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ABSTRACT 
A new characterization method of the lattice fringe images of turbostratic carbons is 

proposed. This method is based on the computation of their orientation field without explicit 

detection of fringes. It allows meaningful insights into the material nanostructure and 

nanotexture at several scales, either qualitatively or quantitatively. The calculation of pairwise 

spatial statistics of the orientation field at short distance provides measurements of the 

coherence lengths along any direction, in particular along and orthogonally to the layers. 

These statistics also allow representing orientation coherence patterns typical of the observed 

nanostructure. At larger distances, the mean disorientation of the fringes is computed and 

information about the homogeneity of the sample is obtained. An experimental validation is 

carried out on various artificial images and an application to the characterization of four bulk 

turbostratic carbons is provided. 

1 Introduction 
Lattice fringe (LF) imaging using High Resolution Transmission Electron Microscopy 

(HRTEM) has been for more than two decades a choice technique for investigating and 

quantifying the nanostructure (i.e. the spatial arrangements of graphene layers) of 

carbonaceous materials such as soot [1], activated carbons [2], chars [3-5], pyrocarbons [6-9], 

or nuclear graphites [10-11]. 

Though meaningful and informative, the qualitative interpretation of LF images is subjective 

and time consuming. The need for quantitative analysis tools has rapidly lead to develop 

automated image analysis tools, as reported e.g. in refs. [3,12-14]. 

Whatever the type of carbon materials under study, most of published LF image analysis 

procedures are based on four main algorithmic steps, namely (i) filtering of the digitized 
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image, (ii) fringe extraction, (iii) morphological analysis of individual fringes, (iv) 

characterization of spatial arrangements of fringes.  

Essentially, image filtering (i) aims at removing high frequency artifacts (mainly electronic 

noise) and low frequency variations (Bragg artifacts and sample thickness variations) that are 

not meaningful to describe material nanostructure and may hinder image analysis. Filtering is 

usually conducted in the Fourier domain by applying either ideal square filters [2-3,13] or 

smooth Gaussian filters [15]. As mentioned by Toth and coworkers, the latter prevents 

harmonic ringing caused by the sharp changes in the transfer function and subsequent false 

fringe detections. In the case of more anisotropic materials such as rough or regenerated 

laminar pyrocarbons for instance [8], a combination of radial and angular filtering has also 

appeared to be a relevant technique to remove irrelevant details in LF images. 

Typically, fringe detection (ii) starts with image binarization in order to discriminate fringe 

objects from background. Binarization is obtained by thresholding using either a fixed [3,13] 

or an adaptive [15] threshold. Rouzaud and Clinard [13] and later Pré et al. [2] suggested the 

prior use of a top-hat transform to ease the thresholding process. Binarization is usually 

followed by fringe skeletonization and various post-processing operations in order to separate, 

reconnect or remove fringe chunks [2-3,12,14]. Another possible approach for fringe 

detection relies in the use of a sub-pixel level curve tracking algorithm initially proposed in 

[16] and later used in [17-18]. After image background variations removal, level curves are 

tracked on either side of the fringes around the mean intensity level until the fringe ends 

(zones with poor orientation coherence) are reached.   

Morphological fringe analysis (iii) usually comprises statistics of individual fringe lengths and 

tortuosities [2-3,14,18], curvatures and orientations [2,15]. Shim et al. also proposed a 

measure of the apparent crystalline fraction [3]. 

Besides individual fringe features statistics, various authors addressed the description of 

mutual arrangements of fringes (iv) by measuring interlayer spacing histograms [2,13-14]. 

Toth et al. [15] also proposed to measure the interlayer spacing deviation parameter or the 

junction parameter (number of branch points per unit length). The identification of stacks of 

parallel fringes – assimilated to Basic Structural Units [19-20] – has also been addressed by 

several authors [2,13-15]. They established statistics for the stacking number N and the 

coherence length La. Other valuable features that can be extracted from LF images are the 2D 

nematic and polar order parameters [3]. Computed from the orientations of the fringes within 

a given spatial window around any given location of the image, these order parameters 
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quantify the organization of fringe orientations inside the window. In brief, the nematic order 

parameter gets high values where fringes are all nearly parallel while the polar parameter is 

high in the case of concentric fringes around the window center. Such parameters have later 

been used as saliency features to detect soot spherules in large images and drive an automated 

image analysis process [21]. 

Though yielding lots of relevant information about many material nanostructures, the 

bottleneck of this kind of approaches is the need for a fringe extraction algorithm that usually 

consists of numerous complex steps with various parameters, sometimes subjective and most 

of the time application specific. In recent works, some authors argue that valuable information 

can also be obtained without explicit fringe extraction. For instance, Toth et al. [22] proposed 

an original framework to compute statistics of interlayer spacing and fringe orientation based 

on the direct application of a Gabor filter bank on an LF image. In [23], the same authors 

presented an alternative approach for the computation of multiscale nematic and polar order 

parameters. In this approach, the orientation statistics were computed from the image 

orientation field estimated using steerable filters [24] without explicit identification of fringes. 

In former works, Germain et al. [25] also proposed a general framework for the multiscale 

evaluation of texture anisotropy using feature Iso which was used to discriminate between 

various raw and heat treated pyrocarbons. 

In this paper, we address the characterization of spatial arrangements of fringes in turbostratic 

carbons through LF images and their orientation fields. The latter are computed by standard 

computationally efficient estimation techniques without explicit detection of fringes. We 

show that the visualization of the local orientation map and of the orientation coherences 

allows a more convenient representation of the nanotexture and of the defects. In addition, 

spatial statistics of the orientation field are used to gather information on the texture at several 

scales. While previous approaches based on the multiscale nematic order [3,23] or on 

multiscale anisotropy [25] provide global estimations of the degree of anisotropy at one or 

several scales, the specificity of our work is to consider pairwise statistics, i.e. statistics of 

pairs of pixels. Using ad-hoc graphical representations, our approach allows monitoring how 

fringe orientation coherence vanishes between two sites according to distance and orientation, 

thus providing access to the grain shapes. The relevance of our approach is first assessed on 

artificial images showing grain tessellations before studying real material images. In 

particular, for highly textured materials as turbostratic carbons, we obtain coherence lengths 

at short distance, parallel and perpendicular to the layers, which are related to other coherence 



4 
 

measures provided by X-ray diffraction (XRD). At larger distances, the mean angular 

deviation of the fringes is computed and information about the homogeneity of the sample is 

obtained. 

