ﬂAn)é(ngﬂ. ..NCY") € T where C° = —C and C'! = C for every term C.. As the reader
is asked to show, — U{ng N...nCH: (W8, ...,y € S°Y(BoN...NBy) — U{C’gg N...nCr:
(W, ...,y € S136(Byn...NBy,) €T. Since (AgN...N A,)8(ByN...N By,) € T, using the
axiom (Ag N ... N A)3(BoN...NBy) = (Ao ... 0 A)SU{CE n...nCl: (4,47 €
SOV — ULCH NG (4, . ) € SOYS(Bon...ABy), (AoN...N A5 U{CH n...nC):
(8,4 € S eTor—U{CI N...nCH: (47, ... .A") € S°}5(BoN...NB,) € T. Obviously,
(ApN...NA,)S U{ng n...nCw: (VB,..., ) € S ¢ T. Consequently, — U{ng n...nCH:
(72,...,4") € S9Y(Byn...N By,) € T. Since —{CL n...ACH: (3,...,4") € S°}6(By N
.NBy) > UCE N nCl (.)€ SY(Bon...NBy) €T, UCE n...nC
(Y8, ...,y € SY}6(By N ... N By) € T. Thus, there exists a sequence (v, . ..,77) in {0, 1}* such
that (AgN...NA,)8(CH N...nC") eTand (CJ0 N...ACI")3(ByN...N B,) € T. By Kénig’s
infinity lemma for trees, there exists a sequence (7o, v1,...) in {0,1}* such that for all non-negative
integers n, (AgN...NA,)0(Ce°N...NCY") €T and (C3°N...NCR")6(ByN...NBy)s €T Let
z={Cy",CT",...}. The reader may easily demonstrate that z € Wp, xRrz and zRry. O

We will see in Section 8 that Proposition 7.3 is an immediate consequence of the more general result
stated in Proposition 8.2.

7.3. Examples of non-canonical logics

Now, we consider a number of examples of non-canonical logics. Let pg, p1, ... be an enumeration of
BYV. For all non-negative integers n and for all sequences & = (ay,...,ay) in {0,1}*, let 7(d) =
P N...Np2» where p’ = —p and p* = p for every Boolean variable p, | @ |=n, |@] = ag ..., and
[@] = ay, ..., i.e. the non-negative integers represented by v, . . ., @, and a,, . . ., «g in the binary
system.

Proposition 7.4. The following logic is not canonical:

e val(Ceon) Where C.op, is the class of all connected frames.

Proof:

Let L., be the logic obtained by adding to L,,;, the formula p = f A —p # f — pd — p. By
Proposition 6.9, val(Ceon) = Leon- Let n be a non-negative integer. We consider the set X;, of formulas
defined as follows:



o X, = {r(@)ér (B 5): @ is a sequence in {0, 1}* and {3 is a sequence in {0, 1}* such that | @ [= n
| Bl=mnand| |&] — |B] <1} U{r(@)éT(B): & is asequence in {0,1}* and /3 is a sequence in
{0,1}* such that | @ |=n, | f |=mnand | |&] — [5] |> 1}.

We consider the frame F,, = (W,,, R,,) defined as follows:

e W, is the set of all sequences & in {0, 1}* such that | & |=n

e R, is the binary relation on W, such that @R, 5 iff | |&@] — | 3] |< 1
and the valuation V,, based on F,, defined as follows:

e V/, is the function assigning to each Boolean variable p the subset V;,(p) of W,, such that & € V,,(p)
iff there exists a non-negative integer k such that £ < n, p = p; and o, = 1.

Note that Wy = {(0), (1)}, W = {(0, 0),( 1),(1,0), (1,1)} and Ws = {(0,0,0), (0,0, 1), (0, 1,0),
(0,1,1),(1,0,0),(1,0,1),(1,1,0), (1, 1)}

Lemma 7.5. val(F,,, Leon)-

Proof:
It suffices to remark that F,, is connected. O

Lemma 7.6. (F,,V,) = U{Z:: i is a non-negative integer such that i < n}.

Proof:

Consider a non-negative integer ¢ such that ¢ < n.

