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Abstract. Energy saving is one of the most investigated problems in
wireless networks. In this paper, we introduce two homology based algo-
rithms: a simulated annealing one and a downhill one. These algorithms
optimize the energy consumption at network level while maintaining the
maximal coverage. By using simplicial homology, the complex geometri-
cal calculation of the coverage is reduced to simple matrix computation.
The simulated annealing algorithm gives a solution that approaches the
global optimal one. The downhill algorithm gives a local optimal solution.
The simulated annealing algorithm and downhill algorithm converge to
the solution with polynomial and exponential rate, respectively. Our sim-
ulations show that this local optimal solution also approaches the global
optimal one. Our algorithms can save at most 65% of system’s maximal
consumption power in polynomial time. The probability density function
of the optimized radii of cells is also analyzed and discussed.

1 Introduction

Wireless networks provide more and more innovative and powerful services. Op-
erators deploy a large number of base stations to satisfy user demands in terms of
coverage and traffic. This evolution leads to higher energy consumption as well as
higher human exposure to electromagnetic waves. These problems challenge the
development of future wireless technologies. The next generation of wireless net-
works should take into account environmental and public health considerations
while still complying with traffic and coverage requirements.

A typical wireless network is composed of many cells. Each cell ensures its
own coverage, called local coverage. The coverage of the whole system, or global
coverage, is a union of all local coverages. Clearly, some cells can overlap. The
overlapping regions may cause transmission power wastage mainly due to in-
terference. One promising approach to save energy at network level is to design
new methods that minimize transmission power by adjusting cells’ coverage while
keeping unchanged global coverage.

Traditionally, to ensure the global coverage, geometrical methods are used.
Cells are deployed according to some regular patterns. For example, in mobile
phone networks, hexagon is the conventional configuration. In wireless sensor
networks, configurations such as hexagon, square grid, etc. are widely used as
introduced in [1]. All these patterns ensure the global coverage of system but



they require that cells are identical as well as uniformly distributed. In practice,
it is very difficult to deploy cells following these conditions. Cells’ sizes are not
always identical. In mobile networks, cells’ sizes should be different depending
on density of users [2]. In high density region, a lot of small cells should be
deployed to provide a high transmission capacity. But, in low density regions, a
few macro cells are enough to satisfy coverage and traffic constraints. In wireless
sensor networks, one might want to implement more than one type of sensors.
In critical regions, for exact and frequent information, a collection of small and
sensitive sensors are suitable. In non-critical regions, for low deployment costs,
big and low-sensitive sensors are acceptable. Furthermore, with a large number
of cells, it is difficult to achieve such a precise deployment. Coverage computation
becomes an intractable problem. Another approach is to consider cells as a ran-
dom deployment. In [3], the authors provided a probability method which gives
a guaranteed size for cells. The guaranteed size is the smallest size of cells which
allows full coverage of the system in probability. This method only considers full
coverage problem. It does not take into account the power saving problem. It
also assumes that all cells have the same size. In [4], Silva and Ghrist introduced
the simplicial complex as a representation of coverage topology. Then, they use
homology, a tool from computational algebra, to examine the topology of the
network. Coverage properties are then determined by some topological invari-
ants such as Euler characteristic or Betti numbers. Coverage computation via
homology is reduced to simple matrix computation. This tool was used in [5]
and [6] to detect coverage holes. Their distributed versions are also introduced
in [7] and [8]. The accuracy of this method was discussed in [9]. However, all
these contributions only consider the problem of coverage holes detection. In
[10], Vergne introduced an algorithm which deletes some vertices from a given
simplicial complex without modifying its homology. This algorithm can be ap-
plied to turn off redundant cells. But, the cells that can be turned off must be
completely overlapped with their neighbors. So, this algorithm is only suitable
for networks whose cells are deployed with high density. In addition, turning off
cells can not optimize the coverage of networks because it does not minimize the
overlapping region.