The paper is organized as follows. The second section provides details about material 

samples, characterization techniques and image processing algorithms including orientation 

retrieval and spatial statistic computation. The third section deals with experimental validation 

on various artificial images and shows an application to the characterization of four types of 

bulk carbons. Finally, we will draw some conclusions and mention a few prospects for future 

work.  

2 Materials and methods 

2.1 Material samples 
Four materials were chosen to evaluate this method: three pyrocarbons (PyCs) – namely the 

Rough Laminar PyC (RL), the Regenerated Laminar PyC (ReL) and the Smooth Laminar 

PyC (SL) – and a PAN-based carbon fiber (CFiber). All materials are made of graphene layers 

stacked together with a turbostratic disorder between the layers. Differences between the 

materials lay in their texture (i.e. the preferential orientation of the layers), the curvature of 

their layers, and the shape and size distribution of their BSUs (Basic Structural Units).  

The RL PyC [26] and the ReL PyC [7] are both high textured PyCs [6], the latter containing a 

higher amount of structural defects. The smooth laminar PyC (SL) is medium textured and 

more heterogeneous as it is made of a mixture of lamellae and pores of various sizes [27]. 

CFiber exhibits a distinct texture, isotropic when observed along the fiber axis and rather 

homogeneous with strongly folded layers, corresponding to the axial orientational order [3]. 

ReL, RL and SL PyCs were prepared by isothermal isobaric Chemical Vapor Infiltration 

(CVI) from respectively pure propane (ReL) and a methane/propane mixture (RL) precursors. 

The RL PyC was obtained by deposition on the surface of a fused quartz tube filled at both 

ends by a carbon preform and placed in the CVI reactor [28] while the SL PyC was obtained 

in the same conditions, but with the fused quartz tube left open. For the ReL PyC, a silica 

woven fabric was infiltrated using pure propane with the following processing parameters: 

total pressure p = 5 kPa, temperature T = 1050°C, residence time tr = 3 seconds and 10 hours 

infiltration duration [29]. The carbon fiber is a commercial ex-PAN carbon fiber [30]. 
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2.2 Material characterization 

2.2.1 HRTEM imaging 

Before being studied by TEM, bulk samples were embedded in epoxy glue, mechanically 

polished down to 100 m using a 15 m diamond plate and then ion thinned in order to 

achieve electron transparency using a JEOL Ion Slicer (EM-09100IS) [31]. The initial 

incidence angle was set to 0.5° with an energy of 5.5 keV for the Ar
+
 ion beam; then, the 

angle was increased to 2.5° and the energy progressively reduced to 4 keV and eventually 2 

keV in order to reduce the irradiation damage to the carbon structure. 

High-resolution transmission electron microscopy (HRTEM) images were acquired on a 

Philips CM30ST TEM (300 kV - LaB6). All images were obtained near Scherzer defocus  

(-57nm) with an objective aperture of 4 nm
-1

 allowing to select only the 002 lattice fringes. 

Near Scherzer defocus the contrast transfer function (CTF) of the transmission electron 

microscope (TEM) is nearly flat for an extended region of spatial frequencies (roughly from 2 

to 4.2 nm
-1

), including the frequency domain corresponding to the 002 lattice fringes  

(2.9 nm
-1

). In these conditions the atoms appear in black in the LF image which can be seen, 

as a first approximation, as an inverted image of the projected potential (projection along the 

TEM optical axis through the thin foil thickness). It is well known that graphitic structures are 

prone to amorphization under a 300kV electron beam [32], hence the acquisition time was 

reduced to 10 seconds for each zone in order to reduce the irradiation dose as much as 

possible.  

2.2.2 X-ray diffraction 

RL and ReL PyCs were analyzed by powder diffraction using a Bruker D8 Advance 

diffractometer (K Cu) in order to determine the coherence lengths along the c-axis Lc and in 

the plane La. Powders were filled into a zero background sample holder and the data were 

acquired on a 2 range of 10-74°. The whole patterns were fitted using the CarbonXS 

software [33] which accounts for the strong overlap between the 10 band and the 004 peak. 

The SRM1976 (corundum) calibration standard was used to check the alignment of the 

diffractometer and to determine the instrumental resolution which is smaller than 0.07
°2

 

while carbon peaks are larger than 1.6
°2 

. Thus the instrumental resolution was not taken into 

account as it is negligible comparing to the pyrocarbons peaks widths. 
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2.3 Image processing 
LF images belong to the category of what is called textured images. Texture is a keystone of 

many image analysis tasks including classification, segmentation or characterization. In order 

to extract texture descriptors, statistical approaches based on second and higher order statistics 

have been widely reported in literature. For instance, methods based on the autocorrelation 

and on co-occurrence matrices [36] or on gray level difference histograms [37-38] are simple 

and efficient to extract texture descriptors. These methods rely only on the distribution of 

pixel intensity values. Several authors [39-41] pointed out that methods based on gray level 

statistics are not suited to the description of structured textures. Indeed, textures arising from 

an arrangement of local patterns cannot be described only in terms of gray level variations. 

Descriptors related to the spatial arrangement of texture patterns are needed. Pattern 

orientations have been recognized by several authors as important features for machine vision 

systems [25,38-43]. Although the extraction and the regularization of pixel orientations have 

been widely addressed, e.g. in [42,44-46], very few studies have focused on the use of spatial 

statistics of the orientation field. In their pioneering works, Davis et al. [39] presented a 

generalization of co-occurrence matrices accounting for pattern orientations. They defined the 

generalized co-occurrence matrix as a multidimensional array where each element is a count 

of the number of occurrences of a given spatial configuration of pixels. This configuration 

includes the relative position of the pixels and any kind of features characterizing the pixels. 

The generalized co-occurrences were applied to the magnitudes and orientations of the 

gradient vectors, computed on object boundaries. Later, Kovalev et al. [40-41] provided 

implementations of multidimensional co-occurrence matrices. They proposed either to 

combine gray level and orientation statistics [40] or to base the co-occurrences on the 

orientation field only [41]. Their approach, applied to a small set of spatial relations, proved 

to be efficient for the discrimination of specific textures with local anisotropies. 

