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FREE BOUNDARY MINIMAL SURFACES IN THE UNIT 3-BALL

ABIGAIL FOLHA, FRANK PACARD, AND TATIANA ZOLOTAREVA

Abstract. In a recent paper A. Fraser and R. Schoen have proved the ex-
istence of free boundary minimal surfaces Σn in B

3 which have genus 0 and
n boundary components, for all n ≥ 3. For large n, we give an independent
construction of Σn and prove the existence of free boundary minimal surfaces
Σ̃n in B

3 which have genus 1 and n boundary components. As n tends to
infinity, the sequence Σn converges to a double copy of the unit horizontal
(open) disk, uniformly on compacts of B

3 while the sequence Σ̃n converges
to a double copy of the unit horizontal (open) punctured disk, uniformly on
compacts of B3 − {0}.

1. Introduction and statement of the result.

In this paper, we are interested in minimal surfaces which are embedded in the
Euclidean 3-dimensional unit open ball B3 and which meet S2, the boundary of
B3, orthogonally. Following [2], we refer to such minimal surfaces as free boundary
minimal surfaces.

Obviously, the horizontal unit disk, which is the intersection of the horizontal
plane passing through the origin with the unit 3-ball, is an example of such free
boundary minimal surface. Moreover, it is the only free boundary solution of topo-
logical disk type, [7]. Let s∗ > 0 be the solution of

s∗ tanh s∗ = 1.

The so called critical catenoid parameterized by

(s, θ) 7→
1

s∗ cosh s∗
(cosh s cos θ, cosh s sin θ, s) ,

is another example of such a free boundary minimal surface. A. Fraser and M. Li
conjectured that it is the only free boundary minimal surface of topological annulus
type [1].

Free boundary minimal surfaces arise as critical points of the area among surfaces
embedded in the unit 3-ball whose boundaries lie on S2 but are free to vary on S2.
The fact that the area is critical for variations of the boundary of the surface
which are tangent to S2 translates into the fact that the minimal surface meets S2

orthogonally.

In a recent paper [3], A. Fraser and R. Schoen have proved the existence of
free boundary minimal surfaces Σn in B3 which have genus 0 and n boundary
components, for all n ≥ 3. For large n, these surfaces can be understood as the
connected sum of two nearby parallel horizontal disks joined by n boundary bridges
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which are close to scaled down copies of half catenoids obtained by diving a catenoid
which vertical axis with a plane containing it, which are arranged periodically along
the unit horizontal great circle of S2. Furthermore, as n tends to infinity, these free
boundary minimal surfaces converge on compact subsets of B3 to the horizontal
unit disk taken with multiplicity two.

We give here another independent construction of Σn, for n large enough. Our
proof is very different from the proof of A. Fraser and R. Schoen and is more in the
spirit of the proof of the existence of minimal surfaces in S3 by doubling the Clifford
torus by N. Kapouleas and S.-D. Yang [4]. We also prove the existence of free
boundary minimal surfaces in B3 which have genus 1 and n boundary components,
for all n large enough.

To state our result precisely, we define Pn to be the regular polygon with n-sides,
which is included in the horizontal plane R2 × {0} and whose vertices are given by

(

cos

(

2πj

n

)

, sin

(

2πj

n

)

, 0

)

∈ R
3, for j = 1, . . . , n.

We define Sn ⊂ O(3) to be the subgroup of isometries of R3 which is generated by
the orthogonal symmetry with respect to the horizontal plane x3 = 0, the symmetry
with respect to coordinate axis Ox1 and the rotations around the vertical axis Ox3
which leave Pn globally invariant.

Our main result reads :

Theorem 1.1. There exists n0 ≥ 0 such that, for each n ≥ n0, there exists a genus
0 free boundary minimal surface Σn and a genus 1 free boundary minimal surface
Σ̃n which are both embedded in B3 and meet S2 orthogonally along n closed curves.

Both surfaces are invariant under the action of the elements of Sn and, as n
tends to infinity, the sequence Σn converges to a double copy of the unit horizontal
(open) disk, uniformly on compacts of B3 while the sequence Σ̃n converges to a
double copy of the unit horizontal (open) punctured disk, uniformly on compacts of
B3 − {0}.

Even though we do not have a proof of this fact, it is very likely that (up to
the action of an isometry of R3), the surfaces Σn coincide with the surfaces already

constructed by R. Schoen and A. Fraser. In contrast, the existence of Σ̃n is new and
does not follow from the results in [3]. The parameterization of the free boundary
minimal surfaces we construct is not explicit, nevertheless our construction being
based on small perturbations of explicitly designed surfaces, it has the advantage
to give a rather precise description of the surfaces Σn and Σ̃n. Naturally, the
main drawback is that the existence of the free boundary minimal surfaces is only
guaranteed when n, the number of boundary curves, is large enough.

2. Plan of the paper.

In section 3, we study the mean curvature of surfaces embedded in B3 which are
graphs over the horizontal diskD2×{0}. In section 4 we analyse harmonic functions
which are defined on the unit punctured disk in the Euclidean 2-plane and have
log type singularities at the punctures. In section 5 for every n ∈ N large enough
we construct a family of genus 0 surfaces Sn and a family of genus 1 surfaces S̃n

embedded in B3 which are approximate solutions to the minimal surface equation,



FREE BOUNDARY MINIMAL SURFACES IN THE UNIT 3-BALL 3

meet the unit sphere S2 orthogonally and have n boundary components. In section
6 we consider all embedded surfaces in B3 which are close to Sn and S̃n and meet
the sphere S2 orthogonally. In section 7 we analyse the linearised mean curvature
operator about Sn and S̃n. Finally, in the last section we explain the Fixed-Point
Theorem argument that allows us for n large enough to deform Sn and S̃n into free
boundary minimal surfaces Σn and Σ̃n satisfying the theorem (1.1).

3. The mean curvature operator for graphs in the unit 3-ball

We are interested in surfaces embedded in B3 which are graphs over the horizon-
tal disk D2×{0}. To define these precisely, we introduce the following parametriza-
tion of the unit ball

X(ψ, φ, x3) :=
1

coshx3 + cosψ

(

sinψ eiφ, sinhx3
)

,

where ψ ∈ (0, π/2), φ ∈ S1 and x3 ∈ R. The horizontal disk D2 × {0} corresponds
to x3 = 0 in this parametrization and the unit sphere S2 corresponds to ψ = π/2.
Also, the leaf x3 = x03 is a constant mean curvature surface (in fact it is a spherical
cap) with mean curvature given by

H = 2 sinhx03,

(we agree that the mean curvature is the sum of the principal curvatures, not the
average) moreover, this leaf meets S2 orthogonally.

In these coordinates, the expression of the Euclidean metric is given by

X∗geucl =
1

(coshx3 + cosψ)2
(

dψ2 + (sinψ)2 dφ2 + dx23
)

.

We consider the coordinate

z =
sinψ

1 + cosψ
eiφ,

which belongs to the unit disk D2 ⊂ C. We then define X by the identity

X (z, x3) = X(ψ, φ, x3),

where z and (ψ, φ) are related as above. Then

X (z, x3) = A(z, x3)(z,B(z) sinhx3),

where the functions B and A and explicitly given by

B(z) =
1

2

(

1 + |z|2
)

, A(z, x3) :=
1

1 +B(z)(coshx3 − 1)
.

In the coordinates z ∈ D2 and x3 ∈ R the expression of the Euclidean metric is
given by

X ∗geucl = A2(z, x3)
(

dz2 +B2(z) dx23
)

.

In the next result, we compute the expression of the mean curvature of the graph
of a function z 7→ u(z) in B3, and by such a graph we mean a surface parametrized
by

z ∈ D2 7→ X (z, u(z)) ∈ B3.

We have the:
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Lemma 3.1. The mean curvature with respect to the metric X ∗geucl of the graph
of the function u, namely the surface parametrized by (z, u(z)), is given by

H(u) =
1

A3(u)B
div

(

A2(u)B2 ∇u
√

1 +B2 |∇u|2

)

+ 2
√

1 +B2 |∇u|2 sinhu,

where by definition A(u) = A(·, u). In this expression, the metric used to compute
the gradient of u, the divergence and the norm of ∇u is the Euclidean metric on
D2.

Proof. The area form of the surface parametrized by z = x1 + i x2 7→ (z, u(z)) is
given by

da := A2(u)
√

1 +B2 |∇u|2 dx1 dx2,

and hence the area functional is given by

Area(u) :=

∫∫

D2

A2(u)
√

1 +B2 |∇u|2 dx1 dx2.

The differential of the area functional at u is given by

DArea|u (v) =

∫∫

D2

(

−
A2(u)B2 ∇u · ∇v
√

1 +B2 |∇u|2
+ 2A(u) ∂x3

A(u)
√

1 +B2|∇u|2 v

)

dx1 dx2.

But
∂x3

A = −A2B sinhx3,

and hence we conclude that

DArea|u (v) =

−

∫∫

D2

(

div

(

A2(u)B2∇u
√

1 +B2 |∇u|2

)

+ 2A3(u)B
√

1 +B2 |∇u|2 sinhu

)

v dx1 dx2.

To conclude, observe that the unit normal vector to the surface parametrized by
z 7→ X (z, u(z)) is given by

N :=
1

A(u)

1
√

1 +B2 |∇u|2

(

−B∇u +
1

B
∂x3

)

,

and hence

geucl(N, ∂x3
) =

A(u)B
√

1 +B2 |∇u|2
,

so that
geucl(N, ∂x3

) da = A3(u)B,

and the result follows from the first variation of the area formula

DArea|u(v) = −

∫∫

D2

H(u) geucl(N, ∂x3
) v da.

This completes the proof of the result. �

Using the above Lemma, we obtain the expression of the linearised mean curva-
ture operator about u = 0. It reads

(3.1) Lgr v = ∆(Bv) = ∆

(

1 + |z|2

2
v

)

,

where ∆ is the (flat) Laplacian on D2.
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Lemma 3.2. Take a change of variables in D2 : z = r eiφ, r ∈ (0, 1), φ ∈ S1 and
a function u ∈ C1(D2), such that ∂u

∂r

∣

∣

r=1
= 0. Then the graph of u in B3 meets the

sphere S2 orthogonally at the boundary.

Proof. The surface parametrized by (r, φ) 7→ X (r eiφ, u(r, φ)) is embedded in B3

and meets ∂B3 at r = 1. The result follows from the fact that the tangent vector

Tr(1) = ∂r X (r eiφ, u(r, φ))
∣

∣

r=1
=

1

cosh2 u(1, φ)

(

eiφ, sinhu(1, φ)
)

,

is collinear to the normal vector

NS =
1

coshu(1, φ)

(

eiφ, sinhu(1, φ)
)

,

to the sphere S2 at the point X (eiφ, u(1, φ)). �

4. Harmonic functions with singularities defined on the unit disk

Take some number n ∈ N. Our goal is to construct a graph in B3 which has
bounded mean curvature, is invariant under the transformation z 7→ z̄ and the
rotations by 2π

n and is close to a half-catenoid in small neighbourhoods of the n-th
roots of unity

zm = e
2πim

n ∈ ∂D2, m = 1, . . . n,

(and, in the case of the second construction, to a catenoid in a small neighbourhood
of z = 0).

The parametrisation of a standard catenoid C in R
3 is

Xcat(s, θ) =
(

cosh s eiφ, s
)

, (s, φ) ∈ R× S1.

It may be divided into two pieces C±, which can be parametrized by

z ∈ C \D2 7→
(

z, ± log |z| ∓ log 2 +O(|z|−2)
)

, as |z| → ∞.

We would like to find a function Γn, which satisfies

(4.2)

{

Lgr Γn = 0 in D2 (D2 \ {0})

∂rΓn = 0 on ∂D2 \ {z1, . . . , zn}
,

and which has logarithmic singularities at z = zm (and z = 0). Notice that the
operator Lgr in the unit disk with Neumann boundary data has a kernel which
consists of the coordinate functions x1, x2. This corresponds to tilting the unit disk
D2 × {0} in B3. The kernel can be eliminated by asking Γn to be invariant under
the action of a group of rotations around the vertical axis.

Notice also that the constant functions are not in the kernel of Lgr : by moving
the disk in the vertical direction in the cylinder D2 × R we do not get a minimal
but a constant mean curvature surface in B3.

Take a function Gn, such that Gn(z
n) = B(z) Γn(z). Then the problem (4.2) is

equivalent to

(4.3)

{

∆Gn = 0 in D2 (D2 \ {0})

∂rGn − 1
nGn = 0 on ∂D2 \ {1}.
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We construct Gn explicitly. For all integer n ≥ 2, we put

(4.4) Gn(z) := −
n

2
+ Re





∞
∑

j=1

n zj

nj − 1



 .

Writing

1

nj − 1
=

∞
∑

k=0

1

(nj)k+1
,

we see that also have the expression

(4.5) Gn(z) := −
n

2
+ Re

(

∞
∑

k=0

Hk(z)

nk

)

,

where, for all k ∈ N, the function Hk is given by

(4.6) Hk(z) :=

∞
∑

j=1

zj

jk+1
.

Observe, and this will be useful, that

(4.7) H0(z) = − ln(1− z).

Obviously, Gn is harmonic in the open unit disk. Making use of (4.6), we see
that, for all k ≥ 1,

∂r (ReHk) = ReHk−1,

on ∂D2, while it follows from (4.7) that

∂r (ReH0) =
1

2
,

again on ∂D2 − {1}. Therefore, we conclude from (4.5) that

n ∂rGn −Gn = 0,

on ∂D2.

For all integer n ≥ 1, we define in D2 − {0}, the function G̃n by

(4.8) G̃n(z) := −n− log |z|.

Again G̃n is harmonic in D2 − {0} and we also have

n ∂rG̃n − G̃n = 0,

on ∂D2.

To complete this paragraph, we define

Γn(z) :=
1

B(z)
Gn(z

n) and Γ̃n(z) :=
1

B(z)
G̃n(z

n).