In this paper, we introduce two algorithms: a simulated annealing one and
a downhill one to minimize the total consumed power for wireless networks at
network level. These algorithms consider a random deployment of cells. They
use Čech complex to describe and analyze the coverage structure of cells. Then,
these algorithms adjust the radius of each cell to obtain the minimal total con-
sumed power while keeping unchanged the global coverage of the networks. The
simulated annealing algorithm is a heuristic whose objective is to find the global
optimal solution. The downhill algorithm offers a local optimal solution. Our
simulations show that this local optimal solution also approaches the global op-
timal one. We can see an example of simulated cells before and after optimization
in Figure 1. The complexity and the convergence rate of our algorithms are also
analyzed. We also discuss about the probability density function (pdf) of opti-



mized cell’s radius. The pdf gives ideas of the optimal size of cell and how many
cells are enough to cover the space.
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Fig. 1: A network before and after optimization.

The rest of this paper is organized as follows. Section 2 briefly introduces the
theory of simplicial homology. The next section is devoted to the description of
our algorithms. Our simulation and results are given in the Section 4. In the last
section, some conclusions are drawn and future work directions are outlined.

2 Simplicial homology

In this section, notions of simplicial homology are briefly introduced. For further
details, see documents [11] and [12]. Given a set of vertices V , a k-simplex is an
unordered subset {v0, v1, . . . , vk}, where vi ∈ V and vi 6= vj for all i 6= j. The
number k is its dimension. Figure 2 presents some examples: a 0-simplex is a
point, a 1-simplex is a segment of line, a 2-simplex is a filled triangle, a 3-simplex
is a filled tetrahedron, etc.

0-simplex

1-simplex 2-simplex 3-simplex

Fig. 2: Examples of simplices.

An oriented simplex is an ordered type of simplex, where swapping position
of two vertices changes its orientation. The change of orientation is represented
by a negative sign as:

[v0, v1, . . . , vi, vj , . . . , vk] = −[v0, v1, . . . , vj , vi, . . . , vk]

Removing a vertex from a k-simplex creates a (k − 1)-simplex. This (k − 1)-
simplex is called a face of the k-simplex. Thus, each k-simplex has (k+1) faces.



An abstract simplicial complex is a collection of simplices such that: every face
of a simplex is also in the simplicial complex. Let X be a simplicial complex.
For each k ≥ 0, we define a vector space Ck(X) whose basis is a set of oriented
k-simplices of X. If k is bigger than the highest dimension of X, let Ck(X) = 0.
We define the boundary operator to be a linear map ∂ : Ck → Ck−1 as follows:

∂[v0, v1, . . . , vk] =
k

∑

i=0

(−1)i[v0, v1, . . . , vi−1, vi+1, . . . , vk]

This formula suggests that the boundary of a simplex is the collection of its
faces, as illustrated in Figure 3. For example, the boundary of a segment is its
two endpoints. A filled triangle is bounded by its three segments. A tetrahedron
has its boundary comprised of its four faces which are four triangles.

v0 v1 ∂
−→ v0+ v1− ∂

−→ 0

v0 v1

v2

∂
−→

v0 v1v1

v2v2

v0

∂
−→ 0

v0

v1

v2

v3

∂
−→

v0

v1

v2

v3

∂
−→ 0

Fig. 3: Boundary operator.

The composition of boundary operators gives a chain of complexes:

· · ·
∂
−→ Ck+1

∂
−→ Ck

∂
−→ Ck−1 · · ·

∂
−→ C1

∂
−→ C0

∂
−→ 0

Consider two subspaces of Ck(X): cycle-subspace and boundary-subspace, de-
noted as Zk(X) and Bk(X) respectively. Let ker be the kernel space and im be
the image space. By definition, we have:

Zk(X) = ker(∂ : Ck → Ck−1)
Bk(X) = im(∂ : Ck+1 → Ck)

Zk(X) includes cycles which are not boundaries while Bk(X) only includes
boundaries. A k-cycle u is said homologous with a k-cycle v if their difference
is a k-boundary: [u] ≡ [v] ⇐⇒ u − v ∈ Bk(X). A simple computation shows
that ∂ ◦ ∂ = 0. This result means that a boundary has no boundary. Thus, the
k-homology of X is the quotient vector space:

Hk(X) = Zk(X)\Bk(X)



The dimension of Hk(X) is called the k-th Betti number:

βk = dimHk = dimZk − dimBk (1)

This number has an important meaning for coverage problems. The k-dimensional
Betti number counts the number of k-dimensional holes in a simplicial complex.
For example, the 0-dimensional Betti number counts the connected components
while 1-dimensional Betti number counts the coverage holes, etc. In our algo-
rithm, we only consider these two first Betti numbers.