In the following we propose an original framework for the second order statistical analysis of 

the orientation field. Based on a rotationally invariant implementation of orientation spatial 

differences, it specifically addresses the case of anisotropic textures such as those appearing 

in HRTEM LF images.  

2.3.1 Image filtering 

HRTEM image filtering is carried out according to the radial-angular filter used, though not 

detailed, in [8-9,47]. The filter performs in the Fourier domain and is defined by its band-pass 

transfer function: 
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H(𝜌, 𝜃) = Hradial(𝜌)Hangular(𝜃) 

with  

 Hradial(𝜌) =
1

𝜎𝜌√2𝜋
𝑒

−
(𝜌−𝜌0)

2

2𝜎𝜌
2

 and Hangular(𝜃) =
1

𝜎𝜃√2𝜋
𝑒

−
(𝜃−𝜃0)2

2𝜎𝜃
2

  

(𝜌, 𝜃)  are the polar frequency coordinates in the Fourier domain. 𝜌0 =
1

𝑑002
≈ 2.9 nm−1 

corresponds with the interlayer spacing. 𝜎𝜌 = 𝛼𝜌0 is defined from 𝜌0 with 0 < 𝛼 < 1.  Hradial 

performs a Gaussian filtering around 𝜌 = 𝜌0, reducing high and low frequency artifacts while 

preserving 𝑑002  fringes whatever their orientation. The second term Hangular  aims at 

preserving patterns which are oriented around a reference orientation 𝜃0  that fits the 

preferential orientation in the image. 𝜃0 is found by looking for the largest magnitude peak in 

the Fourier transform modulus. Filtering is done using a Gaussian function centered on 𝜃0 

with a standard deviation of 𝜎𝜃. The typical values 𝛼 = 0.5 and 𝜎𝜃 = 50° have proved to be a 

good compromise between artifact removal and structure preservation, (see e.g. [8-9]), for 

anisotropic PyCs such as  the RL and ReL PyCs. For poorly anisotropic materials such as the 

SL PyC and CFiber, angular filtering is deactivated in order to prevent the apparition of 

unwanted artificial structures in the filtered image. Naturally, though guided by experience, 

the determination of 𝛼  and 𝜎𝜃  remains arbitrary and is subject to the appreciation of the 

experimenter. Nevertheless, when kept within acceptable ranges leading to eye-friendly 

images, the choice of values is not critical provided that the values are kept constant when 

comparing various material images together. Indeed, variations in the filter strength or in the 

filter nature do not hinder the calculation of orientations statistics contrary to fringe detection 

algorithms that directly depend on image grey level variations. A comparison of various 

filtering approaches is provided in the supplementary material, showing their effect on the 

structural characteristics extracted from the orientation field. It is shown that in the absence of 

filtering – or equivalently in the presence of noise – the orientation maps can still be estimated 

and their statistical analysis still provides information about orientation spatial coherence. 

However, the presence of high frequency noise may lead to slightly underestimate the 

material anisotropy, which can be easily avoided by filtering. 

2.3.2 Orientations: definition, estimation and representation 

The second step of the LF image processing process is the estimation of the orientation field. 

Various definitions of orientation are available in image processing literature. For instance, 

the linearly symmetric model [44], the i1D case [48] or the mono-directional model [46] 



8 
 

provide definitions we can refer to. They all consider that a unique orientation is available at 

any location, i.e. it is the orientation of the underlying texture pattern.  

In the case of locally unique orientations, a standard approach to extract local orientations in 

an image is the local structure tensor (LST) [42], based itself on the image intensity gradient. 

Let I be the image magnitude and Ω  ℕ² the image pixel grid. The image intensity gradient 

at location 𝐮 ∈ 𝛺 is defined by: 

𝛁𝐼(𝐮) = [
𝐼𝑥(𝐮)

𝐼𝑦(𝐮)
] =

[
 
 
 
𝜕𝐼(𝐮)

𝜕𝑥
𝜕𝐼(𝐮)

𝜕𝑦 ]
 
 
 

 

where 𝐼𝑥 and 𝐼𝑦 are the partial derivatives of the image. Gradient estimation is usually done 

using convolution masks in the spatial domain such as local derivative operators (e.g. [45]) or 

scalable gradient filters as Deriche's filter or Gaussian derivatives.  

The LST at location 𝐮 is the local covariance of the gradient field: 

𝐓(𝐮) = [
Txx(𝐮) Txy(𝐮)

Txy(𝐮) Tyy(𝐮)
] = 〈𝛁(𝐮)𝛁†(𝐮)〉𝑊𝐮

= [
〈𝐼𝑥²(𝐮)〉 〈𝐼𝑥(𝐮)𝐼𝑦(𝐮)〉

〈𝐼𝑥(𝐮)𝐼𝑦(𝐮)〉 〈𝐼𝑦²(𝐮)〉
] 

where †  denotes matrix transpose and 〈∙〉𝑊𝐮
 denotes local average over a window 𝑊𝐮 

centered on 𝐮. Either rectangular or Gaussian averaging windows can be considered, the latter 

having a more isotropic behavior.  

The orientation 𝜃(𝐮) of the eigenvectors associated with the second eigenvalue of the LST 

indicates the local pattern direction, that is the orientation of minimum variability. This 

orientation estimate may be accompanied by a measure of confidence. A normalized 

confidence index is defined as 𝜂(𝐮) = (𝜆+(𝐮) − 𝜆−(𝐮))/(𝜆+(𝐮) + 𝜆−(𝐮)) where 𝜆+ > 𝜆− 

are the eigenvalues of 𝐓(𝐮) and 𝜂(𝐮) ∈ [0,1]. For each location 𝐮, 𝜂(𝐮) is a local measure of 

collinearity between gradient vectors. This is a local measure of anisotropy. On lattice fringe 

images, 𝜂(𝐮) is close to 1 on straight fringes whereas it is close to 0 on fringe endings, on 

fringe dislocations, on amorphous areas or on overlapped layers.   