By construction, Lgr Γn = 0 in D2 and ∂rΓn = 0 on ∂D2, away from the n-th roots

of unity ; while Lgr Γ̃n = 0 in D2 − {0} and ∂rΓ̃n = 0 on ∂D2.
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4.1. Matching Green’s function. Take two parameters 0 < ε < 1 and 0 < ε̃ < 1
and consider a catenoid Cε̃ in R3, parametrized by

Xcat
ε̃ : (s, φ) ∈ R× S1 7→

(

ε̃ cosh s eiφ, ε̃s
)

,

and n half-catenoids Cε,m, m = 1, . . . , n

Xcat
ε,m : (s, θ) ∈ R×

[

π

2
,
3π

2

]

7→
(

ε cosh s eiθ + zm, εs
)

,

centered at the n-th roots of unity zm. In a neighbourhood of z = 0 (z = zm), we
can take a change of variables

z = ε̃ cosh s eiφ, (z = zm+ε cosh s eiθ), φ ∈ S1, (θ ∈ [−θε + 2πm/n, θε + 2πm/n])

s ∈ [−sε̃, 0] and s ∈ [0, sε̃], (s ∈ [−sε, 0] and s ∈ [0, sε]),

for certain parameters sε̃, sε ∈ (0,+∞) and θε ∈ (0, π/2). We can parametrize the
lower and the upper parts of Cε̃ and Cε,m as graphs

z 7→
(

z,±Gcat
ε̃

)

, z 7→
(

z,±Gcat
ε,m

)

,

where in some small neighbourhoods of z = 0 (z = zm),

Gcat
ε̃ (z) = ε̃ log

ε̃

2
− ε̃ log |z|+O

(

ε̃3/|z|2
)

,

Gcat
ε,m(z) = ε log

ε

2
− ε log |z − zm|+O

(

ε3/|z − zm|2
)

Our goal is to find positive parameters τ and τ̃ and a connection between ε and ε̃,
such that the function

z 7→ τ Gn(z
n) + τ̃ G̃n(z

n),

would be close to Gcat
ε̃ in a neighbourhood of z = 0 and to Gcat

ε,m in a neighbourhood
of z = zm. We denote

fn(z) :=

∞
∑

k=0

Hk(z
n)

nk
=

∞
∑

k=0

1

nk

∞
∑

j=1

znj

jk+1
,

and remind that Gn(z
n) = −n

2 + Re fn(z). It is easy to verify the function fn(z)
satisfies

∂fn
∂z

(z) = −
d

dz
log(1 − zn) +

1

z
fn(z),

which yields

d

dz

(

fn
z

)

=
nzn−2

zn − 1
.
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We can write

nzn−2

zn − 1
−

1

zm(z − zm)
=

nzn−2zm −
n−1
∑

k=0

zn−1−kzkm

zm(zn − 1)
=

n−1
∑

k=0

(

−zn−1−kzkm + zmz
n−2
)

zm(zn − 1)
=

zn−2(zm − z) + zm
n−1
∑

k=2

zn−1−k
(

zk−1 − zk−1
m

)

zm(z − zm)
n−1
∑

k=0

zn−1−kzkm

=

−zn−2 + zm
n−1
∑

k=2

zn−1−k
k−2
∑

l=0

zk−2−lzlm

zm
n−1
∑

k=0

zn−1−kzkm

:= hn(z).

The function hn(z) is continuous in a small neighbourhood of z = zm and

|hn(zm)| ≤ c n,

for a constant c which does not depend on n. So, we have

d

dz

(

fn
z

)

+
1

zm(z − zm)
= hn(z),

which yields that in a neighbourhood of z = zm

fn(z)

z
+

1

zm
log(z − zm) =

1

zm
lim

z→zm
(fn(z) + log(z − zm)) +

∫ zm

z

hn(z)dz,

where the integral is taken along the segment of the straight line passing from z
to zm and by log we mean the principal value of complex logarithm defined in the
unit disc deprived of a segment of a straight line which doesn’t pass thought any
of the n-th roots of unity. We have

∞
∑

k=1

1

nk
Hk(z

n
m) =

∞
∑

k=1

∞
∑

j=1

1

nk jk+1
≤
π2

6n
.

Moreover,

Re lim
z→zm

(− log(1− zn) + log(z − zm)) = − log |n zn−1
m | = − logn.

So, in the neighbourhood of z = zm, we have

Gn(z
n) = −

n

2
+ c(n) + log |z − zm|+O(|z − zm| log |z − zm|) +O(n|z − zm|),

where |c(n)| ≤ c log n for a constant c which does not depend on n and

τ Gn(z
n)+ τ̃ G̃n(z

n) =



















−n (τ̃ + τ/2)− τ̃n log |z|+O(τ |z|n), as |z| → 0

−n (τ̃ + τ/2) + τ c(n)− τ log |z − zm|+

O(τ |z − zm| log |z − zm|) +O(τn|z − zm|), as |z − zm| → 0

.

We should take τ = ε and nτ̃ = ε̃. Moreover, we should have

−ε̃−
εn

2
= ε̃ log

ε̃

2
and − ε̃−

εn

2
+ ε c(n) = ε log

ε

2
.
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This gives us the relation

log
ε

ε̃
+
ε̃

ε
−
n

2

ε

ε̃
= −

n

2
+ c(n) + 1,

and
ε

ε̃
= g−1

n (−
n

2
+ c(n) + 1) =: d(n),

where

gn(t) : t ∈ (0,+∞) 7→ log t−
n

2
t+

1

t
∈ (−∞,∞),

is an everywhere decreasing function. Finally, we find

ε̃ = 2 e−1−n
2
d(n) and ε = d(n) ε̃.

(In the case, where we do not have a singularity at z = 0 we just need to take
ε = e−

n
2
+c(n)). We obtain for all β ∈ (0, 1)

(4.9) τ Gn(z
n) = ε log

ε

2|z − zm|
+O(ε1−β |z − zm|), as |z − zm| → 0

τ Gn(z
n) + τ̃ G̃n(z) =











ε̃ log
ε̃

2|z|
+O(ε̃1−β |z|n), as |z| → 0

ε log
ε

2|z − zm|
+O(ε1−β |z − zm|), as |z − zm| → 0

Finally, we put Gn(z) = τ Gn(z
n)/B and G̃n(z) =

(

τ̃ G̃n(z
n) + τ Gn(z

n)
)

/B and

G̃n(z) =











2 ε̃ log
ε̃

2|z|
+O(ε̃1−β |z|2), as |z| → 0

ε log
ε

2|z − zm|
+O(ε1−β |z − zm|), as |z − zm| → 0

Remark 4.1. We can now explain why our construction works only for large n.
On one hand, in order to match the graph of the Green’s function G̃n with catenoids
we need to truncate the cantenoids far enough and scale them by a small enough
factor. On the other hand, in the neighbourhood of singularities the constant term
of G̃n depends on the number of singularities n and, as constant functions are not in
the kernel of the linearised mean curvature operator, this gives the correspondence
between the scaling factors of the catenoids and n.

5. Catenoidal bridges and necks

In this section we explain the construction of the surface Sn, invariant under
the action of the group Sn, which has bounded mean curvature, meets the unit
sphere S2 orthogonally at the boundary and is close to two horizontal disks ”glued
together” with the help of ”catenoidal bridges” in the neighbourhood the n-th roots
of unity. We will also denote S̃n the genus 1 surface, obtained from Sn by attaching
a ”catenoidal neck” at z = 0. We will explain now what we mean by ”catenoidal
bridges” and ”catenoidal neck”.
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5.1. Catenoidal bridges. One of the possible constructions would be to ”glue”
the graph X (z,Gn(z)) together with minimal stripes obtained by intersecting eu-
clidean catenoids centered at z = zm with the unit sphere. The difficulty of this
approach is that those stripes would not meet the sphere orthogonally. We prefer
to find a way to put half-catenoids in the unit sphere in the orthogonal way loosing
the minimality condition.

Remark 5.1. We describe below the construction of the surface S̃n. The construc-
tion of the surface Sn can be obtained by replacing the function G̃n by Gn which
has the same expansion in the terms of ε at z = zm, taking into account that the
relation between the parameters n and ε changes.

We use the notation C− for the half-plane {z ∈ C |Re(z) < 0}. For m = 1, . . . , n
consider the conformal mappings

λm : C− −→ D2, λm(ζ) = e
2iπm

n
1 + ζ

1− ζ
.

These mappings transform a half-disk in the C− centered at ζ = 0 and of radius
ρ < 1 to a domain obtained by the intersection of the unit disk D2 with a disk of

radius 2ρ
1−ρ2 and a center at 1+ρ2

1−ρ2 e
2iπm

n . Let (ζ = ξ1 + iξ2, ξ3) be the coordinates in

C− × R, then we define the mapping

Λm : C− × R −→ D2 × R, Λm(ζ, ξ3) = (λm(ζ), 2 ξ3) .

Consider the half-catenoid Cε/2 in C− × R, parametrized by

Xcat
ε/2 : (σ, θ) ∈ R×

[

π

2
,
3π

2

]

7→
(ε

2
coshσ eiθ,

ε

2
σ
)

In the regions, where σ > 0 or σ < 0 we can take the change of variables

ζ =
ρ

2
eiθ =

ε

2
coshσ eiθ, θ ∈

[

π

2
,
3π

2

]

and, having in mind that the function G̃n defined in D̄2 \ {z1, . . . , zn} is invariant
under rotations by the angle 2π

n , consider a vertical graph over C−:

(ρ, θ) 7→

(

ρ

2
eiθ,

1

2
Ḡn(ρ, θ)

)

, where Ḡn(ρ, θ) = G̃n(λm(ρ/2 eiθ))

In the neighbourhood of ρ = 0, we have |λm(ρ/2 eiθ) − zm| = ρ + O(ρ2). So,

using the expansion (4.9) for the function G̃n in the neighbourhood of z = zm, we
obtain a similar expansion for Ḡn in the neighbourhood of 0:

Ḡn(ρ, θ) = ε log
ε

2ρ
+O(ε1−βρ), ∀β ∈ (0, 1).

At the same time the lower and the upper part of the Cε/2 can be seen as graphs
of the functions

±Gcat
ε/2(ρ) = ±

ε

2
log

ε

2ρ
+O(ε3/ρ2).

Now take a function Ῡ which is defined in the neighbourhood of |ζ| = ε by

Ῡ(ρ, θ) = (1− η̄ε(ρ))
1

2
Ḡn(ρ, θ) + η̄ε(ρ)G

cat
ε/2(ρ),
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where η̄ε is a cut-off function, such that

η̄ε ≡ 1, for ε < ρ < 1/2 ε2/3, η̄ε ≡ 0, for ρ > ε2/3.

Using this, we can parametrize the surface Sn in the region

Ωm
cat := λm

{

ε/2 coshσ eiθ : ε coshσ < 1/2 ε2/3, θ ∈ [π/2, 3π/2]
}

,

by (σ, θ) 7→ X ◦ Λm

(

ε/2 coshσ eiθ, ε2σ
)

and as a bi-graph

X {(z, 2Υm(z)) ∪ (z,−2Υm(z))} ,

for z ∈ Ωm
glu := λm

{

ρ/2 eiθ : 1/2 ε2/3 < ρ < 2 ε2/3, θ ∈ [π/2, 3π/2]
}

,

where Υm(z) is a function, such that Υm(λm(ρ/2 eiθ)) = Ῡ(ρ, θ).

Remark 5.2. Orthogonality at the boundary

In a neighbourhood of its m-th component of the boundary the surface S̃n (Sn)
can be seen as the image by the mapping X ◦ Λm of a surface (which we denote
S̄n) contained in the half-space C− × R. Consider a foliation of the half-space by
horizontal half-planes. It is clear that every leaf of this foliation is orthogonal to
∂C− × R. Thus, the normal to ∂C− × R at a point is tangent to the horizontal
leaf passing through this point. So, if there existed a tangent vector field along S̄n,
horizontal at ∂S̄n, then it would have to be collinear to the normal to ∂C− × R.

On the other hand, the image of the the foliation by horizontal half-planes by
the mapping X ◦ Λm gives a foliation of the unit ball by spherical caps which are
orthogonal to S2 at the boundary. The horizontal vector field tangent to ∂C− ×R

is sent by this mapping to a vector field tangent to the sphere and to a spherical cap
leaf. The result follows from the fact that the restriction of X ◦ Λm to horizontal
half-planes is conformal.

Finally in our case, the existence of the horizontal tangent vector field follows
from the fact that ∂θX

cat
ε/2 is horizontal and that ∂θḠn = ∂θG

cat
ε/2 = ∂θη̄ε = 0 at

θ ∈ {π/2, 3π/2}.

Let H denote the mean curvature of the surface S̃n.

Proposition 5.1. There exists a constant c which does not depend on ε such that
in the region

Ωm
cat = λm

{

ε/2 coshσ eiθ : ε coshσ < 1/2 ε2/3, θ ∈ [π/2, 3π/2]
}

,

we have
∣

∣H(λm(ε/2 coshσ eiθ)
∣

∣ ≤
c

coshσ

Proof. The proof consists of calculating the mean curvature of Cε/2 with respect
to the ambient metric

(X ◦ Λm)∗geucl(ζ, ξ3) = A2(Λm(ζ, ξ3))
(

dζ2 +B2(Λm(ζ, ξ3))dξ
2
3

)

=
4

[|1− ζ|2 + (1 + |ζ|2)(cosh(2ξ3)− 1)]
2

(

dζ2 + (1 + |ζ|2)2 dξ23
)

= a2(ζ, ξ3)
(

dζ2 + b2(ζ) dξ23
)

=: gm(ζ, ξ3)
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where a(ζ, ξ3) =
2

|1− ζ|2 + (1 + |ζ|2)(cosh(2ξ3)− 1)
and b(ζ) = 1 + |ζ|2.