Let 7(@)57(53) be a formula in 3;. Hence, & is a sequence in {0, 1}* and Bisa sequence in {0, 1}* such
that | @ [= 4, | Bl=i and | [@] — |8 3] |< 1. Therefore, there exists sequences o, 3’ in {0, 1}* such that
[a" [=n, | 8 |=n,| ["] = [F]|< L (afs- -, 0f) = (0, ) and (B, B]) = (Bos-- - Bi).
Thus, (Fp, Vi) |= 7(@)67(5).

Let 7(@)o7(f) $3) be a formula in ¥;. Hence, @ is a sequence in {0, 1}* and 3i is a sequence in {0, 1}* such

that | & |=, | B |— iand | |@] — | 3] |> 1. Therefore, for all sequences o/, 3 in {0, 1}*, if | o/ |= n
| B/ |=nand| |« iJ Lﬁ’J |< 1then (af),...,a}) # (ag,...,a;) or (By, ..., 0) # (Bo,. .., Bi) Thus,
(Fns V) | 7(@)57(6). O

Let ¥ = [J{X,: n is a non-negative integer}.
Lemma 7.7. L., + X is a consistent L,,-theory.

Proof:
By Lemma 7.5 and Lemma 7.6. O

By Lemma 6.4, there exists a maximal consistent L,,-theory A such that 3 C A. By Proposition 4.3,
it remains to show that the canonical frame Fan = (Wa, Ra) for A is not connected. Suppose Fa is
connected. The reader may easily verify that for all non-negative integers n, pJ N ... NpY # f € A
and p(l) N...NpL # f € A. Hence, there exists zg € W such that {pg,p(l), ...} C xg and there exists



x1 € Wa such that {p},pi,...} C x1. Obviously, 9 # x1. Since Fa is connected, there exists a
positive integer IV and there exists a sequence (zp, ..., 2zy) in Wa such that zy = z¢, zy = 21 and for

all positive integers k, if k < N then z;_1 Ra 2. Let n be a non-negative integer such that ol _1> N

and k be a non-negative integer such that & < N. Consider the sequence @* = (af, ..., a%)in {0,1}*

such that for all non-negative integers ¢, if ¢ < n then
e if p; & 2 then af = 0 else af =1.

Therefore, for all positive integers k, if k < N then 7(a*~!) € 2z,_; and 7(a¥) € 2. Since z,_1 Ra 21,
r(ak=1)or(a*) € A. Consequently, 7(@*~1)ér(a*) € 2,,. Thus, | [a*~!] — |@*] |< 1. Hence,

o [ < A% +1,

° ...,

o [aV| <@V +1.

Since [@°] = 0 and @V ] = 2"+ — 1, 27! — 1 < N: a contradiction. 0

Proposition 7.8. The following logic is not canonical:

e val(Cpac) where Cpa. is the class of all non-2-colourable frames.

Proof:

Let Ly be the logic obtained by adding to L,,,;,, the formula (pUq) =t A (pNq) = f — pdpV ¢dq. By
Proposition 6.9, val(Cpa.) = Lpnac. Let n be a non-negative integer. We consider the set 3, of formulas
defined as follows:

o ¥, = {¢: ¢ is a formula such that F'V(¢) C {po,...,pn} and (F,,, V3,) = ¢}
where F,, = (W,,, R,) is the frame defined as follows:
o W, ={aa'}u{2—mn,...,00U{1}U{2,...,n},

e [?, is the binary relation on W,, such that z R,y iff one of the following conditions is satisfied:

{z,y} ={a%a'},
n < 1land {z,y} = {a’ 1},
— n<1land{z,y} = {a* 1},
n > 2and {z,y} = {a°, n},
n>2and {z,y} = {a',2 — n},
n>2,ze{2-n,...,00U{1}uU{2,....,n},ye {2—n,...,0t U{1} U{2,...,n} and
one of the following conditions is satisfied:
x t&{2—n,n},y¢{2—n,n}and zR,_1vy,
x x=2-n,yZ{2—n,n}and a"R, 1y,

x r=n,y & {2—n,n}and a' R, 1y,



* v Z€{2—n,n},y=2-nand xR, 1a°,
* v € {2—n,n},y =nand xR, 1a’

and V,, is the valuation based on F,, defined as follows:

e V/, is the function assigning to each Boolean variable p the subset V,,(p) of W, such that x € V,,(p)
iff one of the following conditions is satisfied:
— 2 = a” and there exists a non-negative integer k such that k < n and p = py,

- n>2,z€{2—n,...,0} and there exists a non-negative integer k such that k < n, p = py
and k # 2 — x,

x = 1 and there exists a non-negative integer k such that k < n,p = pp and k # 1,

n > 2,z € {2,...,n} and there exists a non-negative integer k such that & < n, p = py and
k> .