The size of the averaging window 𝑊𝐮 for the LST computation must be tuned according to 

the expected scale of the orientation estimation. In other words it must fit the size of the 

patterns of interest. In particular, in the case of lattice fringe images, the size of the averaging 

window must be tuned to the width of a fringe, the d002 distance. Regarding the gradient 

estimation prior to the LST computation, any operator based on convolution filters may be 
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chosen provided that their spatial extent is small compared to the size of the LST averaging 

window. For instance, 3 × 3 convolutive filters such as Sobel’s, Prewitt’s or GOP3 [45] are 

eligible. 

Many other orientation estimation methods exist including those based on the use of filter 

banks such as the IRON operators [46] or the steerable filters [24] used in [23] for anisotropy 

analysis on soot images. The main advantage of filter bank approaches is their ability to detect 

and discriminate between several orientations simultaneously present on a site [46] as it may 

occur in LF images of soot, coal chars or activated carbons images for instance. In most parts 

of turbostratic carbon images, fringes can be considered as elongated patterns with a unique 

orientation and without pattern superimpositions. In this case, the use of the structure tensor, 

much more efficient computationally speaking and far simpler to implement, is more relevant. 

Let us note that pattern orientations can be handled as axial data, i.e. 𝜋-periodic circular data 

[49]. Indeed two opposite angles, 𝜃0 and 𝜃1 = 𝜃0 + 𝜋, relate to the same pattern orientation. 

Consequently, orientations 𝜃(𝐮) retrieved from the LST can be restricted to an interval of 

width 𝜋 such as [0, 𝜋[. 

The couple composed of 𝜃(𝐮) and 𝜂(𝐮)(also noted 𝜃𝐮 and 𝜂𝐮), can be represented as a vector 

field 𝐕𝐮 = (𝜂𝐮 cos𝜃𝐮 , 𝜂𝐮 sin 𝜃𝐮)
†

 from which it is possible to extract spatial pairwise 

statistics as we will see below. 

2.3.3 Spatial statistics of orientations 

An intuitive way to measure the spatial dependence of orientations is to compute spatial 

orientation differences. In order to deal with the axial nature of orientation data, some of us 

[50] proposed to measure the difference between two orientations (𝜃1, 𝜃2) ∈ [0, 𝜋[× [0, 𝜋[ by 

using the function ∆(𝜃1, 𝜃2) = min (|𝜃1 − 𝜃2|, 𝜋 − |𝜃1 − 𝜃2|). Based on ∆, various second-

order features were proposed to describe orientation dependencies in texture, among which 

the 𝑀𝑂𝐷 feature defined by: 

𝑀𝑂𝐷(𝐰) = 〈𝜂𝐮𝜂𝐮+𝐰∆(𝜃𝐮, 𝜃𝐮+𝐰)〉Ω 

where 〈∙〉Ω denotes spatial averaging over the whole image domain Ω. 𝑀𝑂𝐷 can be considered 

as a weighted measure of similarity between two orientations separated by spatial lag 𝐰 ∈ ℝ.  

We propose here to use a new rotation invariant formulation. Let (𝜌,)  be the polar 

representation of lag 𝐰. The rotation invariant formulation consists in considering the polar 
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shift (𝜌,) not in the image grid coordinate system but in a local system defined by the local 

orientation: 

𝑅𝐼𝑀𝑂𝐷(𝜌,) = 〈𝜂𝐮𝜂𝐮+𝛅∆(𝜃𝐮, 𝜃𝐮+𝛅)〉Ω 

with 𝛅 = (𝜌 cos(𝜃𝐮 + ) , 𝜌 sin(𝜃𝐮 + )). 

This feature allows measuring orientation dependencies when moving in a specific direction 

regarding the local structure orientation as shown in figure 1.  

 

Figure 1. Polar representation of the spatial lag (𝜌,) used in the case of the rotation invariant 

formulation 𝑅𝐼𝑀𝑂𝐷. 

Note that in the case of non homogeneous lattice fringe images, with amorphous areas or 

regions with overlapped fringes, the computation of the features could be restricted to a region 

of interest (ROI) instead of being carried out over the entire image domain Ω. Such an ROI 

could be delineated by hand or by a coarse segmentation process. 

Various relevant graphical representations can be used to plot the 𝑅𝐼𝑀𝑂𝐷  statistic as a 

function of the two variables 𝜌  and  . The ones provided in figures 3, 4, 5 and 9 plot 

𝑅𝐼𝑀𝑂𝐷(𝜌, 0°) and 𝑅𝐼𝑀𝑂𝐷(𝜌, 90°) as a function of 𝜌. These representations allow to analyze 

how orientation coherence vanishes with distance and also to differentiate between the 

longitudinal (i.e. along the fringes) and transverse (i.e. across fringes) losses of coherence. A 

second possibility, illustrated in figure 10, consists of a radar representation (in polar 

coordinates) of the distance 𝜌 at which, for each angle , the 𝑅𝐼𝑀𝑂𝐷 feature reaches a given 

value φ. This second type of plot is very useful in identifying a sort of average coherence 

pattern, typical of the observed material structure. Though not used in this paper, other 

possible representations of such bivariate spatial statistics have been proposed in literature as 

for instance the feature-based interaction maps which are intensity coded representations of a 

spatial feature as a function of the spacing vector [51].  
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Regarding computational aspects, the approach proceeds in three major steps; (i) image 

filtering, (ii) calculation of the orientation and coherence maps and (iii) calculation of the 

pairwise statistics. For an image of size 𝑁 = 𝑁𝑥 × 𝑁𝑦, step (i) is performed very efficiently 

with a computational complexity of 𝑂(𝑁log𝑁) in the Fourier domain. The complexity of step 

(ii) is 𝑂(𝑁 × 𝑊𝑥 × 𝑊𝑦) , where 𝑊𝑥  and 𝑊𝑦  are the dimensions of the tensor averaging 

window. It is linear in 𝑁, allowing very low computational needs. Steps (i) and (ii) can thus 

be performed in a few seconds in any personal computer. In comparison, step (iii) is more 

time consuming as it involve a computational complexity of 𝑂(𝑁 × 𝑁 × 𝑁𝜌) where 𝑁 and 

𝑁𝜌 are the number of angles and distances to be investigated in the pairwise statistics.  