Definition 1 (Čech complex). Given (M,d) a metric space, ω a finite set of
points in M and ǫ(ω) a sequence of real positive numbers, the Čech complex with
parameter ǫ(ω) of ω, denoted Cǫ(ω)(ω), is the abstract simplicial complex whose
k-simplices correspond to non-empty intersection of (k + 1) balls of radius ǫ(ω)
centered at the (k + 1) distinct points of ω.

If we choose ǫ(ω) to be the cell’s coverage range R, the Čech complex verifies
the exact coverage of the system. In the Čech complex, each cell is represented
by a vertex. A covered space between cells corresponds to a filled triangle, tetra-
hedron, etc. In contrast, a coverage hole between cells corresponds to an empty
(or non-filled) triangle, rectangle, etc.

Definition 2 (Index of a vertex). The index of a vertex v is the biggest
integer k such that for every i ≤ k each (i− 1)-simplex of v is a face of at least
one i-simplex of v.

The index of a vertex tells us how many times the corresponding cell of this
vertex overlaps with its neighbors. An index of zero indicates that corresponding
cell separates from others (it’s isolated). A cell whose index is one connects to
others by edges. A cell whose index is higher than one connects with others by
triangles, tetrahedra etc.

3 Energy saving algorithms

We consider a wireless network whose cells are randomly distributed on the
plane. These cells can have different coverage radii. Let N be the number of
cells. It is assumed that each cell i can operate with the coverage radius Ri

which varies from Rmin,i to Rmax,i, where i = 0, 1, ..., N . The consumed power
for each cell is estimated by using the simplified path loss model: Pt,i = K0R

γ
i ,

where K0 is a constant factor and γ is the path loss exponent. In this paper, we
assume that K0 = 1 for simplification. The total consumed power for all N cells
is:

PT =
N
∑

i=1

Pt,i =
N
∑

i=1

Rγ
i .

Our algorithms have the objective to minimize the total consumed power PT

while providing the maximal global coverage for the network.



At the beginning of our algorithms, all cells are turned on and each cell i
works with its own maximal radius Rmax,i. At this state, the system has the max-
imal global coverage and also its cells strongly overlap. An initial Čech complex
is constructed and its Betti numbers β∗

0 and β∗

1 are computed. The construction
of the Čech complex is based on the verification of intersection between cells.
For the detail of this construction, see the document [13]. The Betti numbers
can be computed by equation (1). The Čech complex tells us about the coverage
structure of the system. We then adjust the radius for each cell i to minimize
the overlapping region without any modification to the global coverage. We are
solving the power saving problem, so we do not locate the coverage holes, if any.
We assume that, all fence cells and boundary cells are known before an execution
of our algorithms. Our algorithms only modify the coverage radius for internal
cells and do not make any change to fence cells or boundary cells. There are two
strategies to adjust the radius of cells. The radius of a cell can be increased or
decreased depending on each strategy. The simulated annealing algorithm allows
both reduction and enlargement of cells but the downhill algorithm only accepts
reduction. After an enlargement, there is no new coverage hole. However, after
a reduction, a new coverage hole may appear. So, we need to verify the global
coverage of the system. To do that, we recompute the Čech complex after a
reduction. The Betti numbers β0 and β1 are also recomputed. If the updated
Betti numbers β0 and β1 are the same as the initial ones β∗

0 and β∗

1 , no new hole
has appeared. The reduction is accepted. Conversely, if the Betti numbers have
changed, the reduction is refused. We can see an example of the global coverage
verification in Figure 4. This figure represents the internal cells of a network.
The external area of these cells are covered by fence cells. To emphasis the ver-
ification if a new coverage hole appears, we do not draw the fence cells here. In
Figure 4a, all cells are at their initial stage. Each cell reaches its maximal range.
These cells are highly overlapped. They are represented by one tetrahedron and
one triangle. The Betti numbers are β0 = 1 and β1 = 0. They indicate that all
cells are joined together in one component and there is no hole. Cell 0 and 1
have index three. In Figure 4b, after the reduction of radius for cell 0, the Čech
complex now includes three filled triangles. The Betti numbers β0 and β1 are
not changed but the indices of cell 0 and cell 1 are now reduced to two. This
means that the overlapping level is reduced but no hole appears. The algorithm
accepts the reduction of cell 0. But, in Figure 4c, cell 4 tries to reduce its radius
and creates a new coverage hole. This hole is represented by an empty rectangle
and the first Betti number β1 is now changed to one. The indices of cell 0, cell
1, cell 2, cell 4 are all reduced to one because these cells are now on the border
of an empty hole. Then, the reduction of cell 4 is refused. Its radius is returned
to its previous value.