Note that Wy = {a®,a!, 1}, Wi = {a°,a', 1} and W5 = {a®, a!,0,1,2}.
Lemma 7.9. val(F,,, Lpac).

Proof:
It suffices to remark that F,, is non-2-colourable. O

Lemma 7.10. (F,,V,,) = J{X;: i is a non-negative integer such that i < n}.

Proof:

Consider a non-negative integer ¢ such that ¢ < n. Let ¢ be a formula in ¥;. Hence, ¢ is a formula such
that F'V (o) C {po,...,pi} and (F;, V;) = ¢. Now, we consider the binary relation Z between W; and
W,, defined as follows:

o 7 ={(zj,xn): x; € W; and z,, € W, are such that for all non-negative integers k, if & < i then
x; € Vl(pk) iff:[n S Vn(pk)}

The reader may easily verify that Z is a bisimulation between (F;, V;) and (F,, V},) if one restricts the
language to {po, . .., p; }. Therefore, by Proposition 3.5, (F,,, V,,) |= ¢. O

Let ¥ = [J{X,: n is a non-negative integer}.
Lemma 7.11. L,,o. + X is a consistent L,,o.-theory.

Proof:
By Lemma 7.9 and Lemma 7.10. O

By Lemma 6.4, there exists a maximal consistent L,,2.-theory A such that ¥ C A. By Proposition 4.3,
it remains to show that the canonical frame Fa = (Wa, Ra) for A is 2-colourable. Let F = (W, R) be
the frame defined as follows:



o W={aayu{...,0}u{1}uU{2,...},
e R is the binary relation on W such that x Ry iff one of the following conditions is satisfied:
- {xvy} = {a07a1},

—ze{...,0bu{1}u{2,...},ye{...,00U{1} U{2,...} and there exists a non-negative
integer n such that xR,y

and V be the valuation based on F defined as follows:

e V is the function assigning to each Boolean variable p the subset V' (p) of W such that z € V(p)
iff one of the following conditions is satisfied:
— x = a” and there exists a non-negative integer k such that p = py,,
— x € {...,0} and there exists a non-negative integer k such that p = p;, and k # 2 — «z,
— x = 1 and there exists a non-negative integer k such that p = p, and k #£ 1,

— x € {2,...} and there exists a non-negative integer k such that p = p;, and k& > z.
Obviously, F is 2-colourable. Now, we consider the function f from W to W defined as follows:
e f(xa) = x iff for all non-negative integers k, za € Va(py) iff z € V(pg).

The reader may easily verify that f is an isomorphism from Fa to F. Since F is 2-colourable, Fa is
2-colourable. O

Proposition 7.12. The following logic is not canonical:

e val(Cjoo) Where Cy, is the class of all looping frames.

Proof:

Let L;,, be the logic obtained by adding to L,;, the formula (p N —q) Z f — pd — q V ¢ — q. By
Proposition 6.9, val(Cjy,) = Lioe- Let n be a non-negative integer. We consider the set ¥, of formulas
defined as follows:

o %, = {r(&)67(fB): @ is a sequence in {0,1}* and 3 is a sequence in {0, 1}* such that | @ |= n,

| B |= nand [@] + 1 = [B] mod 2"“} U {r(@)ér(B): ais a sequence in {0, 1}* and Bisa
sequence in {0, 1}* such that | @ |=n, | # |= nand [@] + 1 # [B] mod 2"1}.

We consider the frame F,, = (W,,, R,,) defined as follows:

e W, is the set of all sequences @ in {0, 1}* such that | @ |= ¢ for some non-negative integer ¢ such
that 7 <n,

—.

e R, is the binary relation on W, such that &R, iff | @ |=i,| 3 |= i and [@] +1 = [5] mod 2+
for some non-negative integer ¢ such that i < n

and the valuation V,, based on F,, defined as follows:



e 1/, is the function assigning to each Boolean variable p the subset V;,(p) of W,, such that & € V,,(p)
iff | @ |= 7 and there exists a non-negative integer k such that & < i, p = p and a, = 1 for some
non-negative integer ¢ such that ¢ < n.