Let ∇ε denote the Levi-Civita connection corresponding to this metric. We have
the following estimates for the Christoffel symbols in a neighborhood of (ζ, ξ3) =
(0, 0):

Γ1
11 = −Γ1

22 = Γ2
12 = 1

a
∂a
∂ξ1

= O(1), Γ2
11 = −Γ2

22 = −Γ1
12 = 1

a
∂a
∂ξ2

= O(1)

Γ1
13 = Γ2

23 = Γ3
33 = 1

a
∂a
∂ξ3

= O(ξ3), Γ3
11 = Γ3

22 = − 1
ab2

∂a
∂ξ3

= O(ξ3),

Γ1
33 = −( b

2

a
∂a
∂ξ1

+ b ∂b
∂ξ1

) = O(1), Γ2
33 = −( b

2

a
∂a
∂ξ2

+ b ∂b
∂ξ2

) = O(1),

Γ3
13 = 1

a
∂a
∂ξ1

+ 1
b

∂b
∂ξ1

= O(1), Γ3
23 = 1

a
∂a
∂ξ2

+ 1
b

∂b
∂ξ2

= O(1)

Γ1
23 = Γ2

13 = Γ3
12 = 0

Using |ζ| = ε/2 coshσ, ξ3 = ε/2 σ, and

∇ε
∂p
∂q = ∂p ∂qX

cat
ε/2 +

[

∂pX
cat
ε/2

]i [

∂qX
cat
ε/2

]j

Γk
ij ∂k,

where ∂p and ∂q stand for ∂σ or ∂θ and ∂k = ∂ξk , k = 1, 2, 3. We get

∣

∣

∣

∣

[

∇ε
∂p
∂q − ∂p ∂qX

cat
ε/2

]i

(σ, θ)

∣

∣

∣

∣

≤ c ε2 cosh2 σ, i = 1, 2

∣

∣

∣

∣

[

∇ε
∂p
∂q − ∂p ∂qX

cat
ε/2

]3

(σ, θ)

∣

∣

∣

∣

≤ c ε2 coshσ.

The unit normal to Cε/2 with respect to the metric gm is

N (σ, θ) =
1

a
√

b2

cosh2 σ
+ tanh2 σ

(

−
b

coshσ
eiθ,

1

b
tanhσ

)

.

Using the the expansions for a and b in the neighbourhood of 0 and fact that the
third coordinate of the vector ∂p ∂qX

cat
ε/2 is zero for all p and q we get the following

expression for the second fundamental form :

hε(σ, θ) = ε(dσ2 − dφ2) + hε(σ, θ),

where
∣

∣

∣(hε)pq (σ, θ)
∣

∣

∣ ≤ c ε2 coshσ. On the other hand, we can write the expansion

of the metric induced on Cε/2 from gm

gε(σ, θ) = ε2 cosh2 σ(dσ2 + dφ2) + gε(σ, θ),

where
∣

∣

∣(gε)pq (σ, θ)
∣

∣

∣ ≤ cε3 cosh3 σ.

Finally,
∣

∣H(ε/2 coshσ eiθ)
∣

∣ =
∣

∣tr
(

g−1
ε hε

)

(σ, θ)
∣

∣ ≤
c

coshσ
.

�
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5.2. Catenoidal neck at z = 0. In a small neighborhood of z = ε̃ take the change
of variables z = r eiφ, φ ∈ S1. Then, in the neighbourhood of z = 0, we have

B(r eiφ) = B(r) =
1

2
+O(r2).

We remind that that τ Gn(z
n)+ τ̃ G̃n(z

n) = G̃nB is a function whose graph is close

to the lower part of the euclidean catenoid scaled a factor ε̃. Then, the graph of G̃n

is close to the lower part of the surface C̃ε̃, parametrized by

X̃cat
ε̃ : (s, φ) ∈ R× S1 7→ (ε̃ cosh s eiφ, 2 ε̃s).

Let us define a cut-off function r 7→ η0ε̃(r), such that

η0ε̃(r) ≡ 1 for r ∈
(

0, 1/2 ε̃1/2
)

, η0ε̃(r) ≡ 0 for r > 2 ε̃1/2.

Taking the change of variables: ε̃ cosh s eiφ = z = r eiφ, for s > 0 or s < 0 we can
parametrize the lower and the upper part of C̃ε̃ as vertical graphs

z 7→ (z,± 2Gcat
ε̃ ),

where

Gcat
ε̃ (r) =

ε̃

2
log

(

ε̃

2r

)

+O

(

ε̃3

r2

)

.

We define the function

Υ̃ : D̄2 \ {0, z1, . . . , zm} −→ R,

Υ̃(r, φ) = (1− η0ε̃(r)) G̃n(r e
iφ) + 2 η0ε̃ G

cat
ε (r),

and parametrized S̃n in the region

Ω0
cat :=

{

ε̃ cosh s eiφ : ε̃ cosh s < 1/2 ε̃1/2, φ ∈ S1
}

,

by (s, φ) 7→ X ◦ X̃cat
ε̃ (s, φ) and as a bi-graph :

(r, φ) 7→ X
{

(r eiφ, Υ̃(r, φ)) ∪ (r eiφ,−Υ̃(r, φ))
}

,

for z ∈ Ω0
glu :=

{

r eiφ : 1/2 ε̃1/2 < r < 2 ε̃1/2, φ ∈ S1
}

.

We use the notations :

B(s) = B(ε̃ cosh s) =
1

2
(1 + ε̃2 cosh2 s) and

A(s) = A(ε̃ cosh s, 2 ε̃s) =
1

1 +B(s) (cosh(2 ε̃s)− 1)
.

Proposition 5.2. There exists a constant c which does not depend on ε such that
in the region

Ω0
cat =

{

ε̃ cosh s eiφ : ε̃ cosh s < 1/2 ε̃1/2, φ ∈ S1
}

,

the mean curvature of the surface S̃n satisfies
∣

∣H(ε̃ cosh s eiφ)
∣

∣ ≤ c ε̃1−β, ∀β ∈ (0, 1).
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Proof. As in the proposition 5.1 we would like to calculate the mean curvature of
C̃ε with respect to the ambient metric

X ∗geucl(z, x3) = A2(z, x3)
(

dz2 +B2(z)dx23
)

=: g̃(z, x3).

We denote by ∇̃ε̃ the Levi-Civita connection corresponding to this metric. Then,
in the neighborhood of (z, x3) = (0, 0) the Cristoffel symbols satisfy :

Γ̃1
11 = −Γ̃1

22 = Γ̃2
12 = 1

A
∂A
∂x1

= O(|z|x3), Γ̃2
11 = −Γ̃2

22 = −Γ̃1
12 = 1

A
∂A
∂x2

= O(|z|x3)

Γ̃1
13 = Γ̃2

23 = Γ̃3
33 = 1

A
∂A
∂x3

= O(x3), Γ̃3
11 = Γ̃3

22 = − 1
AB2

∂A
∂x3

= O(x3),

Γ̃1
33 = −(B

2

A
∂A
∂x1

+B ∂B
∂x1

) = O(|z|), Γ̃2
33 = −(B

2

A
∂A
∂x2

+B ∂B
∂x2

) = O(|z|),

Γ̃3
13 = 1

A
∂A
∂x1

+ 1
B

∂B
∂x1

= O(|z|), Γ̃3
23 = 1

A
∂A
∂x2

+ 1
B

∂B
∂x2

= O(|z|)

Γ̃1
23 = Γ̃2

13 = Γ̃3
12 = 0

Using |z| = ε̃ cosh s, x3 = 2 ε̃s, and

∇̃ε̃
∂p
∂q = ∂p ∂q X̃

cat
ε̃ + [∂pX̃

cat
ε̃ ]i[∂qX̃

cat
ε̃ ]j Γ̃k

ij∂k,

where ∂p and ∂q stand for ∂s or ∂t, we get

∣

∣

∣
[∇̃ε̃

∂p
∂q − ∂p ∂q X̃

cat
ε̃ ]i(s, θ)

∣

∣

∣
≤ c ε̃3 cosh3 s, i = 1, 2

∣

∣

∣[∇̃ε̃
∂p
∂q − ∂p ∂q X̃

cat
ε̃ ]3(s, θ)

∣

∣

∣ ≤ c ε̃3−β cosh2 s, ∀β ∈ (0, 1).

The normal vector field to C̃ε̃ with respect to the metric X ∗geucl is

Ñ (s, φ) =
1

A
√

4B2

cosh2 s
+ tanh2 s

(

−
2B

cosh s
eiφ,

1

B
tanh s

)

.

As the third coordinate of the vector ∂p ∂q X̃
cat
ε̃ is zero for all p and q, we get

the following expression for the second fundamental form :

h̃ε̃(s, φ) = ε̃ (ds2 − dφ2) + h̃ε̃(s, φ),

where

∣

∣

∣

∣

(

h̃ε̃

)

pq
(s, φ)

∣

∣

∣

∣

≤ c ε̃3−β cosh2 s. On the other hand the metric induced on Cε̃

from X ∗geucl can be written as

g̃ε̃(s, φ) = ε̃2 cosh2 s(ds2 + dφ2) + g̃ε̃(s, φ),

where
∣

∣

∣(g̃ε̃)pq (s, φ)
∣

∣

∣ ≤ c ε̃4−β cosh2 s. Finally,

∣

∣H(ε̃ cosh s eiφ)
∣

∣ =
∣

∣

∣tr
(

g̃−1
ε̃ h̃ε̃

)

(s, φ)
∣

∣

∣ ≤ c ε̃1−β , ∀β ∈ (0, 1).

�
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5.3. The graph region. Away from the catenoidal bridges and the catenoidal
neck, that is in the region

Ωgr :=
{

z ∈ D2 : 2 ε̃1/2 < |z| < 1
}

\
n
∪

m=1
λm

{

ζ ∈ C− : |ζ| < 2 ε2/3
}

,

we parametrize the surface S̃n as a bi-graph

X
{

(z, G̃n(z)) ∪ (z,−G̃n(z))
}

.

Proposition 5.3. There exists a constant c which does not depend on ε, such that
in the region

Ωgr ∪ Ω0
glu

n
∪

m=1
Ωm

glu

=
{

z ∈ D2 : 1/2 ε̃ < |z| < 1
}

\
n
∪

m=1
λm

{

ζ ∈ C− : |ζ| < 1/2 ε2/3
}

,

the mean curvature H of S̃n satisfies

(5.10) |H(z)| ≤ c ε3−β

(

1

|z|4
+

n
∑

m=1

1

|z − zm|4

)

, ∀β ∈ (0, 1).

Proof. According to the lemma (3.1), the mean curvature of the graphX (z, u(z))) , u ∈
C2(D2) satisfies :

H(u) =
1

A3(u)B
div

(

A2(u)B2 ∇u
√

1 +B2 |∇u|2

)

+ 2
√

1 +B2 |∇u|2 sinhu

=
2

A2(u)

B∇u∇A(u)
√

1 +B2|∇u|2
+

2

A(u)

∇B∇u
√

1 +B2|∇u|2
+

1

A(u)

B∆u
√

1 +B2|∇u|2

−
1

A(u)

B2∇B∇u|∇u|2

(1 +B2|∇u|2)3/2
−

1

2A(u)

B3Hessu(∇u,∇u)

(1 +B2|∇u|2)3/2
+ 2
√

1 +B2|∇u|2 sinhu

= ∆(Bu) + P3(u,∇u,∇
2u)

where P3 is a bounded nonlinear function which can be decomposed in entire series
in u and the components of ∇u and ∇2u for ‖u‖C1 ≤ 1 with terms of lowest order 3
and where the components of ∇u appear with an even power and the components
of ∇2u only with the power 1.

In the region Ωgr the surface S̃n is parametrized as a graph of one of the functions

± G̃n, where

B(z) G̃n(z) = −
εn

2
+ εRe(fn(z)) + ε̃ log |z|+ ε̃,
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Studying the behaviour of the function fn(z) one can easily verify that

∣

∣

∣G̃n(z)
∣

∣

∣ ≤ cε

(

| log ε|+ |log |z||+
n
∑

m=1

|log |z − zm||

)

,

∣

∣

∣∇G̃n(z)
∣

∣

∣ ≤ cε

(

1

|z|
+

n
∑

m=1

1

|z − zm|

)

,

∣

∣

∣∇2G̃n(z)
∣

∣

∣ ≤ cε

(

1

|z|2
+

n
∑

m=1

1

|z − zm|2

)

As ∆
(

BG̃n

)

= 0, analysing carefully the terms in P3(G̃n,∇G̃n,∇2G̃n) one can see

that (5.10) is true in Ωgr.

In the regions Ωm
glu the surface S̃n is parametrized as a graph of one of the

functions ±2Υm, where

Υm(λm(ρ/2 eiθ)) = Ῡ(ρ, θ) = (1− η̄ε(ρ))
1

2
Ḡn(ρ, θ) + η̄ε(ρ)G

cat
ε/2(ρ).

In the neighbourhood of ζ = 0 we have:

∇z =
1

2
∇ζ(1 +O(|ζ|)), ∇2

z =
1

4
∇2

ζ(1 +O(|ζ|)).

Using that
∣

∣λm(ρ/2 eiθ)− zm
∣

∣ = ρ+O(ρ2) , we obtain

Ḡn ∼ Gcat
ε/2 = O(ε log ε), Ḡn −Gcat

ε/2 = O(ε1−βρ),

∣

∣∇Ḡn

∣

∣ ∼
∣

∣

∣∇Gcat
ε/2

∣

∣

∣ = O

(

ε

ρ

)

∣

∣

∣∇(Ḡn −Gcat
ε/2)

∣

∣

∣ = O(ε1−β),

∣

∣∇2Ḡn

∣

∣ ∼
∣

∣

∣∇2Gcat
ε/2

∣

∣

∣ = O

(

ε

ρ2

)

,
∣

∣

∣∇2(Ḡn +Gcat
ε/2)

∣

∣

∣ = O(ε1/3−β)

We introduce the function

B̄(ρ, θ) = B
(

λm

(ρ

2
eiθ
))

=
1 +

∣

∣

(

1 + ρ
2 e

iθ
)

/
(

1− ρ
2 e

iθ
)∣

∣

2
= 1 +O(ρ).

We have

∂ρB̄ ∼ ∂2ρB ∼ ∂ρ∂θB̄ = O(1), ∂θB̄ ∼ ∂2θ B̄ = O(ρ).

On the other hand, the cut-off function η̄ε satisfies

η̄ε = O(1),
dη̄ε
dρ

= O

(

1

ρ

)

,
d2η̄ε
dρ2

= O

(

1

ρ2

)

.