Typically, for an image of size 76nm × 76nm, acquired at a resolution 𝑟 = 0.037 𝑛𝑚/𝑝𝑖𝑥𝑒𝑙, 

the computation of 𝑅𝐼𝑀𝑂𝐷(𝜌,) for 𝑁 = 2 angles ( = 0° and 90°) and 𝑁𝜌 = 67 distances 

(between 0 and 5 𝑛𝑚, every 0.074 𝑛𝑚) takes around 10 minutes on a 2.5 GHz processor, 

without parallelization. 

3. Results and discussion 

3.1 Validation of the method on artificial images 
To illustrate and evaluate which kind of quantitative information can be provided by 

orientation statistics, artificial lattice fringe images were generated. The latter are Voronoi 

tessellations filled with 002 fringes spaced by 0.34 nm. A tessellation is obtained by first 

generating a given number of seeds randomly in the image and, second, by assigning each 

pixel to the closest seed, in the sense of the Euclidean distance. The shapes of the Voronoi 

domains are not explicitly defined but are the result of the assignment process. Frontiers 

between neighboring domains are linear segments. Note that the shapes of the domains can be 

easily modified by weighting horizontal and vertical coordinates differently in the distance 

definition. For instance, if the horizontal coordinate differences are weighted twice as much as 

the vertical ones, the tessellation process results in rather vertical domains with a shape 

anisotropy factor of two (here a Y/X growth ratio of two).  

Domain orientations are realizations either of (i) a wrapped normal random variable [49] with 

zero mean (horizontal fringes) and with a given standard deviation, or (ii) a uniform [0,180°] 

random variable. Examples of such images are shown in figure 2. The full images have a size 

of 2048×2048 pixels and contain 2552 domains; the resolution was fixed to 0.037 nm/pixel 

i.e. the resolution of the experimental digitized HRTEM images used in this work. Thus the 
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average grain area is 𝑆𝑔 = 2.25 𝑛𝑚² and the average grain dimension 𝐷 = √𝑆𝑞 = 1.5 𝑛𝑚. 

The two images shown in figure 2 only differ by the orientations of their fringes. The image 

in fig. 2a corresponds to a highly textured case while fig. 2d corresponds to an isotropic case. 

Images have been filtered with the radial frequency filter with 𝜌0 =
1

𝑑002
≈ 2.9 nm−1 in order 

to smooth grain boundaries. Both orientation maps (Fig 2b and 2e) show that individual grain 

orientations are clearly identified while orientation confidence maps (Fig 2c and 2f) highlight 

the regions of disorder mainly located at grain boundaries. 

 

 

Figure 2: zoom of two artificial lattice fringe images (a,d) and corresponding local orientation 

(b,e) and orientation confidences (c,f). The parameters used for the simulation are: images of 

2048×2048 pixels, 2552 grains, standard deviation of grain orientations  = 9° for picture (a) 

and uniform orientation distribution for picture (d). Both images were preprocessed with a 

band-pass radial filter. Resolution is 0.037 nm/pixel, 𝑑002 = 0.34 𝑛𝑚. 

 

Plots of feature 𝑅𝐼𝑀𝑂𝐷(𝜌,) for both images, given at fig. 3, show the orientation difference 

as a function of distance for  = 0° (along the fringes) and  = 90° (orthogonally to the 

fringes). Both diagrams have a similar shape: a quick loss of orientation at short distance and 
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a plateau reached at roughly 2.5 nm. However the maximum value of orientation difference is 

around 12° in the textured sample and 45° in the isotropic sample. The loss of orientation at 

short distance is due to the interaction between neighboring grains and the plateau 

corresponds to the mean disorientation between grains. This plateau is reached for distances 

larger than the largest domains, thus giving domain size information. In order to obtain 

coherence lengths that can be accurately determined we have selected two parameters 

corresponding to the distance at which 90% of the value of the plateau is reached for the 

diagrams at 0° and 90°. These parameters 𝐿𝑎𝑀𝑂𝐷 and 𝐿𝑐𝑀𝑂𝐷 are good estimates of the domain 

sizes as it is shown in table 1. It is also shown that the match between the domain size and 

𝐿𝑐𝑀𝑂𝐷 and 𝐿𝑎𝑀𝑂𝐷 is good for domain sizes ranging from 0.5 to 3 nm. The value of the plateau, 

𝛽𝑀𝑂𝐷 is a quantification of the mean twist disorientation and provides information similar to 

the orientation angle (OA°) obtained by electron diffraction but at a lower scale. From table 1 

it can be see that 𝛽𝑀𝑂𝐷  increases when the domain size decreases (standard deviation of 

orientation =9° for all images); this is due to the higher amount of grain boundaries whose 

orientation is usually more difficult to determine. The ratio 𝐿𝑐𝑀𝑂𝐷/𝐿𝑎𝑀𝑂𝐷  appears to be 

slightly larger than unity, suggesting a better orientation coherence orthogonally to the 

fringes. It can be attributed to the phase shift of the fringes of two neighboring grains having 

similar orientation; this leads to sharp transitions at the grain boundaries in the fringe 

direction while transitions are smoother in the direction perpendicular to the fringes. 

 

 

Figure 3: Plots of 𝑅𝐼𝑀𝑂𝐷(𝜌, 0°) and 𝑅𝐼𝑀𝑂𝐷(𝜌, 90°) for the two images in figure 2, high 

textured (left) and isotropic sample (right), dotted lines correspond to the parameters MOD , 

LcMOD and LaMOD. 
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Image Size 

(pixels) 
N D (nm)  ° 𝐿𝑐𝑀𝑂𝐷 (nm) 𝐿𝑎𝑀𝑂𝐷 (nm) 

𝐿𝑐𝑀𝑂𝐷

𝐿𝑎𝑀𝑂𝐷
 𝛽𝑀𝑂𝐷° 

1024×1024 5742 0.50 9.0  0.54 0.47 1.14 13.2 

1024×1024 1346 1.03 9.0  1.06 0.97 1.09 11.7 

2048×2048 2552 1.50 9.0  1.48 1.44 1.03 11.2 

2048×2048 1436 2.00 9.0  2.06 2.05 1.01 11.0 

2048×2048 638 3.00 9.0  2.92 2.85 1.03 10.9 

2048×2048 2552 1.50 isotropic 1.55 1.54 1.01 44.9 

Table 1: determination of 𝐿𝑐𝑀𝑂𝐷, 𝐿𝑎𝑀𝑂𝐷and 𝛽𝑀𝑂𝐷 from various artificial lattice fringe images. 