Note that Wy = {(0)7 (1)}: Wy = {(0)7 (1)’ (0’0)’ (07 1)’ (170)7 (1’ 1)} and Wy = {(0)7 (1)) (0)0)> (0,
1),(1,0),(1,1),(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0, O),(1,0,1),(1,1,0),(1,1,1)}.

Lemma 7.13. val(Fy, Lioo)-

Proof:
It suffices to remark that F,, is looping. O

Lemma 7.14. (F,,V,) = U{X;: i is a non-negative integer such that i < n}.

Proof:

Consider a non-negative integer ¢ such that ¢ < n.

Let 7(&@)o7(f5) be a formula in 3;. Hence, & is a sequence in {0, 1}* and 3 is a sequence in {0, 1}* such
that | @ [= 4, | B |=iand [@] + 1 = [3] mod 2L, Since i < n, (Fn, Vi ) = 7(d )67 (5).

Let 7(@)57(53) be a formula in 33;. Hence, d is a sequence in {0, 1}* and Bisa sequence in {0, 1}* such
that | @ |=i, | |= i and [@] + 1 # [B] mod 27+, Since i < n, (Fp, V,) & 7(@)57(5). 0

Let ¥ = [J{X,: n is a non-negative integer}.
Lemma 7.15. L;,, + > is a consistent L;,,-theory.

Proof:
By Lemma 7.13 and Lemma 7.14. O

By Lemma 6.4, there exists a maximal consistent L;,,-theory A such that ¥ C A. By Proposition 4.3,
it remains to show that the canonical frame Fo = (Wa, Ra) for A is not looping. Suppose Fa is
looping. Let x € Wa. Since Fa is looping, there exists a positive integer /N and there exists a sequence
(Y0, ---,yn) in W such that yo = x, yy = x and for all positive integers k, if & < N then yi_1 RAYk.
Let n be a non-negative integer such that N < 2"! and k be a non-negative integer such that & < .
Consider the sequence &* = (ak,...,aF) in {0,1}* such that for all non-negative integers i, if i < n

then
e ifp; & y; then af = O else af =1

Therefore, for all positive integers k, if £ < N then 7(a*~1) € yj_1 and 7(a") € yj.. Since y_1 RAYk
r(@*1or(a*) € A. Consequently, 7(a*~1)o7(a*) € ¥,. Thus, [a*1] +1 = [a*] mod 27+,
Hence,

o [a"] +1=[a'] mod2"H!,
o ...,

o [N+ 1= T[aN] mod 2"

Since [a°] = [@V], N = 0 mod 2"*!. Since N < 2"*!, N = 0: a contradiction. 0



8. Compatible formulas

Now, we introduce the concept of compatible formula.

Definition 8.1. (Compatible formulas)
Let L be a logic and ¢ be a formula. We shall say that ¢ is compatible with L iff there exists a positive

first-order formula (g, ..., ux) in £1(()) and there exists a quantifier-free positive first-order formula
B(ut, ..., ug,v1,...,v) in L1(() such that for all frames F, if val(F, L) then val(F,¢) iff F =
Vuy .. Vug(a(ug, ... ug) = Jor ... 30 B(ur, . ..y Uk, V1, ..., 07)).

Take the case of the formulas p # f — pdp and pdqg — pdr V —rdq. They are compatible with
L because according to Proposition 4.3, they correspond to the first-order sentences VuRs(u, ) and
VuVo(Rs(u,v) — Jw(Rs(u, w) A Rs(w,v))) within the class of all frames. Nevertheless, we still do
not know if the following decision problem is decidable:

input: a formula ¢,
output: determine whether ¢ is compatible with L,,;,,.

Our conjecture is that the above decision problem is undecidable. Now, let us prove the

Proposition 8.2. Let L be a logic and ¢ be a set of formulas such that for all ¢ € ®, ¢ is compatible
with L. If L is canonical then Lg is canonical.

