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Prediction of Ideas Number During a Brainstorming
Session

Hassan Ait Haddou - Guy Camilleri -
Pascale Zaraté

Abstract In this paper, we present an approach allowing the prediction of ideas
number during a brainstorming session. This prediction is based on two dynamic
models of brainstorming, the non-cognitive and the cognitive models proposed by
Brown and Paulus (Small Group Res 27(1):91-114, 1996). These models describe
for each participant, the evolution of ideas number over time, and are formalized by
differential equations. Through solution functions of these models, we propose to cal-
culate the number of ideas of each participant on any time intervals and thus in the
future (called prediction). To be able to compute solution functions, it is necessary
to determine the parameters of these models. In our approach, we use optimization
model for model parameters calculation in which solution functions are approximated
by numerical methods. We developed two generic optimization models, one based on
Euler’s and the other on the fourth order Runge—Kutta’s numerical methods for the
solving of differential equations, and we apply them to the non-cognitive and respec-
tively to the cognitive models. Through some feasibility tests, we show the adequacy
of the proposed approach to our prediction context.
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1 Introduction

The brainstorming technique is a very popular group technique for generating ideas.
It is not surprising that this technique is often used in group decision making meetings
(GDMM). Our aim is to integrate some specifi support tools dedicated to facilita-
tion activity into Group Decision Support Systems (GDSS) also called Group Support
Systems (GSS). In our work we use the following definition of GDSS proposed by
DeSancis et al.: “A GDSS is a computer-based technology designed to help
committees, project teams, and other small groups with activities such as problem
identificatio and analysis, decision making, planning, creativity, conflic manage-
ment, negotiation, and meeting management. GDSSs combine communication, infor-
mation, and decision support technologies in an integrated environment.” p. 552 in
DeSanctis et al. (2008). Many studies showed the advantage of using such systems in
meetings in order to improve their effectiveness and efficien y (Nunamakeretal. 1991;
de Vreede et al. 2003; Soller et al. 2005). Group facilitation is define as a process
in which a person who is acceptable to all members of the group intervenes to help
improving the way it identifie and solves problems, and makes decision (Schwarz
1994). Facilitation, on the other hand, is a dynamic process that involves managing
relationships among people, tasks, and technology, as well as structuring tasks and
contributing to the effective accomplishment of the meeting’s outcomes (den Hengst
and Adkins 2007). Facilitation was for a long time recognized as a key success factor
for meetings (Bostrom et al. 1993; Schwarz 1994; Hayne 1999). When GDSS tools
are used or when e-meetings take place, the need to facilitate meetings is even more
visible (Viller 1991; Bostrom et al. 1993; Macaulay and Alabdulkarim 2005).

Unfortunately, due to their specifi skills, professional facilitators are mobile, scarce
and expensive. Organizations have thus difficult to maintain a stable in-house facil-
itation capability (den Hengst and Adkins 2007; Briggs et al. 2010). Therefore, it
seems relevant to support this activity in order to make it more accessible to facilita-
tors with less expertise while maintaining performance comparable to those obtained
by a skilled facilitator and thus promote the adoption of GDSS in organizations.

Many works integrated elements of automated facilitation in GDSS tools (Limayem
and DeSanctis 2000; Nunamaker et al. 2002; Wong and Aiken 2003; Macaulay and
Alabdulkarim 2005; Adla et al. 2011). These works show the interest of automating
some facilitation elements. Studies such as Wong and Aiken (2003), Limayem (2006)
further demonstrate that the integration of automated facilitation in GDSS can be as
effective as using the same tools with skilled-human facilitation. It also enhances a
faithfulness appropriation of the technology.

Our purpose is to offer assistance to the facilitator in real time during meetings. For
this, it is necessary to analyze the group activity, or even anticipate (predict) its evo-
lution for supporting the facilitator in her/his decision to intervene (when) and her/his
choice of interventions type (what). In this work, we focus on a particular group tech-
nique, the brainstorming. We limit here our work to provide, in an automatic way,
a justifie picture of the evolution of generated ideas for the current brainstorming
activity in order to support the facilitator in her/his decision or choice of interventions.
This information can be seen as a set of indications (or cues) on the dynamic of ideas
generation (as in the work of Vivacqua et al. 2011).



In this paper, we developed an approach that gives some information (predictions)
about the evolution of ideas number over time that would be generated by participants
at a brainstorming session. Our prediction approach is based on the dynamic models
of brainstorming, that were presented by Brown and Paulus (1996). These models are
formalized by differential equations describing the evolution of ideas number over
time for each participant.

The group technique of brainstorming has been proposed by Osborn (1957). The
purpose of this technique is to improve productivity and creativity of the group (i.e.
bringing many different and original ideas). It is based on the four following rules:

— Criticism is ruled out. To avoid trouble in the generation of ideas, participants at a
brainstorming session should not criticize. This rule follows a central principle of
brainstorming: the “deferment of judgment”.

— Freewheeling is welcomed. As it is not allowed to criticize, unusual and even wild
ideas are possible and desired.

— Quantity is wanted. One purpose of brainstorming is to gather up a maximum
number of ideas, assuming the greater number of ideas, higher is the probability
to fin successful ones.

— Combination and improvement are sought. Participants are encouraged to use the
ideas of others by combining or improving them.

In order to take the full advantage of brainstorming, Osborn mentioned that the
previous rules were not sufficient In addition, he provided some suggestions and
recommendations on the training and the management of brainstorming meetings
(facilitation, participants training, topic nature, group composition, etc).

Osborn claimed that a real group using brainstorming technique to generate ideas
will be more effective than individuals alone. He indicated that in a study, this tech-
nique generated 44 % more useful ideas than individuals working alone. However, a
large number of experimental studies contradict this claim by noting that interactive
brainstorming groups tended to produce less than nominal groups (groups of similar
size working alone) (Diehl and Stroebe 1987; Mullen et al. 1991).

Many researches have attempted to fin the reasons of the “failure” of interactive
brainstorming (called productivity loss). They identifie four main reasons:

—  Evaluation apprehension (Camacho and Paulus 1995; Mullen et al. 1991). Partic-
ipants may feel a fear of negative evaluations from others. In this case, they may
be led to not express their more original ideas (self-censorship).