The adjustment process continues until the terminal condition is met. The
terminal conditions in the simulated annealing algorithm and the downhill one
are different. These conditions are mentioned in the detail description of these
algorithms.
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Fig. 4: Reduction of cell radius and Čech representation.

3.1 Simulated annealing algorithm

Simulated annealing (SA) is a method introduced to solve various difficult op-
timization problems. Starting with an initial solution, where all cells are set
to their maximal radius, this algorithm approaches the final global optimized
solution by the following process: it randomly chooses a cell and attempts to in-
crease or decrease its radius by an amount of ∆R. Then, the difference of power
consumption is calculated by ∆P = (R ±∆R)γ − Rγ , where γ is the path loss
exponent. If the radius is decreased, the transition is called downhill move. This
downhill move is only accepted if no hole appears. The SA algorithm does not
use the index system, so the Čech complex with dimension two is enough to ver-
ify coverage holes. If the radius is increased, the transition is called uphill move.
In this case, ∆P > 0, this uphill move is accepted with probability exp(−∆P/T )
where T is the current temperature of the system (a control parameter). Thanks
to uphill moves, the process can jump out from a local minimum to search for
the global minimum. This process is repeated L times at this temperature to get
the thermodynamic equilibrium state. After that, the temperature is gradually
decreased by a cooling schedule Tk = T0α

k. In this function, T0 is the initial
temperature which is chosen large enough to make the probability of an uphill
move at initial state to be close to one. The cooling factor α, a real positive
number such that 0 < α < 1, guarantees a smooth cooling schedule. The num-
ber k is an index varying from 0 to K. At each temperature Tk, the process is



repeated L times until the final temperature TK . The number K is chosen large
enough to make the probability of accepting an uphill move to be near zero at
the final temperature. The final configuration of radius is then close to the global
minimum solution. For more details about the SA algorithm, see papers [14] and
[15]. Our SA algorithm is summarized in Algorithm 1.

Algorithm 1 Simulated annealing algorithm
C← collection of cells;
set R(c)← Rmax(c) for each c ∈ C

set T0, K, L, α;
build initial Čech complex and compute initial β∗

0 , β∗

1 ;
for k = 1→ K do

T = αkT0;
for l = 1→ L do

c← a random cell ∈ C;
sign← a random value ∈ {−1; 1};
if sign = −1 then

Rc ← Rc −∆Rc;
build Čech complex and compute β0 and β1;
if β0 6= β∗

0 or β1 6= β∗

1 then

Rc ← Rc +∆Rc;
end if

else

compute ∆P ← (Rc +∆Rc)
γ −Rγ

c ;
Rc ← Rc +∆Rc with probability exp(−∆P

T
);

end if

end for

end for

return collection of optimal cells C

3.2 Downhill algorithm

In the downhill algorithm, only the reductions of cells are accepted so it only
gives the local optimal solution. This algorithm concerns the overlapping level
of cells. The overlapping level of each cell can be known by computing the index
of the corresponding vertex in the Čech complex.

From the definition of the index of a vertex, we verify if each k-simplex of v
is a face of at least one (k + 1)-simplex of v. Starting at k = 0, it increases k
by one if all k-simplices are verified. The algorithm stops if there is a k-simplex
which is not a face of any (k+1)-simplex. The highest value of k is the index of
v. The index computation for a vertex v is described in Algorithm 2.