Proof:

Suppose L is canonical and Lg is not canonical. Since Lg is not canonical, there exists a maxi-
mal consistent Lg-theory I" such that not val(Fr, Lg). Hence, not val(Fr, L) or not val(Fr, D).
Since I' is a maximal consistent Lg-theory, I' is a maximal consistent L-theory. Since L is canoni-
cal, val(Fr, L). Since not val(Fr, L) or not val(Fr, ®), not val(Fr,P). Thus, there exists ¢ € P
such that not val(Fr,¢). Since ¢ € @, ¢ is compatible with L. Therefore, there exists a positive
first-order formula a(uq,...,uy) in £Y(D) and there exists a quantifier-free positive first-order for-
mula B(u1,...,ug,v1,...,v;) in £LY(0) such that for all frames F, if val(F, L) then val(F, ) iff
F = Yuy .. Vug(a(uy,...,ux) — Jvup...3Jup(uy,. .., uk,v1,...,1)). Since val(Fr, L) and not
val(Fr, @), Fr ¥ Yuy ... Vug(a(ug, ..., ux) = vy ... JuB(ug,. .., ug,v1,...,v;)). Consequently,

there exists x1,...,xzy in Wr such that Fr = a(ug,...,ug) — Jvi...3uB(ur,. .., uk,vi,...,0)
[:1:1, cee ,J?k]. Hence, Fr ): a(ul, cee ,uk)[ﬂj‘l, cee ,Qj‘k] and Fr l;& Elvl cee Hvlﬁ(ul, e U, U1y et ,’Ul)
[z1,...,2E]. Now, take a non-negative integer n. Let MpP = (W[, RE, V%) be the filtration of

Mrp = (Wr, Ry, Vr) through BV,, = {po, ..., pn—1} and FJ' = (W}?, R}}) be the corresponding frame.
By Proposition 5.8, F}* is a homomorphic image of Fr. To see this, it suffices to take BV’ = BV,, and

BV" = BV for the sets of Boolean variables considered in Proposition 5.8. Since a(uq,...,u;) is a
positive first-order formula such that Fr = a(uq, ..., ug)[z1, ..., 2], F{ E a(ur, ..., ug)] 21 |Bv,,
...y| =k |Bv,]. To see this, it suffices to reason by induction on «(uq,...,ux). Since I' is a maxi-

mal consistent Lg-theory, by Proposition 6.7, val(F[, Ls). Thus, val(F{, L) and val(F{*, ). Since
val(F, L) and for all frames F, if val(F, L) then val(F, ¢) iff F = Vuy ... Vug(a(ug, ..., ug) —
Jui .. FuBu, ..., ug, v, .., 0)), val(FR, @) iff FEOE Yur . Vug(our, . ug) = o
JuB(ui, ..., ug,v1, ..., vy)). Since val(F{, @) and ¢ € @, val(F{, ¢). Since val(F{, ¢) iff F* =



Vg .. Vug(our, ... u,) = o 3JuBlug, .. ug, v, ..o, vp), FREE Yur . Vug(ou, -, ug)
— Jup ... Jup(ur,. .., uk, v1,...,v;)). Therefore, F* |= a(uy,...,ux) — Jvr...JuyP(u,. .., u,
’Ul,...,vl)H I ’an,...,’ T ‘an]. Since f{f li a(ul, ,’U,k)H I ’an,...,’ Tk ‘an], .FF li
Jur .. FuB(ur, .. ug, v, . v)[| 21 BV, -+ | Tk |BY, . Consequently, there exists yf', ...,y in
Wr suchthat}"l? ): ﬁ(ul,...,uk,vl,...,w)ﬂ xr1 |BVn) ,| Tp |BVna| y? |BVn,...,| yln ’BVn]-

To summarize, we have shown that for all non-negative integers n, F1* = B(u1, ..., U, v1,...,v)]|
1 BV, 5| Tk BV, | YT |BVM,-- -5 | Y |BY,]. By Proposition 5.8, F' is a homomorphic image
of .7-"1?“. To see this, it suffices to take BV = BV, and BV” = BV, for the sets of Boolean
variables considered in Proposition 5.8. Since f(uy, ..., uk,v1,...,v;) is a positive first-order formula
such that for all non-negative integers n, ' = B(u1,...,ug,v1,...,0)[| =1 |BV,s---»| Tk |BV, |
Yt |BV,s -+ | 4" | B, ], (%) for all non-negative integers n, 71 = B(u1, ..., uk, v1, ..., v)[| 1 |Bvp»
vl e IBvis | YT BV |y |Bv). To see this, it suffices to reason by induction on
But, ... ,ug,v1,...,v;). Let T) be the tree defined as follows:

(i) the root of 7} is labelled by the I-tuple (¢, . . ., €) where € denotes the 0-tuple of bits and

(i) the successors of a node of 7; at depth n labelled by the [-tuple ((b1,0,...,b1,n—1),---, (b0, -,
bin-1)) of n-tuples of bits are the 2! nodes of 7} at depth n + 1 labelled by the I-tuple ((b1,.- -,
bin—1,01n)s -5 (b10s -+, bin—1,b1,n)) of (n + 1)-tuples of bits. By definition, remark that 7; is in-
finite and finitely branching. Let 7} be the least rooted subtree of 7} containing for all non-negative
integers n, the nodes of 7; at depth n corresponding to all possible I-tuples 37, ..., y". By (x), re-
mark that 7} is infinite and finitely branching. By Konig’s Infinity Lemma for Trees [30, Chapter 1],
T/ has an infinite branch. Let y,...,y; be the elements in W corresponding to this infinite branch.
Let n be a non-negative integer such that the restriction 71 = (Wp"™, Ri™) of F to {| z1 |sv,,
o] =k |BVs| v1 IBV.,---,| Wi |BV, )} is isomorphic to the restriction Ff = (W[, Rf) of Fr to
{z1,..., 2k, y1,...,y}. By construction, | y1 |pv,=| v |Bvi» - | W |BV,=| ¥]' |BV,. Since
FPE Blur, ... ug,vr, - 0)[| @1 By, -0 | @k BV | UT BV -0 | U BV, FEE Blua, ..,
Uk, Vs - ,’L)Z)H o) |Ban ,| Tk |an, | Y1 |BVn7--- ,| Yl |BVn]- Since ﬁ(ul,... s Uk U1y - - 7Ul) isa
quantifier-free first-order formula, .7-“173’* EB(ur, ... uk,v1,. ., 0) 21 BV, - | ZK | BV, | Y1 | BV,
.y w1 |Bv,]. To see this, it suffices to reason by induction on B(us, ..., uk,v1,...,v;). Since F1" is
isomorphic to Ff5, Fft = B(u1, ..., Uk, v1, ..., 0) @1, ..., Tk, Y1, - .-, 1. Since B(uq, . .., ug, v1, ... ,0)
is a quantifier-free first-order formula, Fr = B(ui,...,uk,v1,...,v)[x1, ..., Tk, Y1, ..,y To see
this, it suffices to reason by induction on S(uq,...,uk,v1,...,v;). Hence, Fr = Jvy...JvB(uq,
ey Uk, U1, .., 0p) 21, ..., 2k]: a contradiction. O

Remark that Proposition 7.3 is an immediate consequence of the more general result stated in Proposi-
tion 8.2. An immediate corollary of Proposition 8.2 is the

Corollary 8.3. Let L be a logic and ¢ be a formula such that ¢ is compatible with L. If L is canonical
then L4y is canonical.

By contrast, we do not know if there exists logics L and formulas ¢ such that ¢ is not compatible with
L, L is canonical and L{¢} is canonical.



9. Conclusion

In Section 4, we provided classes of formulas defining first-order or second-order conditions on frames.
For pointers to this line of work in the basic modal language, see Goldblatt and Thomason [19]. A
Goldblatt-Thomason theorem for our language is still to be obtained. In Section 7, we mentioned our
conjecture that it is undecidable whether a given formula ¢ is compatible with L,,;,. For pointers to this
line of work in the basic modal language, see Chagrova’s theorem in [8]. A Chagrova’s theorem for our
language is still to be obtained. In modal logic, Sahlqvist formulas are modal formulas with remarkable
properties [24, 25]: the Sahlqvist correspondence theorem says that every Sahlqvist formula corresponds
to a first-order definable class of frames; the Sahlqvist completeness theorem says that when Sahlqvist
formulas are used as axioms in a normal logic, the logic is complete with respect to the elementary class
of frames the axioms define. Then, in the end, a natural question is to ask whether a Sahlqvist-like theory
can be elaborated for our language. A first answer to this question has been presented in [1].
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