— Social loafing or Free riding (Borgatta and Bales 1953; Diehl and Stroebe 1987,
Karau and Williams 1993; Paulus and Dzindolet 1993). Social loafing is a loss of
motivation and effort caused by the presence of others. Free riding occurs when
an individual considers that his contribution is not necessary to the group success.

— Production blocking (Diehl and Stroebe 1991; Nijstad et al. 2003). When some-
one speaks, other participants are usually blocked, bringing about a risk of ideas
forgetfulness.

— Matching. Participants in brainstorming session tend to want to produce as others
(in the same order of magnitude). This behaviour seems to result from a comparison
in terms of performance between individuals within a group. Brown and Paulus
(1996) noted that matching may occur in different contexts in both directions,



towards participants who are most productive when there is a climate of competi-
tion between group members (Upward matching Paulus and Dzindolet 1993), or
conversely towards participants producing the least if motivation of the group is
quite weak (Downward matching Borgatta and Bales 1953; Camacho and Paulus
1995; Karau and Williams 1993).

In order to improve the effectiveness of brainstorming meetings, many studies have
attempted to reduce the loss of productivity. Camacho and Paulus (1995) formed
groups with low anxious members; Oxley et al. (1996) showed the importance of
trained facilitators which provide a control over free-riding; the use of electronic
brainstorming for eliminating the blocking (Diehl and Stroebe 1991; Nijstad et al.
2003); anonymous electronic brainstorming in order to reduce evaluation apprehen-
sion (DeRosa et al. 2007); the addition of breaks in meetings and promoting divergent
thinking (Brown and Paulus 2002; Coskun 2005), etc. Many finding of these studies
seem to agree with the suggestions and the recommendations presented by Osborn
(cf. the critical review of Isaksen (1998) emphasizing the importance of these sugges-
tions and recommendations in brainstorming studies).

From works on productivity loss, Brown and Paulus (1996) proposed a modeling
of ideas generation process in brainstorming. This modeling describes for each par-
ticipant the evolution of ideas number over time according to the productions of other
participants. It explicitly incorporates three social factors: the blocking, the matching
(described above) and the decay. The decay factor is useful to decrease ideas number
over time (Nijstad et al. 2003). In this modeling, the factors of evaluation apprehen-
sion and free riding are represented implicitly through values of several parameters. In
this work, Brown and Paulus presented two models, a non-cognitive and a cognitive
model. Of course, these models are a simplificatio of the ideas generation process, but
are in line with finding of various studies on productivity loss. One interest of these
models is to provide a clear and relatively precise description of the interdependence
existing between participants’ productions. In addition, they allow differentiating the
impact of three social factors in ideas production. The initial objective of this model-
ing is to provide a framework for the development and the assessment of theoretical
assumptions.

We believe that the model developed by Brown and Paulus can be adapted to our
context of prediction. Indeed, assuming that the proposed dynamic models are com-
pletely determined (that is all parameters are valued), they offer for each participant an
accurate description of ideas number represented in the form of mathematical func-
tion. By knowing this function of ideas number over time on its definition domain
D = [0, o0l it is possible for each participant to calculate on any subintervals of D
the ideas number and therefore, to compute an extrapolation of ideas number in the
future (which we call prediction).

Coskun and Yilmaz (2009) improved the models proposed by Brown and Paulus by
adding physical constraints (such as the rate of ideas is always positive) to make these
models more realistic and complete. In addition, they modifie them to deal with two
situations: the sequential situation where the problem is decomposed into sub-prob-
lems and each sub-problem is presented one after other to the group (called sequential
brainstorming), and the situation of brainwriting. They also studied the impact of



the instruction of ideas memorization on brainstormers. The aim of their work is to
develop new models adapted to the previous situations (formalized by impulsive dif-
ferential equations) and to show through experiments that these two models well fi to
observations. In order to do so, they chose some values for model parameters so that
models are close to their experiments.

Our approach towards dynamic models use is quite different from the above two
studies. We determine ideas number from measurements of production duration of
participants’ ideas' in real-time (that is ongoing the brainstorming session). For this,
we must be able to compute relatively quickly the model parameters from ideas already
expressed by participants. This context has motivated us to develop our approach for
determining parameters of dynamic models presented in this work.

In order to make this approach directly usable (computable), we assume that each
contribution of a participant matches to one and only one idea. This assumption may
appear very strong implying the addition of the following rule “one idea per interven-
tion”, and the need to strictly ensure compliance with brainstorming rules. However,
from preliminary experiments, it seems that the proposed approach remains useful
for free ideation sessions. Nevertheless, more investigations must be achieved on this
point.

First, we will present an overview of the proposed approach. In the second part,
we will deal with the non-cognitive model. Our approach of parameters calculation is
based on an optimization model. We will present a generic optimization model” which
will be applied to the non-cognitive model. Feasibility tests will show the adequacy
of the proposed approach to our prediction context.

In the third part, the cognitive model will be presented. The optimization model
developed for the non-cognitive can not be directly applied to the cognitive model.
To cope with this problem, we will propose a more accurate (but more complex) new
generic optimization model. This new problem will be adapted to the cognitive model,
and as for the non-cognitve model, its feasibility will be tested. We will show that this
new optimization model is well adapted to groups of small size, but may requires
further developments for larger groups.

2 Approach Overview

The overall proposed process in this paper is schematically summarized in the Fig. 1.
The box items represent problems and the oval-boxes the used approaches. The goal of
this process is to determine time evolution functions of ideas production rate for each
participant (box 1) from dynamic models (Ordinary Differential Equations ODE).
In order to achieve this objective, two numerical methods (Euler and Runge—Kutta
fourth RK4) are used (2). However, to be able to apply these methods, models param-
eters have to be known (3). A least-square optimization is used for computing these
model parameters (4). From now, dynamic models and their parameters are known and

! We intend to measure the duration of ideas production by using microphones.