𝑛 is the number of domains in the image and 𝐷 is the mean domain size. 

 

Experimental images usually exhibit domains with an anisotropic shape. In order to study the 

efficiency of our method with such a microstructure, we have generated artificial images with 

columnar grains and with fringes preferentially oriented perpendicular to the columns.  Figure 

4 shows the corresponding 𝑅𝐼𝑀𝑂𝐷 diagram for columnar grains, it appears that curves at 0° 

and 90° are clearly different, leading to a ratio 𝐿𝑐𝑀𝑂𝐷/𝐿𝑎𝑀𝑂𝐷  of 1.8 close to the shape 

anisotropy of 2 used to synthesize the image. Therefore 𝐿𝑐𝑀𝑂𝐷 and 𝐿𝑎𝑀𝑂𝐷  give information 

about domain sizes perpendicular and parallel to the layers. 

 

 

Figure 4: Mean orientation difference diagram corresponding to an image with columnar 

domains and zoom of the corresponding image and of the local orientation map. The size of 

the full image used for orientation statistics computing is 2048×2048 pixels (5742 nm²). It 
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contains 1436 domains with a mean size of 4.0 nm², a Y/X growth ratio equal to 2 and an 

orientation standard deviation of 9°. 

 

In order to demonstrate the ability of the method to gather information on spatial coherence of 

orientation at both short and long distances we have generated an image corresponding to a 

loose stacking of concentric circles (concentric cylinders or spheres seen in cross section, that 

can be considered as rough models of ex-PAN carbon fiber or soot structures), the external 

circles being 6 nm in diameter. This image as well as the corresponding local orientation map 

and the mean orientation difference (𝑅𝐼𝑀𝑂𝐷(𝜌,)) are shown in figure 5. The 𝑅𝐼𝑀𝑂𝐷(𝜌,) 

plot shows two main features. First at short distances a quick loss of orientation is observed 

for  = 0° while the slope is smaller for  = 90°, which is due to the perfect stacking of the 

layer in the radial direction while along the circumference the loss of orientation is due to the 

curvature of the layers, a maximum disorientation is obtained at 2.6 nm which corresponds to 

the mean radius of curvature. Second the 𝑅𝐼𝑀𝑂𝐷(𝜌,) plots shows an oscillating behavior at 

larger distances, this is due to the stacking of the circles, the first minimum is reached at 

approximately 6 nm which is the mean distance between two circles. 

 

 

Figure 5: zoom of an artificial image made of a stacking of concentric circles, local 

orientation and Mean Orientation Difference diagram. 

 

3.2 Application to lattice fringe images 

In this section, we illustrate how the spatial statistics of orientations can be meaningfully 

exploited for the characterization of material images. The materials we are interested in are 
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four dense carbons observed by high resolution transmission electron microscopy (HRTEM). 

Four images are represented in figure 6. Resolution is 0.037 nm/pixel. Image size is 

2048×2048 pixels i.e. about 76×76 nm
2
 (for clarity reasons, only zooms of 38 nm and 9 nm 

are shown). Depending on the material, the spatial structure of the fringes is more or less 

regular. For instance, the regenerative laminar pyrocarbon (ReL) and the rough laminar 

pyrocarbon (RL) are very anisotropic both at low and high scales. Beside their overall 

anisotropy, a close visual analysis reveals a local organization in stacks of near-parallel 

fringes. These stacks appear to be larger in RL than in ReL. On the contrary, ex-PAN carbon 

fiber CFiber and Smooth Laminar PyC (SL) are anisotropic at a very low scale and show much 

more disorder at higher scales. CFiber fringes are organized in compact wrapped patterns while 

orientations of fringes in SL images show non stationarities at high scale as indicated in the 

orientation fields of figure 7. 

 

 

Figure 6: raw HRTEM images of various carbons: upper left ReL, upper right RL, bottom left 

SL and bottom right CFiber. Image size is 37.9nm×37.9nm. 9.5nm width zooms are shown as 

inserts. 
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Figure 7: Local orientation for the four carbons (ReL, RL, SL and CFiber, from top left to 

bottom right), orientation palette and zooms of the filtered HRTEM images. 

 

Orientation confidences are shown figure 8 for the four materials, these maps enlighten areas 

of defects (low confidence) when fringes are too disrupted to allow a good determination of 

the orientation: dislocations, fringe overlapping, pores, and amorphous areas. The two high 

textured pyC images exhibit few defects which mainly consist of line defects in the images, 

few nanometers long, oriented mostly perpendicular to the fringes and located at domains 

boundaries. The amount of these defective areas is clearly larger for ReL than for RL. SL 

orientation coherence maps show a high amount of defective areas which are partly due to 

some fringe overlapping. Indeed, the materials being more isotropic, fringes with different 

orientations can be found through the thickness of the TEM sample. Note however that fringe 

overlap has only little effect on the RIMOD statistic as these areas exhibit low confidence 

values (dark areas in the orientation maps, figure 8) which are used to weight the data. 
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Besides, numerous pores are present inside the sample due to the high curvature of the 

fringes. These pores are also present in CFiber material [30] as well as some fringe overlapping 

leading to a relatively high amount of defects in the orientation confidence maps. These pores 

and the disordered areas appear as areas of weak contrast in the HRTEM images. 

 

 

Figure 8: orientation coherences for the four carbons (ReL, RL, SL and CFiber, from top left to 

bottom right). 

 

Orientation fields were obtained on the four images after frequential filtering. Bandpass radial 

filtering (𝜌0 = 2.9 nm−1, 𝛼 = 1) was used for the SL PyC and the CFiber; both radial and 

angular (𝛼 = 0.5, 𝜎𝜃 = 50°) filtering for the two high textured PyCs (RL and ReL) in order to 

reduce various artifacts such as Bragg fringes or Moirés. It must be pointed out that the image 

filtering is not mandatory to carry out the analysis and a comparative study of various filters is 

available as supplementary material. It shows that filtering for high textured materials 

improves the accuracy of the determination of the orientation at the domain boundaries.  