Using that

∇Ῡ =
1

2
(1 − η̄ε)∇Ḡn + η̄ε∇G

cat
ε/2 +∇η̄ε

(

Gcat
ε/2 −

1

2
Ḡn

)

,
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∇2Ῡ =
1

2
(1− η̄ε)∇

2Ḡn + η̄ε∇
2Gcat

ε/2

+ 2∇η̄ε

(

∇

(

Gcat
ε/2 −

1

2
Ḡn

))t

+∇2η̄e

(

Gcat
ε/2 −

1

2
Ḡn

)

,

we get the estimates

∣

∣∇Ῡ
∣

∣ = O

(

ε1−β

ρ

)

,
∣

∣∇2Ῡ
∣

∣ = O

(

ε1−β

ρ2

)

,

and

P3(Υ) = O

(

ε3−β

ρ4

)

= O(ε1/3−β),

for all β ∈ (0, 1). We also have

∆z =
1

4
|1− ζ2|∆ζ ,

where ∆z and ∆ζ are Laplacian operators in coordinates z and ζ. So,

∆
(

B̄ Gcat
ε/2

)

= Gε/2 ∆B̄ + 2∇B̄∇Gcat
ε/2 + B̄∆Gcat

ε/2 = O

(

ε3

ρ4

)

.

Putting this calculations together, we check that in Ωm
glu the mean curvature of S̃n

satisfies

H = O
(

ε1/3−β
)

, ∀β ∈ (0, 1).

An identical proof shows that in Ω0
glu we have H = O(ε1−β). �

6. Perturbations of S̃n

Recall that the surface S̃n can be seen as an image by the mapping X of a surface
S̃n (constructed in the previous paragraph) which is contained in the unit cylinder
D2 × R. We would like to calculate the mean curvature of small perturbations of
S̃n and to this end we calculate the mean curvature of small perturbations of the
surface S̃n with respect to the metric g̃ = X∗geucl.

Let, as before, Ñ denote the unit normal vector field to C̃ε̃ with respect to the
metric

g̃(z, x3) = A2(z, x3)
(

dz2 +B2(z) dx23
)

.

and take a function w ∈ C2(S̃n) small enough, invariant under rotations by the angle
2π
n and the transformation z 7→ z̄. We denote S̃n(w) the surface parametrized by

(s, φ) ∈ R× S1 7→ X̃cat
ε̃ (s, φ) + w(s, φ) Ñ (s, φ),

in region Ωcat
0 . Furthermore, in the region

Ωgr ∪ Ω0
glu =

{

z ∈ D2 : 1/2 ε̃1/2 < |z| < 1
}

\
n
∪

m=1
λm

{

ζ ∈ C− : |ζ| < 2 ε2/3
}

,

we parametrize Sn(w) by

z 7→
(

z,± Υ̃(z)
)

± w(z) Ξ̃ε̃(z), where Ξ̃ε̃ = (1− η0ε̃) ∂x3
+ η0ε̃

1

2
Ñ ,

where η0ε̃(|z|) is the cut-off function defined in the paragraph 6.2. Notice that in
Ω0

glu

‖Ξ̃ε̃‖g̃ ∼ ‖∂x3
‖g̃ =

1

2
+O(ε̃).
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In the neighbourhood of the n-th root of unity zm the surface S̃n can be seen
as an image by the mapping Λm of a surface S̄n contained in C− × R. We put

w̄ = w ◦ λm ∈ C2(S̄n) and parametrize S̃n(w) in the region Ωm
cat by

(σ, θ) ∈ R× [π/2, 3π/2] 7→ Λm

(

Xcat
ε/2(σ, θ) +

a

2
w̄N (σ, θ)

)

,

where N is the unit normal vector field to the half-catenoid Cε/2 with respect to
the metric

gm(ζ, ξ3) = (Λm ◦ X )∗geucl = a2(ζ, ξ3)
(

dζ2 + b2(ζ) dξ23
)

.

In the regions Ωm
glu, we parametrize S̃n(w) by

ζ 7→ Λm

((

ζ,± Ῡ(ζ)
)

± w̄(z) Ξ̄ε(ζ)
)

, where Ξ̄ε̃ =
1

2
((1 − η̄ε) ∂ξ3 + η̄ε aN ) ,

and η̄ε(|ζ|) be the cut-off function, introduced in the paragraph 6.1. Notice that in
Ωm

glu, we have

‖Ξε̃‖gm ∼
1

2
‖∂ξ3‖gm = 1 +O(ε4/3).

Remark 6.1. We multiply the vector field N by the factor a in order to make the
vector field

∂θ (aN ) (ζ) |θ∈{π
2
, 3π

2 }
,

horizontal. In this case, the condition sufficient for S̃n(w) to be orthogonal to the
unit sphere is

∂θ (w̄)|θ∈{π
2
, 3π

2 }
= 0.

Notation 6.1. Let Ω denote a coordinate domain we work in. From now on, when
we don’t need a more detailed information, we use the following notations :

• L for any bounded second order linear differential operator defined in Ω (in
other words Lw is a linear combination of w and the components of ∇w
and ∇2w with coefficients which are bounded functions in Ω, where ∇ and
∇2 are the gradient and the Hessian in the chosen coordinates).

• Qk(w,∇w,∇2w), k ∈ N, for any nonlinear function, which can be decom-
posed in entire series with terms of lowest order k, and where the com-
ponents of ∇2w appear only with power 1. We will also use the notation
Qk(w) for brevity.

• Let γ ∈ C∞(Ω) be a positive real function. We denote Lγ w and Qk,γ(w)
functions which share the same properties as Lw and Qk(w) with the only
difference that the components of the gradient and the Hessian of w are
calculated with respect to the metric γ−2 geucl.

For example, if we work in the coordinates (r, φ) and take γ = r, then
Lγ will be a linear differential operator in r2∂2r , ∂

2
φ, r∂

2
rφ, r∂r and ∂φ.

6.1. Mean curvature of the perturbed graph. In the region

Ωgr = {z ∈ D2 : 2 ε̃1/2 < |z| < 1} \
n
∪

m=1
λm {ζ ∈ C− : |ζ| < 2 ε2/3},

we suppose that ‖w‖C2(Ωgr) < 1. Then, the mean curvature of S̃n(w) satisfies

H(w) = H(0) + ∆(B w) + P3

(

G̃n + w
)

.
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Analysing carefully the the terms of P3 and the expansion of the function G̃n, we
get
(6.11)

H(w) = H(0) + ∆(Bw)

+max

{

∣

∣

∣∇G̃n

∣

∣

∣

2

,
∣

∣

∣∇2G̃n

∣

∣

∣

∣

∣

∣∇G̃n

∣

∣

∣ , G̃2
n,
∣

∣

∣G̃n

∣

∣

∣

∣

∣

∣∇2G̃n

∣

∣

∣ ,
∣

∣

∣G̃n

∣

∣

∣

∣

∣

∣∇G̃n

∣

∣

∣

}

Lw

+max
{∣

∣

∣G̃n

∣

∣

∣ ,
∣

∣

∣∇G̃n

∣

∣

∣ ,
∣

∣

∣∇2G̃n

∣

∣

∣

}

Q2(w) +Q3(w)

We introduce the weight functions

γ0(z) = |z|, γm(z) = |z − zm|, m = 1, . . . , n and γ(z) = |z|
n

Π
m=1

|z − zm|.

Then, (using the relation between ε and ε̃) (6.11) can be written as

H(w) = H(0) + ∆(Bw) +
ε2−β

γ4
Lγ
z w +

ε1−β

γ4
Q2,γ

z (w) +
ε−β

γ4
Q3,γ

z (w).

for all β ∈ (0, 1). (We use the lower index to indicate the coordinate system we
work in). On the other hand, in the neighbourhood of z = 0 we have

H(w) = H(0) + ∆(B w) +
ε̃2

|z|4
Lγ0

z w +
ε̃

|z|4
Q2,γ0

z (w) +
1

|z|4
Q3,γ0

z (w),

and in the neighbourhood of z = zm

H(w) = H(0)+∆(Bw)+
ε2−β

|z − zm|4
Lγm
z w+

ε1−β

|z − zm|4
Q2,γm

z (w)+
ε−β

|z − zm|4
Q3,γm

z (w).

for all β ∈ (0, 1) (where we used
1

γ
<

n

γm
in the neighborhood of zm).

6.2. Mean curvature of the perturbed neck. In the region

Ω0
cat = {z ∈ D2 : ε̃ < |z| < 1/2 ε̃1/2},

the surface S̃n(w) is parametrized as a normal graph around C̃ε̃ for the function
u = 1/2w. We suppose that

(6.12)
∥

∥

∥

w

ε̃ cosh s

∥

∥

∥

C2((−s∗,s∗)×S1)
≤ 1, ε̃ cosh s∗ = 1/2 ε̃1/2

The tangent space to S̃n(w) is spanned by the vector fields

T̃s(u) = T̃s + ∂su Ñ + u ∂sÑ , T̃φ(u) = T̃φ + ∂φu Ñ + u ∂φÑ ,

and let us choose functions ν,κ, µ ∈ C∞(R), such that ν(0) = κ(0) = µ(0) = 0 and

Ñ (u) = Ñ + ν(u) Ñ + κ(u)Ts + µ(u) T̃φ,

is the normal unit vector field to S̃(w). We have
(6.13)

g̃(u)
(

Ñ (u), T̃s(u)
)

= 0, g̃(u)
(

Ñ (u), T̃φ(u)
)

= 0, g̃(u)
(

Ñ (u), Ñ (u)
)

= 1.

where g̃(u) is the scalar product corresponding to the metric g̃ taken along S̃(w).
Using the expression for g̃, we get

g̃(u)(s, φ)−g̃(s, φ) =
(

ε̃1−β Ls,φ u+Q2
s,φ(u)

)

g̃(s, φ)+

(

ε̃ Ls,φ u+
1

cosh2 s
Q2

s,φ(u)

)

dx23,



20 ABIGAIL FOLHA, FRANK PACARD, AND TATIANA ZOLOTAREVA

and from (6.13), we deduce that

ν(u) = ε̃1−β Ls,φ u+Q2
s,φ(u)

κ(u) = −
1

ε̃2 cosh2 s
∂su+

1

cosh2 s
Ls,φ u+

ε̃1−β

ε̃2 cosh2 s
Q2

s,φ(u)

µ(u) = −
1

ε̃2 cosh2 s
∂φu+

1

cosh2 s
Ls,φ u+

ε̃1−β

ε̃2 cosh2 s
Q2

s,φ(u),

where we used the fact that dx23(T̃s, Ñ ) and dx23(T̃φ, Ñ ) can be bounded by a
constant times ε̃ and the estimate

∣

∣

∣g̃(T̃p, T̃q)− ε̃2 cosh2 s δpq

∣

∣

∣ ≤ c ε3,

where T̃p and T̃q stand for T̃s or T̃φ. We can write the normal vector field to S̃(w)
in the form

Ñ (u) = Ñ −
1

ε̃2 cosh2 s

(

∂su T̃s + ∂φu T̃φ

)

+
[

ε̃1−β Ls,φ u+Q2
s,φ(u)

]⊥
+

[

ε̃

cosh s
Ls,φ u+

ε̃−β

cosh s
Q2

s,φ(u)

]T

where [∗]⊥ and [∗∗]T denote a normal and a tangent vector fields of norm ∗ and ∗∗.

We denote ∇̃ε̃(u) and Γ̃k
ij(u) the Levi-Civita connection and the Cristoffel sym-

bols corresponding to the metric g̃ and taken along the surface S̃(w). Then, we
have

Γ̃k
ij(u) = Γ̃k

ij + Ls,φ u+Q2
s,φ(u),

∇̃ε̃
∂p
∂q(u) = ∇̃ε̃

∂p
∂q + ∂p∂qu Ñ + ∂pu ∂qÑ + ∂qu ∂pÑ + u ∂p ∂qÑ

+ ε̃2 cosh2 sLs,φ u+ ε̃ cosh sQ2
s,φ(u)

where ∂p and ∂q stand for ∂φ or ∂s. This allows us to find the second fundamental
form of the surface Sn(w) :

(

h̃ε̃(u)
)

pq
= g̃(u)

(

∇ε̃
∂p
∂q(u), Ñ (u)

)

.

Note that
∣

∣

∣

∣

g̃(∂p Ñ , ∂q Ñ )−
1

cosh2 s
δpq

∣

∣

∣

∣

≤ c ε̃.

Putting all the estimates together, we obtain

h̃ε̃(u)(s, φ) = h̃ε(s, φ) +

(

∂2su ∂s∂θu
∂s∂φu ∂2φu

)

−
u

cosh2 s

(

1 0
0 1

)

+ tanh s

(

−∂su ∂φu
∂φu ∂su

)

+

(

ε̃2−β Ls,φ u+ ε̃2 cosh2 sLs,φ u+
1

ε̃ cosh2 s
Q2

s,φ(u)

)

h̃0(s, φ)
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where h̃0 is a bounded symmetric 2-form, which does not depend on ε̃. On the other
hand, the first fundamental form g̃ε̃(u), which corresponds to the metric induced
on Sn(w) from g̃, satisfies

g̃ε̃(u) = g̃ε̃ − 2u h̃ε̃ +Q2
s,φ(u).

This yields

det(g̃ε̃(u))

det(g̃ε̃)
g̃−1
ε̃ (u) = g̃−1

ε̃ +
2εu

ε̃4 cosh4 s

(

1 0
0 −1

)

+

(

1

ε̃ cosh4 s
Ls,φu+

1

ε̃4 cosh4 s
Q2

s,φ(u)

)

g̃0

where g̃0 is a bounded 2-form. Going back to w = 2 u, we obtain
(6.14)

H(w) = H(0) +
1

2

1

ε̃2 cosh2 s

(

∂2s + ∂2φ +
2

cosh s

)

w

+

(

1 +
ε̃−β

cosh2 s

)

Ls,φw +
1

ε̃3 cosh4 s
Q2

s,φ(w) +
1

ε̃4 cosh4 s
Q3

s,φ(w).