2 We believe that this generic problem could be useful in many other situations.



Problem: 1) Problem: 3)
Known: Known:
- Dynamic models (ODE) of brainstorming (non-cognitive and - General form of ODE models for time evolution of idea production
cognitive). ™ rate.
- Definition domain of parameters: decay, blocking, forget and - Numerical method to calculate evolution functions
extracted rates in [0,1], and matching rate in [0,2]. Unkown:
- idea Measures - Parameters of ODE models and some initial conditions.
Unkown:
- Time evolution functions of ideas production rate for each
participant (oi(t)). Approach: 4
Goal: Use least-square optimization (based on Euler method for non-
- Describe the time evolution functions of ideas production rate for cognitive model and RK4 for cognitive model) to fit models
each participant. parameters and unkown initial conditions, using experimental idea
+ number measurements M taken at different time intervals, into ODE
models.
Approach: 2)
Use numerical method (Eurler or RK4) to determine ¢
an approximation of unkown fonctions.
Problem: (5)
Known:
Approach: (6) - ODE models, all initial conditions and all parameters for idea
Use RK4 method with approximation of ODE models from production rate
minimization/regression Unknown:
Overall goal: achieved, with quantifiable error. -Time )evolution function of idea production rate (original goal as in
point 1

Fig. 1 Process overview

solution functions can be computed (5). Solution functions and a quantifiabl error
are then determined by using the Runge—Kutta fourth (6).

3 Non-Cognitive Model of Brainstorming

In this part, the non-cognitive model is presented. We will begin with a description of
the mathematical model (modifie by Coskun and Yimaz). Then a generic approach,
using an optimization model to determine the parameters of dynamic models from
measurements, will be presented. We will apply this generic optimization model to the
non-cognitive model of brainstorming. In order to test the feasibility of our approach,
we will use artificia tests. This part will end with a discussion on tests, advantages
and disadvantages of the proposed approach.

3.1 Mathematical Model

The non-cognitive model is the simplest model presented by Brown and Paulus (1996).
This model is based on the assumption that a participant’s rate of idea production
depends on the following three factors (see Brown and Paulus 1996):

1. Output decay: Any given participant will eventually run out of ideas. This factor
serves to decrease productivity over time.



2. Blocking: A participant’s productivity will decrease as a function of total group
output.

3. Matching: Participants adjust their productivity rate to more closely match the
average group rate. This factor decreases a participant’s productivity if it is higher
than the group average and increases a participant’s productivity if it is lower than
the group average.

This model expresses for each participant, the variation of ideas rate as a weighted
sum of decay, blocking and matching factors.

For a group of n individuals (i € [[1, n]]), the non-cognitive model is formalized
by the following system of differential equations:

do;(t) 1 '
Odt :—aioi(t)—biZOj(t)—i—m,‘ mZOj(t)_Oi(t) with 0;(#) > 0

J# J#

andt € [0, +o0o[

where o; (¢) is the ideas rate (ideas number per time unit) generated by the participant
i, a; the decay rate, b; the sensitivity to blocking, m; the tendency to match. Note that
the rates a;, b; and m; represent the impacts of decay, blocking and matching factors
on the ideas rate of a participant i. This impact is assumed to be constant over time
during the whole session (that is a;, b; and m; are constant). The blocking is repre-
sented by bi times the sum of others’ productions. The matching is estimated by the
distance between productions of an individual and the average of others’ productions.
Following Coskun and Yilmaz (2009), we add the constraint 0; () > 0 to model the
fact that ideas rate is always positive or null. A possible effect of this constraint is to
break the linearity of the differential equations.

This model states that the ideas rate decreases at the rate a; with respect to its value,
at the rate b; with respect to the sum of other’s rates, and depending on cases decreases
(negative value) at the rate m; if its value is higher than the average of others’ rates
(Downward matching) or increases (positive value) at the rate m; if its value is lower
than the average (Upward matching).

For example, for a group of three persons, the cognitive model is:

'% = —a101(t) — b1 (02(t) + 03(1)) + m [§(02(t) + 03(1)) — 01(1)]
with 01(¢) > 0,
420 — —ay05(t) — b2(01(1) + 03(t)) + m2 [1(01(t) + 03(1)) — 02(1)]
with 02(¢) > 0,
450 — —a303(t) — b3(01(t) + 02(1)) +m3 [ (01(2) + 02(1)) — 03(1)]
with 03(¢) > 0

The Fig. 2 illustrates the cognitive model for a group of three persons by draw-
ing the ideas rate over time generated by each participant. In this example, the
following parameters vectors have been used: p; = (3.337, 0.044, 0.140, 0.222),
p2 = (3.467,0.005,0.022,0.256) and p3 = (4.036,0.120,0.077,0.189) where



4.5

Rate of idea production
(Number of idaes / minute)

0 5 10 15 20

Time (minutes)

Fig. 2 Cognitive model for a group of three members (one curve by member)

pi=(0i(0), a;, b1, m;) is the parameters vector for participant i with o; (0) the initial
rate of ideas, a;, b; and m; are respectively decay, blocking and matching rates.

The solutions of this system have been calculated by using the numerical method
of Runge—Kutta order four’. In most cases, it is not possible to have an analytical
solution due to equations complexity. Therefore, numerical methods can be used to
calculate an approximation of solution functions.

3.2 Euler Based Generic Optimization Model for Parameters Calculation

This model is useful in a prediction context, which is used to calculate automatically
model parameters only from measurements of production duration during the session.
A natural way for parameters computing would be to start from analytical solution
functions and through them to generate equations corresponding to measurements.
Unfortunately, in every case analytical solutions are not necessarily known. In our
approach, we propose to use optimization formulation for the calculation of the model
parameters calculation in which solution functions are approximated by numerical
methods.

For the non-cognitive model, we will use the Euler’s method (Ait-Haddou et al.
2010). The Euler’s method is a first-orde numerical procedure for solving ordinary dif-
ferential equations with a given initial value. This method determines a linear approx-
imation of the solution functions of firs order differential equations.

Letus consider the following firs order differential equation % = f(x, y) withini-
tial value y(a) = y, where f(x,y) is a known function define on an interval I = [a,b].

3 With a step of 1E-3.



Leth = b%“ be a real positive number where 7 is the number of considered points.
The real £ is called “step” and it is the step sizes between the points xg, x1, ..., X,.

