Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media

Abstract : Our purpose in this paper is to present the theoretical analysis of a Multi-Point Flux Approximation method (MPFA method). We start with the derivation of the discrete problem, and then we give a result of existence and uniqueness of a solution for that problem. As in finite element theory, Lagrange interpolation is used to define three classes of continuous and locally polynomial approximate solutions. For analyzing the convergence of these different classes of solutions, the notions of weak and weak-star MPFA approximate solutions are introduced. Their theoretical properties, namely stability and error estimates (in discrete energy norms, L 2 − norm and L ∞ − norm), are investigated. These properties play a key role in the analysis (in terms of error estimates for diverse norms) of different classes of continuous and locally polynomial approximate solutions mentioned above.
Type de document :
Article dans une revue
International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2008, 5 (1), pp.1-40
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01120075
Contributeur : Abdou Njifenjou <>
Soumis le : mercredi 25 février 2015 - 19:47:00
Dernière modification le : mardi 3 mars 2015 - 01:02:49
Document(s) archivé(s) le : mardi 26 mai 2015 - 11:25:46

Fichier

Njif_Kinf_IJFV_2008.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01120075, version 2

Collections

Citation

A Njifenjou, A. J. Kinfack. Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2008, 5 (1), pp.1-40. 〈hal-01120075v2〉

Partager

Métriques

Consultations de la notice

46

Téléchargements de fichiers

61