6.3. Mean curvature of the perturbed bridges. In the region

Ωm
cat = λm{ζ ∈ C− : ε < |ζ| < 1/2 ε2/3} ,

the surface S̃n(w) is parametrized as the image by the mapping Λm of the normal
graph about Cε for the function ū = a w̄, scaled by the factor 1

2 . We suppose that

(6.15)
∥

∥

∥

w̄

ε coshσ

∥

∥

∥

C2((−σ∗,σ∗)×[π/2,3π/2])
≤ 1, ε coshσ∗ = 1/2 e2/3

Our goal is to calculate the mean curvature of S(w̄) with respect to the metric

gm = a2(dζ2 + b2dξ23).

The computation is very similar to the one we have done in the previous paragraph
and we only need to change several estimates. The scalar product along S(w̄)
satisfies

gm(ū)(σ, θ)−gm(σ, θ) =
(

Lσ,θ ū+Q2
σ,θ(ū)

)

gm(σ, θ)+

(

εLσ,θ ū+
1

cosh2 σ
Q2

σ,θ(ū)

)

dτ2.

Then, the normal vector field to Sn(w̄) can be written as

N (ū) = N −
1

ε2 cosh2 σ
(∂σū Tσ + ∂θū Tθ)

+
[

Lσ,θ ū+Q2
σ,θ(ū)

]⊥
+

[

ε

coshσ
Lσ,θ ū+

1

ε coshσ
Q2

σ,θ(ū)

]T

,

and the components of the Levi-Civita connection are

∇ε
∂α
∂β(ū) = ∇ε

∂α
∂β + ∂α∂β ūN + ∂αū ∂βN + ∂β ū ∂αN + ū ∂α ∂βN

+ ε coshσ Lσ,θ ū+Q2
σ,θ(ū).
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The first and the second fundamental forms satisfy :

det(gε(ū))

det(gε)
g−1
ε (ū) = g−1

ε +
εū

ε4 cosh4 σ

(

1 0
0 −1

)

+

(

1

ε cosh4 σ
Lσ,θ ū+

1

ε4 cosh4 σ
Q2

σ,θ(ū)

)

g0,

hε(ū)(σ, θ) = hε(σ, θ) +

(

∂2σū ∂σ∂θū
∂σ∂θū ∂2θ ū

)

−
ū

cosh2 σ

(

1 0
0 1

)

+ tanhσ

(

−∂σū ∂θū
∂θū ∂σū

)

+

(

ε coshσ Lσ,θ ū+
1

ε cosh2 σ
Q2

σ,θ(ū)

)

h0(σ, θ),

where h0 and g0 are bounded symmetric 2-forms which do not depend on ε. Finally,
going back to w̄ = 1

a ū, we get

(6.16)

H(w̄) = H(0) +
1

ε2 cosh2 σ

(

∂2σ + ∂2θ +
2

cosh2 σ

)

w̄

+
1

ε coshσ
Lσ,θ w̄ +

1

ε3 cosh4 σ
Q2

σ,θ(w̄) +
1

ε4 cosh4 σ
Q3

σ,θ(w̄).

6.4. Mean curvature of the perturbed ”gluing regions”. LetM be a smooth
hypersurface in a smooth Riemannian manifold endowed with a metric g. Take w
a small smooth function and V1 and V2 two smooth vector fields on M . Let Hi(w)
denote the mean curvature of the hypersurfaces obtained by perturbation of M in
the direction Vi, i = 1, 2. We have the following result:

Lemma 6.1. The following relation holds

DH2
∣

∣

w=0
(v) = DH1

∣

∣

w=0
(τ v) + g(∇MH(0), T )

where τ =
|V ⊥

2 |

|V ⊥
1

|
, and T = V T

2 − τ V T
1 , and where V ⊥

i and V T
i denote the orthogonal

projections of Vi on the normal and the tangent bundle of M .

Proof. This lemma is a simple generalisation of the result proven in [9] where the
case when one of the vector fields Vi is a unit normal to M is treated. The proof
consists of applying the implicit function theorem to the equation

p+ t V1(p) = q + s V2(q), p, q ∈M, t, s ∈ R,

expressing locally p and t as functions of q and s:

p = Φ(q, s) and t = Ψ(q, s),

with Φ(q, 0) = q and Ψ(q, 0) = 0. We obtain then

∂sΨ(·, 0)[V1]
⊥ = [V2]

⊥ and ∂sΦ(·, 0) = [V2]
T − ∂sΨ(·, s)[V1]

T .

Moreover, we have

DH1
∣

∣

w=0
(∂sΨ(·, 0) v) +∇H(0) · ∂sΦ v = DH2

∣

∣

w=0
(v),

and the result follows. �
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Now let us return to the surface S̃n. Making use of the proof of the proposition
3.5, one can see that in the region Ω0

glu the components of ∇g̃H are bounded by a

constant times ε̃1/2−β . Moreover, using the expression obtained in the lemma 3.1
for the normal vector field to the surface parametrized as a graph of the function
Υ̃, we get

[Ξ̃ε̃]
N/[∂x3

]N = 1 +O(ε̃) and [Ξ̃ε̃]
T ∼ [∂̃x3

]T = O(ε̃).

Therefore, lemma (6.1) with V1 = ∂x3
and V2 = Ξ̃ε̃ yields

H(w) = H(0) + ∆(Bw) + Lγ0

z w + ε̃−1Q2,γ0

z (w) + ε̃−2Q3,γ0

z .

in Ωglu0 . Similarly, in Ωm
glu taking V1 = ∂ξ3 and V2 = Ξ̄ε, and using the fact that

the components of the gradient of H are bounded by a constant times ε−1/3−β and
the fact that

[Ξ̄ε]
N/[∂ξ3 ]

N = 1 +O(ε4/3) and [Ξ̄ε]
T ∼ [∂̃ξ3 ]

T = O(ε4/3),

we get

H(w) = H(0)+∆(Bw)+ε−2/3−β Lγm
z w+ε−5/3−β Q2,γm

z (w)+ε−8/3−β Q3,γm
z (w),

for all positive β ∈ (0, 1).

7. Linear analysis in the puncture disk

We would like to analyse the Laplace operator subject to the Robin boundary
data:

(7.17)

{

∆w = f in D2 \ {0} (or D2)

∂rw − w = 0 on S1 \ {z1, . . . , zn}

where f is a given function whose regularity and properties will be stated shortly. In
what follows we suppose that we work in the domainD2\{0}. The case of the entire
open disk D2 can be treated in an analogous manner with certain simplifications.

First of all, we take f even with respect to the angular variable and, for a
given n ≥ 2, invariant under rotations by the angle 2π

n . With this assumption,
the operator associated to (7.17) does not have any bounded kernel and hence, the

solvability of (7.17) follows from classical arguments. For example, if f ∈ C0,α(D2)

we get the existence of w ∈ C2,α(D2) solution w of (7.17). Moreover,

|w‖C2,α(D2) ≤ C
(

‖w‖C0(D2) + ‖f‖C0,α(D2)

)

We would like to understand what happens if we allow f to have singularities at 0
and/or zm, m = 1, . . . , n.

We define the weighted spaces we will work in. As before we set

γ(z) = |z|
n

Π
m=1

|z − zm|,

and we assume that we are given ν ∈ R. We say that a function u ∈ L∞
loc(D

2)
belongs to the space L∞

ν (D2) if

‖γ−νu‖L∞(D2) <∞.
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Let us use the notationD2
∗ for the open punctured discD2\{0}. The space Ck,α

ν (D2
∗)

is defined to be the space of functions u ∈ Ck,α
loc (D

2
∗) for which the following norm

is finite
‖u‖Ck,α

ν (D2
∗)

:= ‖γ−ν u‖Ck,α(D∗,γ−2 geucl).

Observe that, on the right hand side, we do not use the Euclidean metric to
calculate the gradient of a function but rather a singular metric γ−2 geucl. As a
consequence, a function u belongs to Ck,α

ν (D2
∗) if

sup
z∈D2

∗

∣

∣γ−ν u
∣

∣+

k
∑

i=1

sup
z∈D2

∗

∣

∣γ−ν+i∇iu
∣

∣+

sup
z,z′∈D2

∗

{

|γ−ν+k+α(z)∇ku(z)− γ−ν+k+α(z′)∇ku(z′)|

|z − z′|α

}

<∞

Like in the section 4, instead of the problem (7.17), we can consider an equivalent

problem defined in D2 \ {0, 1}. Take the change of variables z 7→ zn and notice
that

|z|2 ∆(z) = n2 |z|2n ∆(zn).

We take a function F in D2 \ {0}, such that

F (zn) =
1

n2
|z|2−2nf(z).

Consider the problem:

(7.18)











∆W = F in D2 \ {0}

∂rW −
1

n
W = 0 on S1 \ {1}

We define the space L∞
ν0,ν1(D

2) as the space of functions U ∈ L∞
loc(D

2) for which

‖|z|−ν0 |z − 1|−ν1 U‖L∞(D2) <∞.

Notice, if we take f ∈ L∞
ν−2(D

2) , then F ∈ L∞
ν/n−2,ν−2(D

2) and

‖F‖L∞
ν/n−2,ν−2

(D2) =
1

n2
‖f‖L∞

ν−2
(D2).

Proposition 7.1. Assume that ν ∈ (0, 1). Then, there exists a constant C > 0
and, for all n ≥ 2, for all F , such that |z|−ν/n+2 F ∈ L∞(D2), there exist a unique
function Ψ0 and a unique constant c∗0, such that W0 := Ψ0 + n c∗0 is a solution to
(7.18) and

‖ |z|−ν/nΨ0 ‖L∞(D2) + |c∗0| ≤ C ‖ |z|−ν/n+2 F ‖L∞(D2
∗)
.

Proof. First, let us assume that F does not depend on the angular variable φ. In
this case, (7.18) reduces to a second order ordinary differential equation which can
be solved explicitly.

Ψrad
0 (r) =

∫ r

0

1

s

∫ s

0

t F (t) dt ds, W rad
0 = Ψrad

0 + n c∗0

c∗0 = −

∫ 1

0

s F (s) ds+
1

n

∫ r

0

1

s

∫ s

0

t F (t) dt ds
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With little work, one checks that the result is indeed correct in this spacial case.

Furthermore, we claim that, if we restrict our attention to the space of functions
for which

∫

S1

F (reiφ) r dφ = 0

for all r ∈ (0, 1), then there exists a function Wmean
0 such that

‖|z|−ν/nWmean
0 ‖L∞(D2) ≤ C ‖|z|−ν/n+2F‖L∞(D2)

for a constant C independent of n. We construct Wmean
0 as a limit of solutions to

the Poisson’s equation in annulus-type domains with mixed boundary date.

More precisely, take ǫ ∈ (0, 1) and let us denote Aǫ the annulus D2 \D2(ǫ). For
a fixed n let Wǫ,n be the solution to the problem

(7.19)

{

∆Wǫ,n = F in Aǫ,

∂rWǫ,n − 1
nWǫ,n = 0 on S1, Wǫ,n = 0 on S1(ǫ).

There exists a constant C(ǫ, n) which depends on ǫ and n and such that

‖Wǫ,n‖L∞(Aǫ) ≤ C(ǫ, n) ‖F‖L∞(Aǫ)

Changing the constant C(ǫ, n), we can rewrite this as follows

(7.20) ‖|z|−ν/nWǫ,n‖L∞(Aǫ) ≤ C(ǫ, n) ‖|z|−ν/n+2F‖L∞(Aǫ)

If the constant C(ǫ, n) = C(n) didn’t depend on ǫ, then for every ǫ0 ∈ (0, 1), and
for all ǫ < ǫ0 we would have

‖Wǫ,n‖L∞(Aε0/2) ≤ C(n) ‖|z|−ν/n+2F‖L∞(D2
∗)
.

Then, by elliptic regularity theory, changing the constant C(n) if necessary, we
would have

‖∇Wǫ,n‖L∞(Aǫ0 )
≤ C(n) ‖|z|−ν/n+2F‖L∞(D2

∗)

Thus, when ǫ tends to 0, the sequence Wǫ,n would admit a subsequence converging
on compact sets of D2

∗ to a function Wn, a solution of (7.18) for a fixed n, such
that

‖|z|−ν/nWn‖L∞(D2) ≤ C(n) ‖|z|−ν/n+2F‖L∞(D2)

The fact that the constant C(ε, n) doesn’t depend on ǫ can be proven by an
argument by contradiction. We suppose, that there exists a sequence of parameters
ǫj and a sequence of points zj such that

‖|z|−ν/nWj,n‖L∞(Aj) ≤ 1, Wj,n(zj) = |zj |
ν/n,

and ∆Wj,n = Fj,n, ‖|z|2−ν/nFj,n‖L∞(Aj) →
j→∞

0

where Wj,n :=
1

C(ǫj , n)
Wǫj ,n, Fj,n :=

1

C(ǫj , n)
F and Aj = Aǫj .

We suppose first that the sequence zj converges to a point z∞ ∈ D2
∗. We denote

Wj,n(z) =Wj,n (|zj| z) |zj|
−ν/n,

then, for every j, we have

Wj,n (zj/|zj|) = 1.



26 ABIGAIL FOLHA, FRANK PACARD, AND TATIANA ZOLOTAREVA

The sequence Wj,n admits a subsequence converging on compact sets to a function
Wn which is a solution to

{

∆Wn = 0 in D2
∗

∂rWn − 1
nWn = 0 on S1

.

Moreover, we have |Wn(z)| ≤ |z|ν/n and Wn

(

z∞
|z∞|

)

= 1. Using the fact that Wn

has no radial part and that the problem (7.18) has no bounded kernel, we get a
contradiction.

When the sequence of points zj tends to 0 at the same time as
|zj |
ǫj

→
j→∞

0 we

obtain a sequence of functions Wj,n, which admits a subsequence converging on
compact sets to a function Wn which is a solution to the problem

∆Wn = 0, in R
2 \ {0}, |Wn| ≤ c |z|ν/n,

which implies Wn ≡ 0 and contradicts the fact that Wj,n

(

zj
|zj |

)

= 1 for all j.