The Euler’s method considers two sequences of real numbers x; and y; for all
i € [0,n — 1] such that x;41 = x; + & and y;4+1 = y; + hf(x;, y;) with values
in initial condition are respectively xo = a and yp = y(a). The linear approxima-
tion function of y(x) on [ is given by ¢ (x) = f(x;, yi)x + y; — f(x;i, yi)x; for all
x € [xi, x;41] and ¢ (x0) = yo.

In this work, we plan to determine the parameters of a system of differential equa-
tions obtained from measurements.

These measurements represent the number of ideas on a given interval [a,b] which
is equal to fab y(t)dt. To fin the parameters of dynamic models we propose the fol-
lowing optimization model:

m
Objective Min (oz > ei2 + Jfam( p)) where m is the number of measures,
function: i=
Constraints: Yi+l =yi +xjp1 —x;) f(x;, y;, p) foralli € [0, m — 1],
Sy = S =XOIRED forall i e [0, m — 1],
ord(b)
Mypi= Z Sj +¢; foralli € [1, m],
Jj=ord(a)
Data: My p; is the ith measure on [a, b],
x; sorted abcissa of considered points,
«a errors weight,
ord(u) returns the position of  in x,
Decision f differential equation % = f(x,y, p) of the model,
Variables:
p parameters in differential equation,
y; points determined by the Euler’s linear approximation,
S; trapezoid area with height x; | — x;,
fam objective function related to differential equation,
e; error of the ith measure.

In this optimization model, the objective function is divided in two parts. As Euler’s
method computes an approximation of solution functions, an error is inevitably pres-
ent. The firs part of objective function concerns the minimization of this error. The
second part is specifi to the dynamic model considered. In constraints, y; are Euler’s
points, S; correspond to surfaces calculated with Euler’s points. As Euler’s method
computes a linear approximation of solution functions; integration of these approxi-
mations corresponds to the calculation of trapezoid surfaces. In this problem, measures
can overlap, therefore for one measure on [a,b], it is possible that several points would
be calculated, in this case the measure corresponding to fab y(t)dt is equal to the sum
of trapezoid surfaces define from these points. At each measure, an error is inte-
grated for the approximation error but can also be used to introduce measurement
errors.



3.3 Optimization Model for Parameters Calculation of Non-Cognitive Model

In order to calculate parameters of the cognitive model, we apply the generic optimiza-
tion model previously presented. In our prediction context, solving time is important
to be able to use the optimization model during brainstorming sessions. Therefore, it
is necessary to fin a good compromise between solving time and precision. For this,
we chose as Euler’s points the starting and the ending points of measure’s intervals.
In this way, we limit the number of decision variables such that x;, y; and S; to the
minimum entailing a simplificatio of the optimization model.
The optimization model for the non-cognitive model can be expressed as follow:

n m

Objective (1) Min (‘7t > > e?k + fam(ag, by, mk)) where m is the number of mea-
function: k=li=1 "~

sures,

n n n

@) fam @y, by, mp) =14 z (a50.0235)>+7 z (b40.035)%+3 2 (m0.)?

with n the group size and k € [1, n],
Constraints: B) yit1.k =0k + tix1 — ;) fij foralli € [0,m — 1] and k € [[1, n],

n n
@) fik = —axoik —bg X o0p1+mp | 51 X 01— oix | foralli [0, m]
I#k 1%k

and k € [1, n]),

(5)oik =yikifyip > 0,0else, foralli € [1,m]land k € [[1, n]),

(6) Siy1 4 = LHITIOUTOLI for 011 € [0, m — 1] and & € [1, 7],

ord(b)
(7 My pik = > Sik ek if Myp ik =1, foralli € [[1,m] and
Jj=ord(a)
kell,n],
m
® 2 Sjxtemk <1ifMypp=1and Mp,, r <1, withk € [[1,n],
j=ord(b)

9) ag, by € 10, 1] and my € [0, 2],

(10) 0; = O foralli € [0,m] and k € [[1, n]],

(11)ej j €[—0.4,0.4] foralli € [1,m] and k € [[1, n],
Data: My p,i i 1s the ith measure of the participant & on [a, b],

t; boundary measures in chronological order,

ord(x) returns the position of x in ¢,
Decision ay, by and my model’s parameters of participant k,
Variables:

Vi k the ith Euler’s points for participant ,

0; i the ith ideas rate of participant £,

fi.k differential equations of the model,

Sam(ag, b, my) dynamic model part of objective function,

S; k ith trapezoid surface for participant k,

e; i error of the ith measure for participant k.

The model part of objective function (2) represents a square distance between social
factors and their reference values. Reference values chose in this problem are those that
have been established by Coskun and Yilmaz (2009) in their experimentations. The
whole objective function is a weighted sum of square distances to reference values.
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Rate of idea production
(Number of idaes / minute)

Time (minutes)

Fig. 3 Non-cognitive model with initial and found by optimization parameters

We consider that minimizing as possible errors is more important than factors’ values
close to their reference values, because more errors are low more measures follow the
differential equations (model). This preference is translated in weights where errors
have a weight of ‘7‘ and social factors a weight of %

The constraint (3) define Euler’s points according to differential equations presents
in (4). Ideas rates follow Euler’s points if they are positive or are set to zero oth-
erwise (5), this constraint comes from the Coskun’s and Yilmaz’s modelling. We
chose to process every idea one by one, therefore our measures are define to one
idea (7). When a brainstorming session finishes all participants could not have
enough time to generate one more idea, this situation is formalized in the constraint
(8).

For example in Fig. 3, full lines represent the initial ideas rates over time
(in minutes) for a group of three participants. The initial model is graphed using
Runge—Kutta’s four order method with the same parameters as before (that is p; =
(3.337,0.044, 0.140, 0.222), p» = (3.467,0.005, 0.022, 0.256) and p3 = (4.036,
0.120, 0.077, 0.189)). From these initial solutions, measures are computed by deter-
mining for each participant, all consecutive intervals [a, b] € [0, 20] from 0 such
as fab 0i(t)dt = 1. We then use the non-cognitive optimization model only with
these measures to calculate new parameters. The new parameters calculated in this
way are p; = (3.329,0.114,0.100, 0.148), p>» = (3.551, 0.024, 0.026, 0.200) and
P3 = (4.013,0.121, 0.071, 0.200) where p; = (6;(0), a;, b;, ;) with d; (0) the initial
rate of ideas, d;, b;, i; are respectively decay, blocking and matching rates obtained
with the optimization model. In the Fig. 3, the solution functions 01 (¢), 02 (¢) and 03 (¢)
computed with Runge—Kutta fourth are represented by doted lines. In this example,
these new parameters p;, pp and p3 provide a quite good approximation.