Let the index of a vertex be also the index of the corresponding cell. The
reduction process begins at the cell whose index is the highest. If there are more
than one cell whose indices are maximal, the larger cell is chosen. After each re-
duction of radius, the coverage of the system is verified. If no new hole appeared,



Algorithm 2 Index computation for a vertex v

k ← 1;
while exist k-simplex of v do

Sk ← collection of k-simplices of v;
Sk+1 ← collection of (k + 1)-simplices of v;
for each k-simplex s in Sk do

if s is not a face of any (k + 1)-simplex ∈ Sk+1 then

return k;
end if

end for

k ← k + 1;
end while

return k;

the reduction is accepted. Otherwise, the reduction is refused. This cell is flagged
as not reducible and its index is set to −1 to avoid a repeating reduction. Its ra-
dius is also reversed to its previous value. The reduction process continues with
another cell. This process terminates when every cell is irreducible. The details
of the reduction process is introduced in Algorithm 3.

Algorithm 3 Downhill algorithm
C← collection of cells
set R(c)← Rmax(c) for each c ∈ C

X← build initial Čech complex for C;
compute initial Betti’s numbers β∗

0 , β∗

1 ;
compute index îc for each c ∈ C; {call to Algorithm 2}
flag fence, boundary cells as not reducible;
while exist a reducible cell do

C
∗ ← a set of cells whose index = max{̂ic|c ∈ C}

c← a cell ∈ C
∗ whose biggest radius;

X
∗ ← X

if Rc −∆Rc ≥ Rc,min then

Rc ← Rc −∆Rc;
else

turn off cell c;
end if

X← rebuild Čech complex for C; {call to Algorithm 4}
compute β0, β1;
if β0 6= β∗

0 or β1 6= β∗

1 then

Rc = Rc +∆Rc;
X← X

∗

set cell c is not reducible and set index of c to −1;
end if

compute index for reducible cells; {call to Algorithm 2}
end while

return collection of optimal cells C;



The reduction progress requires many recomputations of the Čech complex
for the global coverage. In fact, a reduction of one cell’s coverage can only make
topology change for the region comprised of this cell and its neighbors. The
recomputation of global Čech complex is reduced to the Čech computation for
this region as follows:

Algorithm 4 Quick Čech complex re-build algorithm

X ← the old Čech complex before radius changed;
c← the cell which changed radius;
v ← the corresponding vertex of cell c in X;
N← is neighbors collection of c;
C

∗ = N ∪ {c};
for each simplex u in X do

remove u from X if v ∈ u;
end for

Y ← build Čech complex for C
∗;

for each simplex u in Y do

add u to X if v ∈ u;
end for

return X;

3.3 Complexity

Both simulated annealing algorithm and downhill algorithm require two main
steps: the construction of the Čech complex and the computation of the Betti
numbers. The downhill algorithm needs an additional step: computation of the
indices of the vertices. We first compute the complexity for the construction
of the Čech complex, the computation of the Betti numbers and the indices of
vertices. Then, the complexity of our algorithms can be easily deduced.

At the beginning of these algorithms, the initial Čech complex is constructed.
The construction of the Čech complex is to verify if a group of cells has a
non-empty intersection. The 0-simplices are obviously a collection of vertices.
Computing 1-simplices is to search neighbors for each cell. Its complexity is
C2

N , where N is the number of cells. To compute the 2-simplices, for each cell
we take two of its neighbors and verify if this cell and the two neighbors have
a non-empty intersection. Let n be the average number of neighbors of each
cell, the complexity to compute the 2-simplices for each cell is C2

n on average.
The complexity of the 2-simplices computation for all cells is NC2

n. Similarly, to
compute the k-simplices for each cell, we take k of its neighbors and verify if this
cell and the neighbors have a non-empty intersection. The complexity of the k-
simplices computation of one cell is Ck

n and for all cells is NCk
n. The complexity

to construct the initial Čech complex is: CP(initial Čech) = C2
N +N

∑dmax

k=2 Ck
n,

where dmax is the highest dimension of the Čech complex. The complexity to
construct the Čech complex up to dimension 2 is only O(N2+Nn2). If the Čech



complex is built up to its highest dimension, the sum
∑dmax

k=2 Ck
n can be upper

bounded by 2n if dmax is high enough. The complexity to construct the Čech
complex up to the highest dimension is then as much O(N2 +N2n).

After each reduction, we need to rebuild the Čech complex. This computation
is only for the cell whose radius is reduced and its neighbors. Hence, the complex-
ity to rebuild the Čech complex is CP(rebuilt Čech) = C2

n+1+(n+1)
∑dmax

k=2 Ck
n.