It remains to deal with the case when zj →
j→∞

0 and
|zj |
ǫj

→
j→∞

a, where a is a

constant strictly greater than 1. In this case Wn,j admits a subsequence converging
on compact sets to a function Wn, which is a solution to

{

∆Wn = 0 in R2 \D2(a)

Wn = 0 on S1(a)

and such that |Wn| ≤ c |z|ν . Once again, this implies Wn ≡ 0 and gives a contra-
diction.

Finally, the case when zj →
j→∞

0 and
|zj|
ǫj

→
j→∞

1 doesn’t happen. For every j we

have
{

∆Wj,n = Fj,n in D2(2ǫj) \D2 (ǫj)

Wj,n = 0 on S1 (ǫj)

Moreover,

|Fj,n| ≤ ǫ
ν/n−2
j and |Wj,n| ≤ ǫ

ν/n
j .

Then in the subsets of D2(2ǫj) \D2 (ǫj) we have |∇Wj,n| ≤ c ǫ
ν/n−1
j . This implies

that in the neighbourhood of |z| = ǫj, we have

|Wj,n| ≤ C ǫ
ν/n−1
j (|z| − ǫj) .

At z = zj this yields
|zj|
ǫj

− 1 ≥ C, which is not possible starting from a certain j.

Similarly, we can prove that the constant C(n) in (7.20) does not depend on n.

If it were not the case we could define a sequence of function W̃n and a sequence
of points zn, such that W̃n (zn/|zn|) = 1. Then W̃n would admit a subsequence

converging on compact sets to a function W̃ , which is harmonic in a unit disk and
has homogeneous Neumann boundary data. Using that

∫

D2 W̃ dx1 dx2 = 0, we get
the contradiction.

�
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Let us fix a cut-off function χ defined in the unit disk D2 which is identically
equal to 1 in a neighbourhood of z = 1 and to 0 in a neighbourhood of z = 0. We
define deficiency spaces

Dn = span{n} and Dχ = span{χ}

Proposition 7.2. Assume that ν ∈ (0, 1). Then, there exists a constant C > 0
and, for all n ≥ 2, for all F ∈ L∞

ν/n−2,ν−2(D
2) there exist a unique function

Ψ ∈ L∞
ν/n,ν(D

2) and unique constants c∗0 and c∗1, such that W := Ψ + n c∗0 + c∗1 χ

is a solution to (7.18) and such that

‖W‖L∞
ν/n,ν

(D2)⊕Dn⊕Dχ
< C ‖F‖L∞

ν/n−2,ν−2
(D2)

Proof. We take the conformal mapping

λ : C− −→ D2, λ(ζ) =
1 + ζ

1− ζ
.

which sends a half-disk in C− centered at 0 and of radius ρ ∈ (0, 1) to the intersec-

tion of the unit disk D2 with the disk of radius rρ = 2ρ
1−ρ2 centered at cρ = 1+ 2ρ2

1−ρ2 .

For example, for ρ = 1
3 , we get r 1

3
= 3

4 and c 1
3
= 5

4 and for a = 1
5 , we get

r 1
5
= 5

12 and c 1
5
= 13

12 .

We define a cut-off function χ̄ ∈ C∞(R2), such that

χ̄(ζ) = χ̄(|ζ|), χ̄ ≡ 0 for |ζ| ≥ 1/3 and χ̄ ≡ 1 for |ζ| ≤ 1/5

and put χ(z) = χ̄
(

|λ−1(z)|
)

. Then, we have ∂rχ|r=1 = 0 and

χ(z) ≡ 0 for |z − 5/4| ≥ 3/4 and χ ≡ 1 for |z − 13/12| ≤ 5/12,

We decompose

F (z) = F0(z) + F1(z) = (1 − χ(z))F (z) + χ(z)F (z).

Then, we have

‖ |z|−ν/n+2F0 ‖L∞(D2) ≤ ‖F‖L∞
ν/n−2,ν−2

(D2),

‖ |z − 1|−ν+2F1 ‖L∞(D2) ≤ ‖F‖L∞
ν/n−2,ν−2

(D2)

We define F (ζ) = F (λ(ζ)). Remark that

∆z =
|1− ζ|2

4
∆ζ ,

and consider the problem


















∆W 1 = 4
|1−ζ|2 F 1(ζ) in C− ∩D2

∗(1/3)

∂ξ1 W 1 = 0 on ∂C− ∩D2
∗(1/3),

W 1 = 0 on C− ∩ ∂D2
∗(1/3)

.

We extend F 1 by symmetry to D2
∗(1/3) and consider the problem

(7.21)







∆W 1 = F̂1 in D2
∗(1/3)

W 1 = 0 on S1(1/3)
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where F̂1 = 4
|1−ζ|2 F 1(ζ). Automatically, the restriction of W 1 to C− ∩ D2

∗(1/3)

satisfies ∂ξ1W 1 = 0 at ξ1 = 0.

The existence and the properties of W 1 are obtained in the same way as the
existence and the properties of W0 in the proposition (7.1). We suppose first that

the function F̂1 doesn’t depend on the angular variable and depends only on |ζ| = ρ.
Then, the function

Ψ
rad

1 (ρ) =

∫ ρ

0

1

s

∫ s

0

t F̂1(t) dt ds, W
rad

1 = Ψ
rad

1 (ρ) + c∗1,

c∗1 = −

∫ 1/3

0

1

s

∫ s

0

t F̂1(t) dt ds

satisfies (7.21) and using that ‖ |ζ|−ν+2 F̂ ‖L∞(D2(1/3)) ≤ ‖F‖L∞
ν/n−2,ν−2

(D2), we get

‖ |ζ|−ν Ψ1 ‖L∞(D2) + |c∗1| ≤ C ‖F‖L∞
ν/n−2,ν−2

(D2).

On the other hand, if
∫

S1

F̂1(ρ, θ) ρ dθ = 0, for all ρ ∈ (0, 1),

using the same argument as in the previous proposition, one finds a functionW
mean

1 ,
which satisfies (7.21) and such that

‖|ζ|−ν W
mean

1 ‖L∞(D2(1/3)) ≤ C ‖F‖L∞
ν/n−2,ν−2

(D2)

Finally, we put

W 1 :=W
mean

1 +W rad
1 , and W1 :=W 1 ◦ λ

−1.

The function χW1 is defined in a neighbourhood of z = 1 and can be extended by
zero to the entire punctured unit disc D2

∗. We have
{

∆(χW1) = F1 + 2∇χ∇W1 +W1 ∆χ in D2
∗

∂r(χW1) = 0 on S1 \ {1}

The function ∇χ∇W1 +W1 ∆χ belongs to L∞
ν/n−2,ν−2(D

2) and has compact

support, since is identically zero in the neighbourhood of z = 0 and z = 1. Accord-
ing to the proposition (7.1) we can find a function W0 which satisfies

{

∆W0 = F0 − 2∇χ∇W1 −W1 ∆χ in D2
∗

∂rW0 −
1
nW0 = 0 on S1 \ {1}

By the elliptic regularity in weighted spaces we have

‖ |z − 1|−νW1 ‖L∞(D2) ≤ C‖ ‖z − 1‖−ν+2 F1‖L∞(D2),

‖ |z − 1|−ν+1 ∇W1 ‖L∞(D2) ≤ C‖ ‖z − 1‖−ν+2 F1‖L∞(D2)

Then,

‖ |z|−ν/n+2 (F0 − 2∇χ∇W1 −W1 ∆χ) ‖L∞(D2) ≤ C‖F‖L∞
ν/n−2,ν−2

(D2).

So, we can write W0 = Ψ0 + c∗0 n, where

‖ |z|−ν/nΨ0 ‖L∞(D2) + |c∗0| ≤ C‖F‖L∞
ν/n−2,ν−2

(D2).
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The function

Walmost :=W0 + χW1,

satisfies the problem
{

∆Walmost = F in D2
∗

∂rWalmost −
1
nWalmost = − 1

n χW1 on S1 \ {1}

Take the function

h(z) :=
|z|2 − 1

2n
χW1(z).

then,

∂rh−
1

n
h =

1

n
χW1 at r = 1 and ∆h =

|z|2 − 1

2n
χF1+

2r

n
∂r (χW1)+

2

n
χW1.

Consider the operator

Gh : L∞
ν/n−2,ν−2 → L∞

ν/n,ν ⊕Dn ⊕Dχ, Gh(f) =Wh :=Walmost + h.

We have

∆ ◦Gh = Id+Rh, Rh : L∞
ν/n−2,ν−2 −→ L∞

ν/n−2,ν−2

Rh(f) = ∆h, ‖Rh‖ ≤
1

n

Finally, we define a continuous linear operator G = Gh ◦ (Id+Rh)
−1 and the

function W = G(f), the unique solution to (7.18) which can be written in the form

W = Ψ+ n c∗0 + c∗1 χ ∈ L∞
ν/n,ν(D

2)⊕Dn ⊕Dχ.

�

Now we can go back to the initial problem (7.17). Take f(z) = n2 |z|2n−2F (zn)
and put w(z) =W (zn). Then, w ∈ L∞

ν (D2)⊕Dn ⊕Dχn and can be written in the
form

w = ψ + n c∗0 + c∗1 χn(z), χn(z) = χ(zn), ‖γ−ν ψ‖L∞(D2) ≤ C ‖γ−ν+2f‖L∞(D2).

Finally, if we take f ∈ C0,α
ν−2(D

2
∗) , then by classical arguments of the elliptic

theory in Hölder weighted spaces ψ ∈ C0,α
ν (D2

∗) and there exists a constant C such
that

‖ψ‖C2,α
ν (D2

∗)
≤ C ‖f‖C0,α

ν−2
(D2

∗)
.

8. linear analysis around the catenoidal bridges

To analyse the linearised mean curvature operator in the neighbourhood of the
catenoidal bridges we consider the following problem

(8.22)

{

L̄catw = f in R×
[

π
2 ,

3π
2

]

∂θw = 0 on R× {π
2 ,

3π
2 }

where L̄cat = ∂2σ + ∂2θ + 2
cosh2 σ

, (σ, θ) ∈ R×
[

π
2 ,

3π
2

]

.
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Lemma 8.1. Assume that δ ∈ (−1, 0)∪(0, 1). The subspace of (coshσ)δC2,α
(

R×
[

π
2 ,

3π
2

])

that is invariant by (σ, θ) 7→ (σ,−θ) and (σ, θ) 7→ (−σ, θ) and solves

{

L̄catw = 0 in R×
[

π
2 ,

3π
2

]

∂θw = 0 on R× {π
2 ,

3π
2 }

is trivial when δ ∈ (−1, 0) and is one dimensional and spanned by σ tanhσ−1 when
δ ∈ (0, 1).

Proof. We decompose w in Fourier series

w(σ, θ) =
∑

j∈Z

wj(σ)e
ijθ .

then the functions wj are solutions of the ordinary equation
(

∂2σ − j2 +
2

cosh2 σ

)

wj = 0.

These solutions are asymptotic either to (coshσ)j or to (coshσ)−j . By hypothesis,
the solution is bounded by a constant times (coshσ)δ and |δ| < 1, so the solution
has to be asymptotic to (coshσ)−j , and then the solution is bounded. On the other

hand, −(j)2 +
2

cosh2 σ
≤ 0, so the maximum principle assures that wj = 0, for all

j ≥ 2.

Observe that the imposed symmetry (σ, θ) 7→ (σ,−θ) and the boundary condi-
tion imply w1 = 0. When j = 0, w0 is the solution of the ordinary equation

(

∂2σ +
2

cosh2 σ

)

w0 = 0.

By direct computations, we can see that tanhσ and σ tanhσ− 1 are two indepen-
dent solutions. The only solution symmetric with respect to the horizontal plane
is σ tanhσ − 1 and it belongs (coshσ)δC2,α(R×

[

π
2 ,

3π
2

]

) only when δ ∈ (0, 1).
�

The next step is to prove that, under some hypothesis, there exists a right inverse
of the problem (9.25) and it is bounded.

Proposition 8.1. Assume that δ ∈ (−1, 0)∪(0, 1). Then given f ∈ (coshσ)δC(R×
[

π
2 ,

3π
2

]

), such that f(σ, θ) = f(−σ, θ) = f(σ,−θ) there exists a unique constant

d∗1 and a unique function v ∈ (coshσ)δC2,α(R ×
[

π
2 ,

3π
2

]

) such that the function
w = v + d∗1 solves

(8.23)







(

∂2σ + ∂2θ +
2

cosh2 σ

)

w = f, in R×
[

π
2 ,

3π
2

]

∂θw = 0, on R× {π
2 ,

3π
2 }

and w(σ, θ) = w(−σ, θ) = w(σ,−θ) . Moreover, we have

(8.24) ‖(coshσ)−δw‖C2,α(R×[π2 , 3π
2 ])

+ |d∗1| ≤ C ‖(coshσ)−δf‖C0,α(R×[π2 , 3π
2 ])
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Proof. Let us extand the function f by symmetry to the entire unit cylinder R×S1.
Then, there exists a function w, which satisfies
(

∂2σ + ∂2θ +
2

cosh2 σ

)

w = f in R× S1,

and w = v + d∗1, ‖(coshσ)−δv‖C2,α(R×S1) + |d∗1| ≤ C ‖(coshσ)−δf‖C0,α(R×S1)

This fact follows from the construction given by R. Mazzeo, F. Pacard and D. Pol-
lack in [6]. Here, we give a short sketch of their proof for the sake of completeness.
Let first f be a function whose Fourier series in θ is given by

f(σ, θ) =
∑

|j|>2

fj(σ) e
ijθ .

Then, for every t ∈ R, there exists a function vt =
∑

|j|>2 v
t
j(σ) e

ijθ , a unique

solution of the problem
(

d2

ds2
− j2 +

2

cosh2 σ

)

vtj = fj in |σ| < t, vtj(±t) = 0, j ≥ 2.

One can prove this using the maximum principal and the method of sub- and

supersolutions, taking
1

j2 − 2− δ
(coshσ)δ as a barrier function. Taking a sum

over |j| > 2, we get a function vt such that L̄catvt = f and vt(±t) = 0. By the
Schauder’s elliptic theory, there exists a constant C such that

‖(coshσ)−δv‖C2,α((−t,t)×S1) ≤ C‖(coshσ)−δf‖C0,α((−t,t)×S1).