3.4 Feasibility Tests

Our feasibility tests follow roughly the procedure above:

1. Parameters P are drawn at random,

2. solution functions o; (¢) are computed by Runge—Kutta fourth method (precision
of 1E-3),

3. from these solution functions, measures M are extracted on all consecutive inter-
vals [a, b] from O such as fab 0i(t)dt =1 with j € [1,4] and b < b},

4. the optimizer is launched with A; in the non-cognitive problem previously de-
scribed ,

5. new parameters f’j are then calculated by the optimizer,
solution functions 0; () from 13]- are computed by Runge—Kutta fourth method
(precision of 1E-3),

7. Errors e;; are determinated with / € [1,4] and/ > ;.

More precisely, four measure sets M; are respectively extracted on intervals
[0, 51, [0, 10], [0, 15] and [0, 20] (3). These measure sets simulate respectively the
firs 5 min, the firs 10 min, the firs 15 min and the whole session. For each measure
set, model parameters and solution functions are computed (4 and 5).

Our objective is to predict the ideas number in the future. Therefore, we do not
calculate only an error on M but also on next intervals. For example, for M| (interval
[0, 5]), four errors are calculated on intervals [0, 5], [0, 10], [0, 15] and [0, 20]. In this
way, errors give some information about the solution functions accuracy after the last
measure (in the future).

We chose the following error calculus on interval [a, b]:
e=>" 1/ ab (6; (t) — 0;(¢))dt|, corresponding to the difference between the initial
number of ideas and the optimized number of ideas for the group.

In our test, we vary the group size from 2 to 10. For each size, the test procedure is
repeated fi e times from which the mean, the variance, the minimum and the maximum
of errors are calculated.

An extract of our tests results are presented in the Table 1. In the firs column,
the group size is pointed out, the total solving time is given in the second column
and, in the other columns, errors are calculated on considered intervals. Rows contain
intervals on which measures have been extracted. These tests have been performed by
GAMS/CONOPT3 non-linear optimizer*. We used default configuratio options of
CONOPTS3. The total solving time integrates the GAMS’s compilation time and the
CONOPT3’s optimization time.

In the Table 1, solving time is described in the following format “minutes:seconds”.
On average, more the group size is important more the problem is difficul to solve.
This tendency can be observed through the solving time. The solving time remains
reasonable; its maximum value is 16 s for ten persons. As we can see, errors are not too
different between measure intervals and extrapolated intervals. This seems to confir
the adequacy of the proposed approach to the prediction of the ideas number in the

4 0OnaPC computer (Pentium Dual-Core E5200 2.5GHZ and 4 GO RAM) whith Windows XP operating
system.



Table 1 Non-cognitive tests results

Group size ~ Measures  Solving time  Error [0, 5] Error [0, 10]  Error [0, 15]  Error [0, 20]
2 [0, 5] Mean:0:1 Mean: 0.043  Mean: 0.660  Mean: 2.188  Mean: 4.155
Var: 0:1 Var: 0.000 Var: 0.133 Var: 1.023 Var: 3.195
Min: 0:1 Min:0.012 Min: 0.179 Min: 0.794 Min: 1.614
Max: 0:1 Max: 0.069 Max: 1.300 Max: 3.910 Max: 7.098
[0, 10] Mean: 0:1 Mean: 0.154  Mean: 0.270  Mean: 0.620
Var: 0:1 Var: 0.003 Var: 0.093 Var: 0.422
Min: 0:1 Min: 0.047 Min: 0.039 Min: 0.106
Max: 0:1 Max: 0.212 Max: 0.864 Max: 1.418
[0, 15] Mean: 0:1 Mean: 0.303  Mean: 0.418
Var: 0:1 Var: 0.016 Var: 0.063
Min: 0:1 Min: 0.088 Min: 0.078
Max: 0:1 Max: 0.463 Max: 0.852
[0, 20] Mean: 0:1 Mean: 0.479
Var: 0:1 Var: 0.068
Min: 0:1 Min: 0.138
Max: 0:1 Max: 0.857
4 [0, 5] Mean: 0:1 Mean: 1.415  Mean: 2.119  Mean: 2.328  Mean: 2.380
Var: 0:1 Var: 0.101 Var: 0.343 Var: 0.424 Var: 0.458
Min: 0:1 Min: 1.028 Min: 1.352 Min: 1.377 Min: 1.372
Max: 0:1 Max: 1.908 Max: 2.881 Max: 3.171 Max: 3.249
[0, 10] Mean: 0:1 Mean: 2.271  Mean: 2.570  Mean: 2.668
Var: 0:1 Var: 0.152 Var: 0.117 Var: 0.099
Min: 0:1 Min: 1.418 Min: 2.199 Min: 2.356
Max: 0:1 Max: 2.830 Max: 3.129 Max: 3.214
[0, 15] Mean: 0:1 Mean: 2.697  Mean: 2.822
Var: 0:1 Var: 0.173 Var: 0.165
Min: 0:1 Min: 2.199 Min: 2.370
Max: 0:1 Max: 3.365 Max: 3.508
[0, 20] Mean: 0:1 Mean: 2.843
Var: 0:1 Var: 0.152
Min: 0:1 Min: 2.370
Max: 0:1 Max: 3.508
8 [0, 5] Mean: 0:2 Mean: 3.442  Mean: 4.165 Mean: 4.365 Mean: 4.413
Var: 0:1 Var: 0.080 Var: 0.110 Var: 0.124 Var: 0.126
Min: 0:1 Min: 2.932 Min: 3.547 Min: 3.717 Min: 3.756
Max: 0:2 Max: 3.718 Max: 4.530 Max: 4.763 Max: 4.806
[0, 10] Mean: 0:2 Mean: 4.218 Mean: 4.455  Mean: 4.520
Var: 0:1 Var: 0.087 Var: 0.095 Var: 0.100
Min: 0:2 Min: 3.656 Min: 3.873 Min: 3.928
Max: 0:3 Max: 4.524 Max: 4.755 Max: 4.798