When looking at the four orientation fields, it is rather easy to understand that the medium and 
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high scale layout of such locally parallel textures is much easier to analyze by studying spatial 

orientation statistics. In particular, the use of the rotation invariant feature 𝑅𝐼𝑀𝑂𝐷(𝜌,) is 

required here not only because sample orientation changes from an image to another but also 

because orientation trends change within images due to medium and high scales non 

stationarities especially in disordered materials such as Cfiber and SL.  

In figure 9, 𝑅𝐼𝑀𝑂𝐷(,) is plotted as a function of distance for two angles ( = 0° and 

 = 90°) and for the four materials. The plots confirm the higher anisotropy of materials ReL 

and RL compared with SL and CFiber. In all cases, orientation spatial differences are low for 

very short distances and increase to reach an asymptotic trend for long distances 

corresponding with the twist disorientation 𝛽𝑀𝑂𝐷. This asymptotic trend corresponds to high 

scale orientation variability. Differences can be observed in the rates of convergence towards 

the long range variability, the loss of coherence for ReL being faster than for RL. The twist 

disorientation 𝛽𝑀𝑂𝐷 is also larger for ReL than for RL, respectively 10° and 8.5°, which is 

consistent with the orientation angles determined by selected area electron diffraction as 

shown in table 2. Discrepancies between angles =0° and =90° are also put into light, 

revealing that a preferential anisotropy is observed orthogonally to the fringes, especially for 

material RL. 

 

 

Figure 9: Plot of 𝑅𝐼𝑀𝑂𝐷(,)  as a function of distance , for angles =0° and  90°. Left: 

ReL and RL PyCs. Vertical dotted lines correspond to the coherence lengths 𝐿𝑐𝑀𝑂𝐷 and 𝐿𝑎𝑀𝑂𝐷 

and horizontal dotted line to the average disorientation angle 𝛽𝑀𝑂𝐷.  Right: SL PyC and CFiber, 

the black dotted line corresponds to the maximum difference of orientation distance for the 

CFiber. 



20 
 

 

Coherence lengths 𝐿𝑐𝑀𝑂𝐷  and 𝐿𝑎𝑀𝑂𝐷  are determined for both PyCs, 𝐿𝑐𝑀𝑂𝐷 = 0.99 𝑛𝑚  and 

𝐿𝑎𝑀𝑂𝐷 = 0.51 𝑛𝑚 for ReL and 𝐿𝑐𝑀𝑂𝐷 = 1.27 𝑛𝑚 and 𝐿𝑎𝑀𝑂𝐷 = 0.55 𝑛𝑚 for RL. These results 

show that domains are larger for the RL PyC with a more columnar shape as compared with 

the ReL PyC. It is of interest to compare these results with the coherence lengths 𝐿𝑐 and 𝐿𝑎 

determined by X-ray diffraction; results are given table 2 (Standard deviations, given in table 

2 have been estimated through the analysis of a set of ten HRTEM images, thus taking into 

account the spatial variation inside the sample). It appears that coherence lengths obtained by 

XRD and by MOD are larger for RL than for ReL, however 𝐿𝑐 and 𝐿𝑎 obtained by MOD are 

smaller than the values determined by XRD and the ratio 𝐿𝑐  / 𝐿𝑎  is larger for the MOD 

method than for XRD results. These points will be further discussed below.  

 

Table 2: coherence lengths determined using the Mean Orientation Difference; average 

orientation angle 𝛽𝑀𝑂𝐷 and coherence lengths determined by XRD for both PyCs. Provided 

uncertainties for the RIMOD method are the standard deviations estimated over 10 images. 

 

While the curves in figure 9 differentiate between longitudinal and transverse coherence, it is 

also interesting to figure out how anisotropy varies according to angle . This can be done by 

plotting 𝑅𝐼𝑀𝑂𝐷 iso-levels using a radar representation. The graphs in figure 10 represent the 

distance ρ (in nanometers) at which feature 𝑅𝐼𝑀𝑂𝐷 reaches a value of θ degrees. θ is taken in 

the range 1° – 9° for materials ReL and RL and in the range 0° – 35° for materials SL and 

CFiber. In the case of ReL and RL, a stronger spatial coherence is observed when  = 90° i.e. 

orthogonally to the fringes, which suggest that the stacks of near parallel fringes are non 

isotropic, their height being larger than their width. These iso-level curves also make easier 

the comparison between samples. For instance, it appears that ReL and RL have similar 

anisotropy at very short distances whatever the angle , but differ at larger distance, as RL 

seems to have bigger fringe stacks than ReL. 
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Figure 10: 𝑅𝐼𝑀𝑂𝐷 iso-level polar graphs computed on the four carbon images (ReL, RL, SL 

and CFiber, from top left to bottom right). The graphs represent the distance ρ (in nanometers) 

at which feature 𝑅𝐼𝑀𝑂𝐷 reaches a value of θ degrees. θ is taken in the range 1° – 9° for 

materials ReL and RL and in the range 0° – 35° for materials SL and CFiber. 

 

In order to better understand what quantities are really determined by each method we have 

performed a more classical analysis of HRTEM images using a fringe detection method based 

on a level curve tracking algorithm [16]. A zoom of the HRTEM image of RL and the 

corresponding fringes detected are shown fig. 11. 

 

 

Figure 11: zoom of an HRTEM image for the ReL PyC (left) and detected fringes (right). 
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This procedure allows obtaining a distribution of fringe sizes, which are shown at figure 12 

for ReL and RL. It appears that the coherence length 𝐿𝑎𝑀𝑂𝐷  is close to the mode of the 

distribution of fringe lengths while by XRD 𝐿𝑎values are shifted towards the largest fringe 

lengths. Two reasons could explain the larger values obtained by XRD. First, the CarbonXS 

program assumes a Gaussian distribution of stacking sizes whereas real domain size 

distributions are usually log-normal, leading to an unrealistic mean value. Second, the 

coherence lengths determined by full profile matching XRD methods [34-35] are length 

weighted values (second moment the distribution divided by the first moment) [35], which are 

usually greater than the arithmetic mean; it can be seen in figure 2 that the length weighted 

average for the ReL PyC (𝐿𝐿𝑊 − 𝑅𝑒𝐿) is similar to La(XRD) while the one for the RL PyC is 

slightly smaller than 𝐿𝑎 (3 nm from the fringe length distribution and 4.1 nm from XRD).  