It is about O(n3) if the Čech is constructed up to dimension 2 and O(n2n) if
the Čech complex is constructed up to its highest dimension.

The Betti numbers computation can be done following equation (1). Its com-
plexity has been discussed in [16]. Let mk be the average number of k-simplices
of the Čech complex. The computation of the Betti number β0 has complexity of
O(m1). The computation of the Betti number β1 has complexity equivalent to
the complexity of rank computation of a matrix with m2 rows and m2 columns.
Then, the complexity to compute β1 is O(m3

2). So the complexity to compute
these two Betti numbers is CP(Betti numbers) = O(m1 +m3

2). The number of
k-simplices is upper bounded by NCk

n, so the complexity to compute both these
numbers is O(N3n6).

To compute the indices for each vertex i, we firstly find all k-simplices for this
vertex, for all k = 1, 2, . . . , dmax. This step has the complexity of

∑dmax

k=0 mk. For
each k-simplex of this vertex i, we need to check if this k-simplex is a part of every
(k + 1)-simplices. This step has the complexity of

∑dmax−1

k=0 mkmk+1. The com-
plexity of index computation for one cell is

∑dmax

k=0 mk+
∑dmax−1

k=0 mkmk+1. Then,
the complexity to compute indices for all cells is CP(indices) = N(

∑dmax

k=0 mk +
∑dmax−1

k=0 mkmk+1). Because we have mk ≤ NCk
n, then we have CP(indices) ≤

N2
∑dmax

k=0 Ck
n +N3

∑dmax

k=0 Ck
nC

k+1
n . If the Čech complex is only constructed up

to dimension 2, the complexity to compute indices for all cells is O(N2n3). If
the Čech complex is constructed up to its highest dimension, the sum

∑dmax

k=0 Ck
n

can be upper bounded by 2n. Using the identity of Vandermonde, we can ap-
proximate the sum

∑dmax

k=0 Ck
nC

k+1
n by Cn−1

2n . It’s shown that Cn−1
2n < 22n. The

complexity to compute indices for all cells is then as much O(N322n).
In the simulated annealing algorithm, an initial Čech complex is constructed

and then the simulated annealing process is repeated for a huge number of inner
and outer loops. Let w be the number of loops, we have w = KL. The complexity
of the simulated annealing algorithm is:

CP(SA) = CP(initial Čech) + w
(

CP(rebuilt Čech) + CP(Betti numbers)
)

In downhill algorithm, after constructing the initial Čech complex, the re-
duction process is repeated until there is no redundant space. Let S be the
deployment space. The reducible space is Sreducible = NπR2

max
− S. The aver-

age space reduced after each reduction of radius for a cell is △S = E
(

πR2 −

π(R−△R)2
)

which equals πRmax△R. The number of loops w is Sreducible/△S =
NRmax/△R− S/(πRmax△R). The complexity of the downhill algorithm is:

CP(downhill) = CP(initial Čech) + w
(

CP(rebuilt Čech)

+ CP(Betti numbers) + CP(indices)
)



The Table 1 list the complexity of our algorithms in the worst case in two
probabilities: the Čech complex is constructed up to dimension 2 and up to its
highest dimension.

Table 1: The complexity in the worst case

Complexity dmax = 2 dmax = ∞

initial Čech complex O(N2 +Nn2) O(N2 +N2n)

rebuilt Čech complex O(n3) O(n2n)
Betti’s numbers O(N3n3) O(N3n6)
indices O(N2n3) O(N322n)
SA algorithm O(KLN3n6) -
Downhill algorithm O(N4n6) O(N422n)

Note that, in the SA algorithm, the Čech complex is only built up to dimen-
sion 2. The SA algorithm and the downhill algorithm with the Čech complex
built up to dimension 2 have polynomial time complexity. However, the num-
ber of inner loops K and outer loops L in SA algorithm are much greater than
the number of cells N . So, the SA algorithm has higher complexity than the
downhill one with dimension 2. With the Čech complex built up to dimension
10, the downhill algorithm has the highest complexity. It gives the solution in
polynomial of exponential time.