Table 1 continued

Group size ~ Measures  Solving time  Error [0, 5] Error [0, 10]  Error [0, 15]  Error [0, 20]

[0, 15] Mean: 0:2 Mean: 4311  Mean: 4.358
Var: 0:1 Var: 0.124 Var: 0.135
Min: 0:2 Min:3.667 Min:3.698
Max: 0:2 Max: 4.648 Max: 4.753
[0, 20] Mean: 0:2 Mean: 4.358
Var: 0:1 Var:0.135
Min: 0:2 Min: 3.698
Max: 0:2 Max: 4.753
10 [0, 5] Mean: 0:3 Mean: 4921  Mean: 5.302 Mean: 5.384  Mean: 5.401
Var: 0:3 Var: 0.234 Var: 0.376 Var: 0.448 Var: 0.473
Min: 0:2 Min: 4.514 Min: 4.626 Min: 4.566 Min: 4.529
Max: 0:6 Max: 5.589 Max: 6.070 Max: 6.181 Max: 6.200
[0, 10] Mean: 0:4 Mean: 5.561 Mean: 5.708 Mean: 5.748
Var: 0:5 Var: 0.252 Var: 0.263 Var: 0.262
Min: 0:2 Min: 4.885 Min: 4.974 Min: 5.000
Max: 0:8 Max: 6.154 Max: 6.331 Max: 6.378
[0, 15] Mean: 0:5 Mean: 5.727  Mean: 5.770
Var: 0:6 Var: 0.255 Var: 0.254
Min: 0:2 Min: 4.974 Min: 5.000
Max: 0:8 Max: 6.331 Max: 6.378
[0, 20] Mean: 0:5 Mean: 5.770
Var: 0:6 Var: 0.254
Min: 0:2 Min: 5.000
Max: 0:8 Max: 6.378

future. Let us note that our error calculus is a cumulative calculus, that is for two
participants if individual errors were 0.5 then the group error would be 1. Depending
to the way of production duration is assessed; this error can overestimate (equals to
0) or underestimate (equals to 2) the real value. We intend to assess the production
interval [a, b] by considering that a is the instant of the end of the last production and,
b is the instant of the end of the current production. In most cases, the expression time
(speech time) is short in the interval [a, b], our error calculus will thus overestimate
the real e.

3.5 Discussion

Our approach presented earlier seems appropriate to predict ideas number using dif-
ferential equations based on models. We believe that this approach can be useful in
several other situations if we adapt the generic optimization model.

Some important advantages of this approach are:



— model parameters can be calculated only with measures through the optimization
model,

— the solving time of the optimization model can be fast,

— it can be used when the solution functions of differential equations are not known,
or if they were known when the integral functions remain unknown,

— it processes cases where measures overlap.

Of course, this approach shows also some disadvantages:

— The numerical method provides an approximation of solution functions,

— the optimization model requires an hand configuratio by definin the precision
(x; points), the model part of the objective function and errors range.

— The Euler’s method is very sensitive to the function variations inside define steps
(xi+1 — x;). As the slope of the straight line is calculated only at the start of steps
(x7), if the slope strongly varies (that is slope in others points is very different),
then the Euler’s linear approximation could be really wrong.

Our feasibility test confirm that the presented optimization model could be used
to determine parameters of the non-cognitive model during a brainstorming session
only with the knowledge of ideas production duration. Moreover, solution functions
determined with these computed parameters allow the prediction of ideas number in
the future (after the expression of the last idea).

4 Cognitive Model of Brainstorming

The cognitive model used in this part is more complex than the non-cognitive model
(see Brown and Paulus 1996). We will show that this cognitive model is out of the
applicability scope of the previous generic optimization model. A more accurate new
model will be proposed to solve problems posed by the cognitive model. This gen-
eral optimization model will be adapted to the cognitive model of brainstorming, and
we will test its feasibility on artificia tests. As for the non-cognitive model, we will
discuss the tests, advantages and disadvantages of this new optimization model.

4.1 Mathematical Model

In the cognitive model, three cognitive processes are introduced: idea generation, idea
memory and idea output. This model assumes that a participant generates ideas (gen-
eration process) and stores them in short-term memory (memorization process) and
then eventually extracts some of them from its short-term memory to express them
(output process).

For each participant i of a group of'size n, this model is represented by the following
three equations:

dg;i(t)
= —a;gi(t) — b éoj(t)
ds;(t)

g = s +gi(0) —oi() with g;(£) =2 0,0 <s;(1) = K, 0;(t) = 0



and ¢t € [0, +o0[

do; 1
20 = oy 4750~ fi Y os0 +mi | > 0,0~ 010
J#i J#i

where g;(¢) describes the rate of generated ideas by the participant i over time. it
decays at the rate ;. This model considers the produced ideas (outputs) of other par-
ticipants block the ideas rate of i at the rate b;. s;(¢) is the number of ideas in the
short-term memory, ¢; is the forget rate. As for the non-cognitive model, o; (¢) is the
ideas rate which decay at the rate d;; f; and m; are respectively the blocking and
the matching influences The additional term r; represents the rate of ideas extracted
from the memory. In this modelling, ideas come from the idea generation process,
and then are stored in memory (memorization process) and then are outputted (output
process). Thus, at the session beginning (¢ = 0), the generation and memorization
rates are equal to zero (0; (0) = s;(0) = 0).

As Coskun and Yilmaz (2009), to be more realistic, some physical constraints have
been added. These constraints state that the rate of generated ideas (g;(¢)), the rate
of ideas in memory (s; (¢)) and the rate of expressed ideas (o; (¢)) must be positive or
null. Moreover, the memory capacity is not considered infinit but is limited to the
constant value K.

