Canonical Polyadic Tensor Decomposition in the Presence of Non Gaussian Noise

Rodrigo Cabral Farias 1 Pierre Comon 1
1 GIPSA-CICS - CICS
GIPSA-DIS - Département Images et Signal
Abstract : In this paper we describe an estimator for the canonical polyadic (CP) tensor model using order statistics of the residuals. The estimator minimizes in an iterative and alternating fashion a dispersion function given by the weighted ranked absolute residuals. Specific choices of the weights lead to either equivalent or approximate versions of the least squares estimator, least absolute deviation estimator or least trimmed squares estimators. For different noise distributions, we present simulations comparing the performance of the proposed algorithm with the standard least squares estimator. The simulated performance is equivalent in the Gaussian noise case and superior when the noise is distributed according to the Laplacian or Cauchy distributions.
Type de document :
Communication dans un congrès
23rd European Signal Processing Conference (EUSIPCO-2015), Aug 2015, Nice, France
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01119833
Contributeur : Pierre Comon <>
Soumis le : mardi 24 février 2015 - 10:41:44
Dernière modification le : mercredi 25 juillet 2018 - 01:19:44
Document(s) archivé(s) le : mercredi 27 mai 2015 - 10:11:03

Fichier

paper-1570101111.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01119833, version 1

Collections

Citation

Rodrigo Cabral Farias, Pierre Comon. Canonical Polyadic Tensor Decomposition in the Presence of Non Gaussian Noise. 23rd European Signal Processing Conference (EUSIPCO-2015), Aug 2015, Nice, France. 〈hal-01119833〉

Partager

Métriques

Consultations de la notice

867

Téléchargements de fichiers

155