3.4 Convergence rate.

The convergence rate measures how fast an algorithm converges. In [17], author
modeled SA algorithm as an inhomogeneous Markov chain and studied its con-
vergence. Let PT,l and PT,∗ denote the total consumed power at lth iteration
and the optimal consumed power, respectively. By using Theorem 6.3 in [17], the
convergence rate of our SA algorithm is estimated as supPr(PT,l − PT,∗ > ǫ) <
K/lθ, where ǫ and K are real positive numbers. The parameter θ is calculated
by θ = ǫ/(N△P∗) where △P∗ is the maximal increased or decreased amount
of power after each iteration. The SA algorithm converges to the global opti-
mum with polynomial rate. The downhill algorithm, which can be considered
as a special case of the SA algorithm when the beginning temperature is set to
0, can be modeled as a homogenous Markov chain. As the result, it converges
exponentially to the local optimum.

4 Simulation and results

The proposed algorithms were evaluated on a space 10 × 10 where cells were
deployed randomly according to a Poisson point process. Each cell has a radius
varying from Rmin = 0.1 to Rmax = 1. The intensity λ of the Poisson point



process was set to different values from 0.2 to 1. All simulations were repeated
1000 times.

The simulated annealing algorithm simulations were executed with initial
temperature T0 = 1.95. The initial accepting probability of an uphill move is
0.95. At each temperature, process is repeated L = 1000 times to approach the
equilibrium solution. The temperature cooling factor was set to α = 0.95 for
K = 100 times. The final accepting probability of an uphill move is set to 0.05.

The downhill algorithm was tested with simplicial Čech complex built for
two different maximal dimensions 2 and 10, i.e. simplices are computed up to
2-simplex and 10-simplex respectively.

4.1 Average consumption power per cell with optimized radius.

The average consumed power per cell with the optimized radius is shown in Fig-
ure 5. The higher density of cells is, the more power is saved. The SA algorithm
which gives an approximation of the global optimal solution saves most power.
At the highest density of cell, each cell operates with 35% of its maximal power
in average, thus saving 65% power. The downhill algorithm saves 62% power
with the Čech complex built up to dimension 2 and it saves 60% power with the
Čech complex built up to dimension 10. These results show that the solution
of the downhill algorithm also approaches the global optimal one. It suggests
one should choose the downhill algorithm which gives the solution in polynomial
time to optimize the networks.
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Fig. 5: Consumption power per cell minimized by different algorithms.

4.2 Probability density function of optimized radius.

The pdf of the optimized radius tells us how many cells are needed for the
operation of the system. In addition, it also gives the optimal operating radii for
cells. Although the average power consumed per cell by different algorithms are
almost equal, the pdf of the optimized radius obtained by these algorithms are



quite different as shown in Figure 6, 7 and 8 for three densities of cells: 1 (high),
0.6 (medium) and 0.2 (low). The number of cells that can be turned off by using
simulated annealing algorithm is always less than 10% for all values of density.
Conversely, the number of turned off cells obtained by using downhill algorithm
with dimension 2 is higher than 35% and with dimension 10 is higher than 40%
for the high density. This result shows that the downhill algorithm can turn off
more cells. In the pdf of the optimized radius by downhill algorithm, the number
of cells whose radius is smaller than 0.3 is almost zero for all values of density.
It suggests that such a tiny cell should be turned off. This behavior is similar
with different cell density values.
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Fig. 6: Pdf of optimized radius at cell density = 1.0
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Fig. 7: Pdf of optimized radius at cell density = 0.6
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Fig. 8: Pdf of optimized radius at cell density = 0.2

5 Discussion and Conclusion

This paper introduced two homology based algorithms for saving energy in wire-
less networks: simulated annealing one and downhill one. The simulated anneal-
ing algorithm, which neglects priority between cells, saves the most power. But,
it can only turn off a small number of cells. On the other hand, by considering
priority between cells, the downhill algorithm firstly reduces power for cells in
dense region and can turn off a larger number of cells. The higher the intensity
of cells is, the higher the number of cells that can be turned off is. In addition,
the difference between the total consumed power minimized by the two variants
of algorithm is less than 5%. The downhill algorithm with dimension two has
the highest convergence rate and the lowest complexity. It converges with expo-
nential rate to the solution and achieves it in polynomial time. It suggests that,
one should use the downhill algorithm with dimension two to optimize wireless
systems transmission powers.

In future, we will develop a distributed version of these algorithms for au-
tonomous systems and Self Organizing Networks.
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