The impact of blocking factor on ideas number is formalized in the same manner
as in non-cognitive model. Blocking influence both generation and output processes.
In the generation process, ideas expressed by others are assumed to captivate a bit of
attention of a participant and therefore may have the effect of inhibiting its train of
thought. When someone speaks, usually the others will not have too much the desire to
speak at the same time; this behavior is formalized by the blocking factor in the output
stage. On the other hand, the matching only affects the output process and shares the
same mathematical representation with the non-cognitive model.

Forexample, in the Fig. 4, the cognitive model is plotted for a group of two members.
In this figure parameters vectors used are p; = (2.750, 0, 0, 0.024, 0.035, 0.200,
0.900, 0.024, 0.024, 0.035) and p; = (2.250, 0, 0, 0.024, 0.035, 0.200, 0.900, 0.024,
0.024, 0.035) where p; = (g;(0), 5:(0), 0;(0), a;, b;, ci, d;i, i, fi, m;) are the param-
eters vector of participant i and g; (0) is the initial rate of ideas number, a; the decay
rate and b; the blocking rate for the idea generation process; s; (0) always equal to zero
is the initial rate of ideas number in memory and ¢; the forget rate; o;(0) also equal
to zero is the initial rate of ideas number expressed, d;, r;, f; and m; are respectively
the decay, extracted, blocking and matching rates of the output process.

The numerical Runge—Kutta method fourth order® has been used to compute solu-
tion functions of each cognitive process. As for the non-cognitive model, due to model
complexity, it is not always possible to fin solution functions in the form of analyti-
cal functions, then we will use numerical methods to approximate the above solution
functions.

5 With a step of 1E-3.
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Fig. 4 Example of cognitive model with a group of two members. a Generation process. b Generation
process. ¢ Output process

4.2 Runge—Kutta Based Generic Optimization Model for Parameters Calculation

Unfortunately, in most cases, the previous generic optimization model based on Euler’s
method can not be used for the cognitive model. To illustrate this problem, let us con-
sider the cognitive model presented in Fig. 5a. This model is the same as in Fig. 4
(same parameters vectors). Solution functions (full lines) are calculated by Runge—
Kutta’s fourth method with a step of 1E-3. From these functions, measure intervals
[a, b] corresponding to a surface of one ( f ab 0;(t)dt = 1) are extracted. As in our
previous optimization model, Euler’s method is applied on these measure intervals,
thereby definin our Euler’s solution functions (doted lines). As we can see in the
Fig. 5a, the approximation caused by Euler’s functions is too bad and will result in an
infeasible optimization problem.

In this dynamic model, the variation of ideas rate inside measure intervals can be
important. In this case, the Euler’s method is not suitable (see the disadvantages previ-
ously discussed). One way to address this problem would be to increase the precision
by decreasing the step. However, this approach entails an increase number of decision
variables resulting in a more complex optimization model that will increase also the
solving time. In the example of Fig. 5, a step of 0.5E-1 can be used, nevertheless
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Fig.5 Example of cognitive model with a group of two members. a Euler’s method on measure intervals.
b Runge—Kutta’s fourth method on measure intervals

this would generate 73 % more x; variables. Another way to deal with this problem
would be to change the numerical method to a more precise. We chose this second
approach by using the Runge—Kutta’s fourth numerical method for solving firs order
ordinary differential equations. As we can see in Fig. 5b, in the previous example, the
Runge—kutta’s method was applied to measure intervals and provides a satisfactory
approximation.

The fourth order Runge—Kutta’s method as Euler’s method determines a linear
approximation of solution functions of firs order differential equations. Let us con-
sider the firs order differential equation % = f(x,y) with initial value y(a) = y,



and f(x,y) is a known function define on an interval I = [a, b]. Let h = bn;“ be a
real positive number where 7 is the number of considered points. The real / is called
“step” and it is the step sizes between the points xg, x1, ..., X,.

The forth order Runge—Kutta’s method considers two sequences of real numbers
x; and y; for all i € [[0,n — 1] such that x;1 1 = x; + & and y;4+1 = y; + hK; with

k4202 4213 i
K; = ~———= where:

kl-l = f(xi, yi), kl-1 is the slope at x; (interval beginning),
h h h
kl.2 =f (x,- + 50 Vi + Ekil) , kl2 is the slope at x; + 3 (interval middle)
using &, as slope,

h h
kl.3 =71 (x,- + 5 Vi + Ekzz) , kl.3 is the slope at the interval middle

using ki2 as slope,
klf‘ = f(x;i+h,y+ hkl?’), k? is the slope at x; + /4 (interval end)

using ki3 as slope.

The values in initial condition are respectively xo = a and yo = y(a). The linear
approximation function of y(x) on / is given by ¢ (x) = K;x + y; — K;x; for all
x € [x;,x;4+1] and ¢ (x9) = yo. In the paper, when we will mention Runge—Kutta’s
method, we will refer to the fourth order Runge—Kutta’s method.

To fin parameters of the cognitive model from measures M, 5, = |, ab y(t)dt on
[a, b], we propose the following optimization model based on Runge—Kutta’s numer-
ical method:

m
Objective Min (ot > eiz + fam (p)) where m is the number of measures,
function: i=1
Constraints: hi = (xj41 —x;) foralli € [0, m — 11,

Yit1 =yi +h;K; foralli € [0, m — 1],

AR ) ) S
K; = +—"—t—L foralli € [0,m — 1],

kil = f(x;,y;, p) foralli e [0,m — 1],
= foi+ %,y + %kl p) foralli € [0, m — 11,
kli =fO+F. v+ Tilgl.z,p) forall i € [0,m — 11,
ki = f(;,-.(fﬁ,-,.y,- + hik;, p) foralli € [0, m — 1],
Sp1 = MO foralli € [0, m — 11,

ord(b)

Mypi= 2 Sj+eforalliell,ml,
j=ord(a)

Data: M, p; is the ith measure on [a, b],
x; sorted abcissa of considered points,
h; the step,
« errors weight,
ord(u) returns the position of  in x,




Decision f differential equation Z)‘: = f(x, y, p) of the model,
Variables:

p parameters in differential equation,

K;, kl1 R k2 k3 and k4 are Runge—Kutta’s slopes,

y; points determmed by the Runge—Kutta’s linear approximation,

S; trapezoid area with height x; 1 — x;,

fam objective function related to differential equation,

e; error of the ith measure.