Moreover the constant C does not depend on t, which can be proven by contra-
diction, using the same argument in the proposition (7.1). Finally, the sequence
vt admits a subsequence which converges to a function v on compact subsets of
R×

[

π
2 ,

3π
2

]

as t tends to infinity and such that (8.24) is true.

In the case when f = f0(σ)+ f±1(σ) e
±iθ, we can construct a solution explicitly,

taking

w±1(σ) = cosh−1 σ

∫ σ

0

cosh2 t

∫ t

0

cosh−1 ξ f±1(ξ) dξ dt.

and

w0(σ) = tanhσ

∫ σ

0

tanh−2 t

∫ t

0

tanh ξ f0(ξ) dξ dt

Remark, that for |fj(σ)| ≤ (coshσ)δ for j = 0,±1 there exist constants d and d∗1,
such that

w0 + d (1 − s tanh s) = v0 + d∗1, |v0| ≤ c (coshσ)δ

moreover
|w±1| ≤ c (coshσ)δ

The estimates for derivatives of w0 and w±1 are obtained by Schauder’s theory. For
all δ ∈ (−1, 1) we have

‖(coshσ)−δ(v0 + w±1)‖C2,α(R×S1) + |d∗1| ≤ ‖(coshσ)−δf‖C0,α(R×S1)

Finally, by symmetry the restriction of w to R×
[

π
2 ,

3π
2

]

satisfies ∂θ w|{π
2
, 3π

2
} = 0.

�
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9. Linear analysis around the catenoidal neck

In this section in order study the linearised mean curvature operator around the
catenoidal neck we consider the equation

(9.25) Lcatw = f in R× S1,

where Lcat = ∂2s + ∂2φ + 2
cosh2 s

.

We restrict our attention to functions which are even in the variables φ and s
and invariant under rotations by the angle 2π

n . Given f ∈ (cosh s)δC0,α(R × S1),
such that

f(s, φ) = f(−s, φ) = f(s,−φ) = f(s, φ+ π/n).

we define F (s, φ) = 1
n2 f(

s
n ,

φ
n ) and consider the problem

(9.26) Ln
catW =

(

∂2s − j2 +
2

n2 cosh2 s
n

)

W = F.

We prove the following two lemmas:

Lemma 9.1. Assume that δ ∈ (−1, 0)∪(0, 1). The subspace of (cosh s
n )

δ L∞
(

R× S1
)

which is invariant by (s, φ) 7→ (s,−φ) and (s, φ) 7→ (−s, φ) and solves

Ln
catW = 0 in R× S1,

is trivial for δ ∈ (−1, 0) and is one dimensional and spanned by s
n tanh s

n − 1 for
δ ∈ (0, 1).

Proof. The proof of this lemma is analogous to the proof of the lemma (8.1) and
uses the maximum principal for the Fourier modes j ≥ 1 and the symmetry with
respect to the horizontal plain for j = 0. �

Proposition 9.1. Assume that δ ∈ (−1, 0) ∪ (0, 1). Then, given a function

F ∈
(

cosh s
n

)δ
L∞

(

R× S1
)

, such that F (s, φ) = F (−s, φ) = F (s,−φ), there exist

a unique constant d∗0 and a unique function V ∈
(

cosh s
n

)δ
L∞(R × S1) such that

the function W = V + d∗0 solves

(9.27)

(

∂2s + ∂2φ +
2

n2 cosh2 s
n

)

W = F,

and there exists a constant C, which does not depend on n, such that

(9.28) ‖
(

cosh
s

n

)−δ

W‖L∞(R×S1) + |d∗0| ≤ C ‖
(

cosh
s

n

)−δ

F‖L∞(R×S1).

Proof. We decompose both F and W in Fourier series

F =
∑

j∈Z

Fj(s) e
ijφ, and W =

∑

j∈Z

Wj(s) e
ijφ.

First, let F (s, φ) =
∑

|j|>1

Fj(s) e
iφj . Then, for every t ∈ R, using the method

introduced in [6], we can solve
(

∂2s − j2 +
2

n2 cosh2 s
n

)

V t
j = Fj , V t

j (±t) = 0,
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by the maximum principal taking
1

j2n2 − 2− δ
(cosh s

n )
δ as a barrier function.

When t tends to infinity, we get a sequence of functions which admits a subse-
quence converging on compact sets of R × S1 which satisfies (9.27) and (9.28).
When F (s, φ) = F0(s) we find explicitly

W0(s) = tanh
s

n

∫ s
n

0

tanh−2 t

∫ t

0

tanh ξ F0(nξ) dξ dt.

Like in the proposition 9.1 there exist a function V0 ∈
(

cosh s
n

)δ
L∞(R×S1) and a

constant d∗0, such that the function W0 = V0 + d∗0 satisfies (9.27) and (9.28).
�

Remark now that the function v(s, φ) = V (ns, nφ) is invariant under rotations
by the angle 2π

n and satisfies

Lcat v = f, and ‖(cosh s)−δv‖L∞(R×S1) ≤ C ‖(cosh s)−δf‖L∞(R×S1).

Finally, by the Schauder’s theory, if f ∈ (cosh s)δC0,α(R×S1), then v ∈ (cosh s)δC2,α(R×
S1) and

‖(cosh s)−δv‖C2,α(R×S1) ≤ C ‖(cosh s)−δf‖C0,α(R×S1)

10. The Fixed Point Theorem argument

We parametrize S̃n by the following sub-domain of the unit disc:

Ωε = {z ∈ D2 : ε̃ ≤ |z| ≤ 1} \
n
∪

m=1
λm{ζ ∈ C− : |ζ| ≤

ε

2
}.

Take a real number ν ∈ (0, 1). We denote Ek,α
ν,n the Banach space which is a subspace

of Ck,α
ν (Ωε) invariant under the transformation z 7→ z̄ and the rotations by the angle

π
n . Remark, that when we use the change of variables

z = ε̃ cosh s eiφ or z = λm(1/2 ε coshσ eiθ),

the functions

(s, φ) 7→ w(ε̃ cosh s eiφ) and (σ, θ) 7→ w(λm(1/2 ε coshσ eiθ)),

belong to the functional spaces

(ε̃ cosh s)νC2,α((−s∗, s∗)× S1) and (ε coshσ)νC2,α((−σ∗, σ∗)× [π/2, 3π/2]).

Putting together the results of the section 6, for every function w ∈ E2,α
n,ν small

enough we can construct a surface S̃n(w) which is close to S̃n and whose mean
curvature can be expressed as

H(w) = H(0) + Lw +Q(w),

where H(0) is the mean curvature of S̃n, L is a linear differential operator, which
has the form

L =



















Lgr +
ε2−β

γ4 Lγ
z in Ωgr ∪ Ω0

glu

n
∪

m=1
Ωm

glu

Lcat + (1 + ε2−β

γ2 )Ls,φ in Ω0
cat

(

L̄cat +
ε−β

γ Lσ,θ

)

( ◦λm) in Ωm
cat
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and Q is the nonlinear part of H(w) which can be written in the form

Q(w) =
ε1−β

γ4
Q2,γ

z (w) +
ε−β

γ4
Q3,γ

z (w),

where the properties of Lγ , Qγ
2 and Qγ

3 are described in the section 6. First, we
verify that

‖γ2H(0)‖C0,α
ν (Ωε)

≤ c ε5/3−β−ν , ∀β ∈ (0, 1).

It follows from the fact that away from 0 and the n-th roots of unity, where S̃n is
parametrized as a graph of one of the functions ± G̃n, the mean curvature satisfies

H(0) =
∣

∣

∣P3(G̃n)
∣

∣

∣ ,

and its norm is bounded by a constant times ε3−ν−β . On the other hand, in the
gluing regions the mean curvature is bounded by a constant times ε3−β/γ4 and in
the catenoidal regions by ε/γ.

Secondly, there exist constants c ∈ R and p ∈ N, such that

‖γ2Q(w)‖C0,α
ν (Ωε)

≤ c ε2/3−p(α+ν+β) ‖w‖C2,α
ν (Ωε)

, for ‖w‖C2,α
ν (Ωε)

≤ c ε5/3−ν−β .

The surface S̃n(w) is minimal if and only if

Lw = −H(0)−Q(w).

If L is an invertible linear continuous operator then function w should satisfy

(10.29) w = −L−1 (H(0) +Q(w)) = A(w)

If we show that there exists an open ball B ⊂ Ek,α
n,ν such that A : B −→ B is a

contraction mapping, then by the Banach Fixed Point theorem, there will exist a
unique function wn a solution to (10.29) such that Σ̃n = S̃n(wn) and Σn = Sn(wn)
are free boundary minimal surfaces in B3.

10.1. Inverse Linear Operator. We would like to find a linear operator

M : E0,α
n,ν −→ E2,α

n,ν , such that γ2 L ◦M(f) = f.

Take a partition of unity on the unit disk D2 :

ϕi ∈ C∞(D2), such that

n
∑

i=0

ϕi = 1, and ϕi = δij in Ui ⊃ zi,

where z0 = 0 and zm, m = 1, . . . , n are the n-th roots of unity and Ui are small
neighborhoods of zi. Given function f ∈ E0,α

n,ν we can decompose it as

f =

n
∑

i=0

ϕi f =

n
∑

i=0

fi, supp(fi) ⊂ Ui.

Let us fix the coordinates (s, φ) and (σ, θ) and take sε̃ ∈ R+ such that

ε̃ cosh sε̃ = 1.

We can parametrize two copies of the unit punctured disk D2 by

z+ = r+ e
iφ, where r+ = es−sε̃ , s ∈ (−∞, sε̃) and

z− = r− e
iφ, where r− = e−s−sε̃ , s ∈ (−sε̃,+∞)
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Remark that we can also parametrize two copies of the punctured half-plane C−

by

ζ+ = ρ+ e
iθ, where ρ+ = eσ, σ ∈ (−∞,∞) and

ζ− = ρ− e
iθ, where ρ− = e−σ, σ ∈ (−∞,+∞)

and take the conformal mappings λ±m : C− −→ D2 given by

λ±m(ζ±) = e
2πim

n
1 + ζ±
1− ζ±

.

We define the cut-off functions ϑ0 ∈ C∞ ([−sε̃, sε̃]) and ϑ̄ ∈ C∞(R) such that

ϑ ≡ 1, for s > 1, ϑ ≡ 0, for s < −1

ϑ̄ ≡ 1, for σ > 1, ϑ̄ ≡ 0, for σ < −1

Take f0(s, φ) = f0(ε̃ cosh s e
iφ) and f̄∗(σ, θ) = fm ◦ λm(ε coshσ eiθ). We can de-

compose

f0(s, φ) = f+
0 (s, φ) + f−

0 (s, φ) = ϑ0(s) f0(s, φ) + (1 − ϑ0(s)) f0(s, φ), and

f̄∗(σ, θ) = f̄+
∗ (σ, θ) + f̄−

∗ (σ, θ) = ϑ̄(σ) f̄∗(σ, θ) + (1 − ϑ̄(σ))f̄∗(σ, θ)

We can extend the function f+
0 by zero to the interval (−∞, sε̃). It defines a

function f̆+
0 on the unit punctured disc, parametrized by the variable z+. In the

same manner, we can extend the function f−
0 by zero to to interval (sε̃,+∞) and

that defines a function f̆−
0 on the unit punctured disk parametrized by z−. We

have
f̆±
0 (r± e

iφ) = f±
0 (± log r± + sε̃, φ).

We also define the functions f̊±
∗ on the half-plane C− by f̊±

∗ (ρ± e
iθ) = f̄±

∗ (± log ρ±, θ) .
Finally, we put

f̆±
m(z±) = f̊±

∗ ◦
(

λ±m
)−1

and f̆± =

n
∑

i=0

f̆±
i ,

each of the functions f̆± on one of the two copies of D
2
\ {0, z1, . . . , zn}.

First approximate solution: Using the results of the section 7, we find func-
tions w̆±

gr ∈ En,ν
2,α ⊕Dn ⊕Dχn , solutions to the problems







γ2(z±)∆
(

B(z±) w̆
±
gr

)

= f̆± in D2
∗

∂r±w̆
±
gr = 0 in S1 \ {z1, . . . , zn}

We have

w̆±
gr(z±) =ψ̆

±(z±) + n c∗0 + c∗1 χn(z±), and

‖w̆±
gr‖C2,α

ν (D2
∗)⊕Dn⊕Dχn

≤ C ‖f‖C2,α
ν (D2

∗)

We put

ψ+(s, φ) = ψ̆+(es−sε̃ eiφ) ∈ (ε̃ cosh s)νC2,α((−∞, sε̃)× S1),

ψ−(s, φ) = ψ̆−(e−s−sε̃ eiφ) ∈ (ε cosh s)νC2,α((−sε̃,+∞)× S1),
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and ψ̄± = ψ± ◦ λ±m ∈ (ε cosh s)νC2,α(R×
[

π
2 ,

3π
2

]

).

First estimate of the error: We would like now to analyse the behaviour of
the function

h := γ2L (ψ+ + ψ−)− f

Remark, that the change of variables z = ε̃ cosh s eiφ transforms

∆z ;

1

ε̃2 cosh2 s

(

coth2 s ∂2s + coth s ∂s(1− coth2 s) + ∂2φ
)

On the other hand, the change of variables z± = e±s−sε eiφ transforms

∆±z ; e∓ 2(s−sε)
(

∂2s + ∂2φ
)

In this section we will denote as c any positive constant which does not depend
on ε. Moreover, |e±s−sε − ε cosh s| ≤ c ε

cosh s . Using once the again the partition of
unity, we decompose

h =

n
∑

i=0

φi h =

n
∑

i=0

hi, h̄∗ = hm ◦ λm.