Furthermore it must be underlined that XRD results are averaged over a large volume of 

material while TEM results were obtained on a much small amount and are thus less 

statistically significant.  

 

Figure 12: Fringe length distribution determined for ReL (continuous line) and RL (dotted 

line). Abscissae corresponding to 𝐿𝑎𝑀𝑂𝐷, 𝐿𝑎(XRD) are reported on the diagram as well as the 

length-weighted averages (LLW), calculated from the fringe length distributions. 

Moreover the structural complexity of turbostratic carbons makes their nanostructure deviate 

far from the schematic representation of the BSU (see figure 13) commonly accepted to 

describe the structural parameters determined by HRTEM and XRD.  
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Figure 13: Representation of a basic structural unit of a turbostratic carbon, according to [52], 

L1, L2 and  (twist disorientation angle) obtained by high resolution transmission electron 

microscopy.  𝐿𝑐 (average stack height) and 𝐿𝑎 (average graphene layer extent) are determined 

by X-ray diffraction and are length-weighted averages. 

 

 

Figure 14: From left to right: slice of a model of pyrocarbon according to Leyssale et al. [8], 

projected potential and corresponding simulated HRTEM image. 

 

Indeed, it is only recently that a realistic representation of the atomistic structure of some 

pyrolytic carbons has been proposed [8]. A slice of such a model is shown figure 14 as well as 

the projected electrostatic potential and the corresponding simulated HRTEM image, PyCs 

are made of wrinkled aromatic layers containing 5 and 7 membered rings; these layers are 

turbostratically stacked and bonded together by screw dislocations and sp
3
 atoms. The 

resulting lattice fringe image is similar to a projection of the structure along the viewing 

direction and contains more or less contrasted fringes according to their orientation (tilt 

angle), their extension and overlap through the foil thickness and the presence of defects. 

Thus the structural parameters  𝐿𝑎𝑀𝑂𝐷  and  𝐿𝑐𝑀𝑂𝐷  give an information averaged over the 

perfectly ordered and the defective areas (which are however weighted by the confidence 

factor) and are consequently smaller than the average fringe lengths. Besides, the large 

difference between the 𝐿𝑐𝑀𝑂𝐷/𝐿𝑐𝑀𝑂𝐷 (~2) ratio and the 𝐿𝑐(𝑋𝑅𝐷)/𝐿𝑎(𝑋𝑅𝐷) ratio (~1) could be due 

to the projection effect. Indeed, the thin slice thickness is estimated to be in the range 10-30 
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nm and thus a large number of domains are superimposed along the thickness. Larger models 

(>10 nm) with known domain sizes will be needed to confirm this hypothesis. 

Concerning materials CFiber and SL, the rates of convergence are especially noteworthy. From 

figure 9 it can be observed that at short distances, the loss of coherence is slightly faster for 

SL (below  = 1 nm) but slows down afterwards and becomes slower than for material CFiber 

that reaches its largest value (𝑅𝐼𝑀𝑂𝐷(,) = 45.6°) for  = 7.5 𝑛𝑚, at a continuous rate; 

then, more surprisingly, for CFiber, 𝑅𝐼𝑀𝑂𝐷  slightly decreases for larger distances 

(𝑅𝐼𝑀𝑂𝐷(,) = 43.6°  for  = 15 𝑛𝑚 ). This behavior can be explained by the specific 

microstructure of ex-PAN carbon fibers; they are made of a deep entanglement of folded 

sheets of layers, crumpled along the fiber axis, a microstructure fairly similar to the stacking 

of concentric cylinders artificially generated fig. 5. The curvature of the sheets are rather 

homogeneous as can be seen on the HRTEM image, fig. 6, which results in basic structural 

units with a mean curvature radius of roughly 8 nm, clearly visible in the local orientation 

map (fig. 7). The slight decrease of 𝑅𝐼𝑀𝑂𝐷 at larger distances may be due to the parallelism 

between neighboring BSUs which have a ribbon-like shape; however the oscillating feature 

shown in figure 5 is not observed in practice probably because the domains are not perfectly 

cylindrical and have various curvatures and sizes. 

4 Conclusion 
A new method of analysis of the HRTEM images of turbostratic carbons such as pyrocarbons 

or carbon fibers has been proposed. Contrary to standard procedures this method does not 

detect individual fringes but finds their local orientation and look at the spatial correlation 

between orientations. An analysis based on second-order statistics of the orientation field 

allows achieving a quantitative description of the nanostructure: coherence lengths 𝐿𝑎𝑀𝑂𝐷 and 

𝐿𝑐𝑀𝑂𝐷 give the mean dimension of the BSU parallel and perpendicular to the fringes and 

𝛽𝑀𝑂𝐷 is a determination of the mean disorientation of fringes. A more thorough analysis of the 

mean orientation difference plots can give information such as the curvature of the USB and 

the correlation of orientations at large distance. 

The method has been applied to the characterization of two high textured pyrocarbons. The 

results have been compared with some experimental data obtained by X-ray diffraction and 

electron diffraction. All techniques give consistent results and show that the rough laminar 

PyC exhibits larger coherent domains and is more textured at every length scale than the 

regenerative laminar PyC. Moreover the orientation field analysis provides a clear 
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visualization of the defects, evidenced in the HRTEM images of high textured PyCs as line 

defects, perpendicular to the fringes and located at the domain boundaries. This method has 

already been used to validate some atomistic models of pyrocarbons [9] and thus can help in 

the generation of more realistic models. 

The application of the method on two less textured carbons (smooth laminar PyC and ex-PAN 

carbon fiber) showed that it can reveal information at different length scales: at short lengths 

scale (< 2 nm) the extent of domain sizes are revealed, while at larger length scale (> 4 nm) 

information such as the heterogeneity of the sample (SL PyC) or the presence of regularly 

spaced tubular structures (CFiber) are enlightened.  

Future works will focus on two points: first, on a better recognition of the amorphous areas, 

holes and images of lattices planes perpendicular to the electron beam in order to extend the 

method to more complex images such as HRTEM images of soot or activated carbons and 

second, on the determination of domain sizes (𝐿𝑎𝑀𝑂𝐷  , 𝐿𝑐𝑀𝑂𝐷 ) on these less organized 

carbons. 
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