Regarding h0 as a function in variables (s, φ) we can extend it by 0 to R × S1.
Similarly, regarding h̄∗ as a function of (σ, θ) we can extend it by 0 to R×

[

π
2 ,

3π
2

]

.
Fix δ ∈ (−1, 0). Then, there exists a universal constant C, such that

‖(cosh s)−δh0‖C0,α(R×S1) ≤ C ‖f‖C0,α
ν (Ωε)

,

‖(coshσ)−δh̄∗‖C0,α(R×[π2 , 3π
2 ])

≤ C ‖f‖C0,α
ν (Ωε)

Help of the linear analysis around the catenoids: Using the results of the
sections 7 and 8, we can find functions w0

cat and w̄
∗
cat, such that

γ2

2 ε̃2 cosh2 s
Lcatw

0
cat = h0 and

γ̄2

ε2 cosh2 σ
L̄cat w̄

∗
cat = h̄∗, ∂θ w̄

∗
cat = 0,

where

Lcat = ∂2s + ∂2φ +
2

cosh2 s
and L̄cat = ∂2σ + ∂2θ +

2

cosh2 σ
and γ̄ = γ ◦ λm. We can write w0

cat = v0cat + d∗0, and w̄
∗
cat = v̄∗cat + d∗1, where

‖(cosh s)−δv0cat‖C2,α(R×S1) + |d∗0| ≤ C ‖(cosh s)−δhε0‖C0,α(R×S1) and

‖(coshσ)−δ v̄∗cat‖C2,α(R×[π2 , 3π
2 ])

+ |d∗1| ≤ ‖(coshσ)−δh̄∗‖C0,α(R×[π2 , 3π
2 ])

We also denote wm
cat = w̄∗

cat ◦ λm and vmcat = v̄∗cat. We have

∂rw
m
cat|r=1 = ∂rv

m
cat|r=1 = 0.

Cut-off functions: Let, as before, η0ε̃ ∈ C∞(D2) denote a cut-off function, such
that

η0ε̃(z) = η0ε̃(|z|), η0ε̃(z) ≡ 1 for |z| < 1/2 ε̃1/2 and η0ε̃ (z) ≡ 0 for |z| > 2 ε̃1/2.

and η̄ε ∈ C∞(C−) the cut-off function in C−, such that

η̄ε(ζ) = η̄ε(|ζ|), η̄ε(ζ) ≡ 1 for |ζ| < 1/2 ε2/3 and η̄ε(ζ) ≡ 0 for |ζ| > 2 ε2/3.
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We put ηmε := η̄ε ◦ λ−1
m .

Furthermore, we introduce the cut-functions κ0
ε̃ ∈ C∞(D2) and κ̄ε ∈ C∞(C−),

such that

κ
0
ε̃ (z) = κ

0
ε̃ (|z|), κ

0
ε̃ (z) ≡ 1 for |z| < 2 ε̃1/2 and κ

0
ε̃ (z) ≡ 0 for |z| > 3 ε̃1/2

κ̄ε(ζ) = κ̄ε(|ζ|), κ̄ε(ζ) ≡ 1 for |ζ| < 2 ε2/3 and κ̄ε(ζ) ≡ 0 for |ζ| > 3 ε2/3

and κm
ε := κ̄ε ◦ λ−1

m .

Let I+ε̃ = [sgε̃ , S
g
ε̃ ] and I−ε̃ = [−Sg

ε̃ ,−s
g
ε̃] be the two subintervals of [−sε̃, sε̃]

where we glue together the graph of the functions ± G̃n with the catenoidal neck.

Similarly, let J+
ε = [σg

ε ,Σ
g
ε] and J−

ε = [−Σg
ε,−σ

g
ε ] be the two intervals where

we glue together the graph of the functions ± Ḡn with the half-catenoidal necks.
We put

Rε̃ = e−sgε̃−sε̃ , rε̃ = e−Sg
ε̃−sε̃ and Pε = e−σg

ε , ρε = e−Σg
ε .

We denote ξ0ε̃ ∈ C∞(D2) a cut-off function such that

ξ0ε̃ (z) = ξ0ε̃ (|z|), ξ0ε̃ (z) ≡ 1 for |z| > Rε̃, and ξ0ε̃ (z) ≡ 0 |z| < rε̃.

In the same manner we define the cut-off function ξ̄ε ∈ C∞(C), such that

ξ̄ε(ζ) = ξ̄ε(|ζ|), ξ̄ε(ζ) ≡ 1 for |ζ| > Pε, and ξ̄ε(ζ) ≡ 0 |ζ| < ρε̃,

and we put

ξmε := ξ̄ε ◦ λ
−1
m .

Finally, we define the cut-off function ξε ∈ C∞(D2) : ξε := ξ0ε̃
n

Π
m=1

ξmε , and also the

functions

ξ±ε ∈ C∞([−sε̃, sε̃]× S1) : ξ±ε (s, φ) = ξε(e
±s−sε̃ eiφ).

Notice, that ξ+ε is a function which is equal to 1 on the part of the surface, which

is parametrized as a graph of the function −G̃n, the parts, where we glue this graph
with upper parts of the catenoidal neck and the half-catenoidal bridges and also
on the neck and the bridges them selves. It is identically equal to zero on the part
of the surface, which is parametrized as a graph of the function G̃n. In the same
manner, one can easily deduce the properties of ξ−ε .

Regular terms: Consider the function

wreg := ξ+ε ψ
+
gr + ξ−ε ψ−

gr + η0ε̃ v
0
cat +

n
∑

m=1

ηmε vmcat.

Deficiency terms: We define the functions

u0(s) := 1− s tanh s, ū(σ) := 1− σ tanhσ, um := ū ◦ λ−1
m ,

and take Γn and Γ̃n the functions lying in the kernel of the operator Lgr and defined
section 4. We also denote

Γ±
n (s, φ) = Γn(e

±s−sε̃ eiφ), Γ̃±
n (s, φ) = Γ̃n(e

±s−sε̃ eiφ).
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Consider the function

κε(s, φ) := κ
0
ε̃ (a0 u0 + d∗0) +

n
∑

m=1

κ
m
ε (a1 um + d∗1)

+ (1 − κ
0
ε̃ −

n
∑

m=1

κ
m
ε )
[

c∗0 n+ c∗1 χn + b0

(

ξ+ε Γ̃+
n + ξ−ε Γ̃−

n

)

+ b1
(

ξ+ε Γ+
n + ξ−ε Γ−

n

)

]

where the constants a0, a1, b0 and b1 are chosen in such a way that the norm of κ

and its derivatives would be small in Ω0
κ

n
∪

m=1
Ωm

κ , where

Ω0
κ := supp(κ0

ε̃ ) ∩ supp(1− κ
0
ε̃ ), and Ωm

κ := supp(κm
ε ) ∩ supp(1− κ

m
ε ).

More precisely, in Ω0
κ we have

ξ+ε Γ̃+
n + ξ−ε Γ̃−

n =

{

−2n+ 2n sε̃ − 2n s+O(ε), when s > 0

−2n+ 2n sε̃ + 2n s+O(ε), when s < 0

On the other hand,

u0(s) =

{

1− s+O(ε̃), for s > 0

1 + s+O(ε̃) for s < 0
,

and

ξ+ε Γ+
n + ξ−ε Γ−

n = −
n

2
+O(ε̃), χn(s, φ) ≡ 0, κ

m
ε ≡ 0

This gives us the first equation on a0, a1, b0, b1:

(10.30) a0 = 2n b0, c∗0 n−
b1 n

2
− 2n b0 + 2n b0 sε̃ = 2n b0 + d∗0.

Similarly, in Ωm
κ we have for all β ∈ (0, 1)

ξ+ε Γ+
n + ξ−ε Γ−

n =











−
n

2
+ c(n)− σ +O(ε2/3−β), when σ > 0

−
n

2
+ c(n) + σ +O(ε2/3−β), when σ < 0

ū(σ) =







1− σ +O(ε2/3), for σ > 0

1 + σ +O(ε2/3) for σ < 0
,

and

Γ̃n(s, φ) = −n+O(ε2/3), χn(s, φ) ≡ 1, κ
0
ε̃ ≡ 0.

This gives us the second equation

(10.31) a1 = b1, c∗0 n+ c∗1 + b1(c(n)−
n

2
)− b0 n = b1 + d∗0.

Then, the system (10.30) and (10.31) has a unique solution.

Second approximate solution: As an approximate solution, we take the func-
tion

wapp := wreg + κ.
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We would like to estimate the norm in E2,α
n,ν of the function

γ2 Lwapp − f.

We do it separately in the regions Ω0
cat, Ω

0
glu, Ω

0
κ, Ωgr, Ω

m
κ , Ωm

glu and Ωm
cat.

(1) In Ω+
gr, where the surface S̃n is parametrized as a graph of the function

−G̃n we have

η0ε̃ ≡ ηmε ≡ 0, and ξ+ε ≡ 1, ξ−ε ≡ 0.

We see that

f = f+, wapp = ψ+
gr + κ, and γ2L = γ2 Lgr +

ε2−β

γ2
Lγ

κ = c∗0 n+ c∗1 χn + b0 Γ̃
+
n + b1 Γ

+
n in Ωc

κ and κ = O(ε̃) in Ωκ ∩ Ω+
gr.

Then,

‖γ2Lwapp − f‖C0,α
ν (Ω+

gr)
≤ c ε2/3−β−ν ‖f‖C0,α

ν (Ωε)
, ∀β ∈ (0, 1).

Naturally, the same estimate is true in Ω−
gr, where the surface is parametrized

as a graph of G̃n and where

η0ε̃ ≡ ηmε ≡ 0, and ξ−ε ≡ 1, ξ+ε ≡ 0,

and f = f−, wapp = ψ−
gr + κ.

(2) In the region Ω0,+
glu , where we glue together the upper part of the catenoidal

neck with the graph of the function −G̃n we have

ηmε ≡ 0, ξ+ε ≡ 1 and

f = f+, wapp = ψ+
gr + ξ−ε ψ

−
gr − η0ε̃ v

0
cat + κ,

κ = a0 u0 + d∗0 and γ2L = γ2 Lgr + ε1−β Lγ0 .

We obtain for ε small enough

‖γ2Lwapp − f‖C0,α
ν (Ω0,+

glu )

≤ c
(

‖ψ−
gr‖C2,α

ν (Ω+,0
glu ) + ‖v0cat‖C2,α

ν (Ω+,0
glu ) + ‖κ‖C2,α

ν (Ω+,0
glu )

)

≤ c ε1/2|δ|−ν−β‖f‖C0,α
ν (Ωε)

By symmetry the same estimate is true in the region Ω0,−
glu , where we glue

the lower part of the catenoidal neck with the graph of the function G̃n and
where

ηmε ≡ 0, ξ−ε ≡ 1 and

f = f−, wapp = ψ−
gr + ξ+ε ψ

+
gr − η0ε̃ v

0
cat + κ, κ = a0 u0 + d∗0

(3) In the regions Ωm,+
glu where we glue together the upper part of the half-

catenoidal bridges with the graph of the function −G̃n we have

η0ε̃ ≡ 0, ξ+ε ≡ 1 and
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f = f+, wapp = ψ+
gr + ξ−ε ψ

−
gr − ηmε̃ vmcat + κ

κ = a1 um + d∗1 and γ2L = γ2 Lgr + ε2/3−β Lγm .

We obtain

‖γ2Lwapp − f‖C0,α
ν (Ωm,+

glu )

≤ c
(

‖ψ−
gr‖C2,α

ν (Ω+,m
glu ) + ‖vmcat‖C2,α

ν (Ω+,m
glu ) + ‖κ‖C2,α

ν (Ω+,m
glu )

)

≤ c ε2/3|δ|−ν−β ‖f‖C0,α
ν (Ωε)

Once again, by symmetry the same estimate is true in Ωm,−
glu .

(4) In the catenoidal region Ω0
cat, where the surface S̃n coincides with the

catenoidal neck, we have

ηmε ≡ 0, ξ+ε ≡ ξ−ε ≡ 1.

f = f+ + f−, wapp = ψ−
gr + ψ+

gr − w0
cat, γ2L =

γ2

2 ε̃2 cosh2 s
Lcat + ε1−β L

We obtain

‖γ2Lwapp − f‖C0,α
ν (Ω0

cat)
≤ c ε1−ν−β ‖f‖C0,α

ν (Ωε)
.

(5) Finally, in the region Ωm
cat, where the surface S̃n coincides with the m-th

half-catenoidal neck, we have

η0ε ≡ 0, ξ+ε ≡ ξ−ε ≡ 1 and

f := f++f−, wapp = ψ−
gr+ψ

+
gr−w

m
cat, γ2L( ◦λm) =

γ2

ε2 cosh2 σ
L̄cat+ε

2/3−β L

We obtain

‖γ2Lwapp − f‖C0,α
ν (Ωm

cat)
≤ c ε2/3−ν−β ‖f‖C0,α

ν (Ωε)
.

Now let us introduce the operator Mapp : C0,α
ν (Ωε) −→ C2,α

ν (Ωε), such that

Mapp(f) = wapp and ‖Mapp‖ ≤ c ε−ν−β, ∀β ∈ (0, 1).

On the other hand, if we take δ sufficiently close to −1 and ν and β small enough,
then the operator

Rapp := γ2L ◦Mapp − Id : C0,α
ν (Ωε) −→ C0,α

ν (Ωε),

satisfies

‖Rapp‖ ≪ 1.

So, Id +Rapp is an invertible operator. We denote

Mexact := Mapp ◦ (Id +Rapp)
−1
, and γ2L ◦Mexact = Id.
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10.2. Conclusion. Using the results of the previous subsection, we conclude that
there exist constants c ∈ R+ and p, q ∈ N, such that

‖Mexact

(

γ2 H(0)
)

‖E2,α
n,ν

≤ ε5/3−q(ν+β),

and
‖Mexact

(

γ2Q(w)
)

‖E2,α
n,ν

≤ ε1/3−p(α+ν+β) ‖w‖E2,α
n,ν
.

This yields that for α, ν, β and ε small enough

‖Mexact

(

γ2Q(w1)
)

−Mexact

(

γ2Q(w2)
)

‖E2,α
n,ν

≤
1

2
‖w1 − w2‖E2,α

n,ν
,

and Mexact

(

γ2Q(·)
)

is a contracting mapping in the ball

Bε :=
{

w ∈ E2,α
n,ν : ‖w‖E2,α

n,ν
≤ ε5/3−q(ν+β)

}

.

And the result of this article follows from the Banach fixed point theorem.
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