In this new optimization model, only the numerical method has been changed. As
Runge—Kutta’s and Euler’s methods provide a linear approximation, the optimization
model is identical to the Euler based optimization model presented previously, except

that Euler’s slopes are replaced by Runge—Kutta’s slopes.

4.3 Optimization Model for Parameters Calculation of Cognitive Model

To determine parameters of the cognitive model, the Runge—Kutta based generic opti-
mization model is applied. We used the same compromise between precision and
solving time by choosing as Runge—Kutta’s points the start and the end of measure
intervals. Moreover, the interval measure extremities are determined in the way that

the number of ideas for one participant is equal to 1 (that is fab o0i(t)dt = 1).
The optimization model can be described as following:

Objective function:

o Min(15 Z Z e + fam @k, b, ¢k di fi. mk))
=12
where m is the number of measures,

n
@) fam(ag, b c. di. feomp) = 5 2 (ax — 0.0235)?
k=1

n n
ik D (b —0.035)2 +1% > (¢ —0.0235)
k=1 k=1
n n
i D (dy —0.0235)% + Z (fi — 0.035)2
k=1

sl

+1= 15 z (my — 0.2)% with n the group size and k € [[1, n]|,

Constmmts foralli € [0,m — 1], k € [1,n]l and p € [[1,4]:
B3 hi =tig1 — 1,

4 ui k1 = &ik

(5) ui k2 =max (0, gk + ’“f

1)
)

T ga =max (0, g0k +hig1 15 5):
®) vik,1 =ik

(9) vi k2 = max ( )
X

h:
(10) vj f,3 = ma (0» Sik+ = fiik,z)’

(1) vi g g = max (0,505 +hig1 /) 5 )5

(
(6) u; 3 = max (0, ik
(

5

zkl

(12) wj k1 = o4 >




13) w; .2 = max O’OAk_i_h,-Jrl ” )
ik, i 100

(14) w; f 3 = max ((), o1k + h,—2Jrl o0,

(15) wj k4 = max (o, oik+ hi+1f}i’k!3),

(16) Kgy g = Tkt P2 lua 2 st fia
1,k — = ,

S s s R

(17) Ksj p = S 2 ka2t s

L,k —

6 £
0 4210, 4210 o
(18) Koi,k _ fl,k,l ft,k,26 ft,k.3+-fl,k,4 ,
(19) gj = max (0, g & + hiy1Kgi ),
(20) 5, = max (0, s; & + hjy1Ksi k),
(21) 0; j = max (O, 0k + hi+1nK0i,k)’

(22) ffk,p = —aguik,p — bk 2 Uil p
I#k
(23) flkp = —CkVik.p + Uikp — Wik.p>
n n
1
CH [ p = —dkwik.p + riukip = fi IZ w; g, p +mg [,,1 kai,l,p - wi,k,p:|,
#k I

Q5) Sip1 k= hi (0 k+0i+1,k)

2
ord(b) )
@O Mypin= 2 SjkterifMgpix=1
Jj=ord(a)
m
@7 X Sjktemi <1lifMyp = 1land My, r <1, withk € [[1,n],

Jj=ord(b)
(28) ay, by, ck, dy, fi,rr €10, 1] and my € [0, 2],
CNuikp=0,vip=0,wikp>0,84%>0,84>00 4 >0,
(30) 00,k =50,k =0,
(Bl)e;; €[-0.4,0.4]
Data:
My p. i i is the ith measure of the participant & on [a, b],
t; boundary measures in chronological order,
h; measures duration,
ord(x) returns the position of x in ¢,
Decision Variables:
ay, b, ¢k, di, [k, rr and my are model’s parameters of participant &,
Uj k,p» Vik,p and wj g p are points for Runge-Kutta calculation,
Kgj k, Ks;i i and Ko; ;. are Runge—Kutta’s slopes for generation, memory and
output processes,
gi k> ik and o; i the ith are ideas rate of participant k for generation, memory
and output processes,
fzgk » ff kop and fi(,)k, p e differential equations of the model,
fdam(ag, by, my) is the dynamic model part of objective function,
S; k 1s the ith trapezoid surface for participant k,
e; i 1s the error of the ith measure for participant k.

As for the non-cognitive problem, objective function minimizes errors (1) and the
distance to reference values (2). The reference values used are those that have been
established by Coskun and Yilmaz (2009). In this objective function, the minimization
of errors (coefficien of %) is preferred to the minimization of distances between fac-
tors and their reference values (coefficien of 11—5). In our notation, g, s and 0 mean that
the designated variables refer to the generation, memorization and output processes.
The constraints between (4) and (24) describe the application of the Runge—Kutta
method for these processes. The variables ffk,l (or £y 15 fik.1) correspond to k!

Runge—Kutta’s slopes, ffk’3 (or [0 Jiko) 10 k2, ffks (or [y 3> fik3) to k* and
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Fig. 6 Cognitive model with initial and found by optimization parameters. a Generation process. b Mem-
orization process. ¢ Output process

l.gkozs °T% to k*. For the generation process, the variables u; | represent the variables

ik Ui k.2 the variables g; 4 + h"z—“fijgk’l, u; k.3 the variables g; x + ’%ffk’z and u; x 3
the variables g; r + %1 figk ;- In that way, figk | represent f(gi ), figk , represent

f(gik + }%kl), and so on. Let us note that u; t,, are positive or null (max func-
tion). The variables K g; x are the fina slopes of Runge—Kutta’s method. The same
formalization is used for other processes, and the rest of constraints are identical to
the non-cognitive problem.

We applied the optimization model described above on measures extracted from
the model of the Fig. 4. The parameters obtained by the optimizer are : p; =
(2.778,0,0,0,0.108, 0,0.037,0.772, 0.021, 0.227) and p> = (2.280, 0, 0, 0, 0.078,
0,0.011,0.766, 0.047, 0.176). Inthe Fig. 6, initial and computed by optimization solu-
tion functions are respectively plotted in full lines and in dotted lines®. As we can see
in Fig. 6, in the output process, the approximation provided is quite good. In many
cases, many solutions functions exist for the same output solution functions; which ex-

6 The initial model uses p1 and pp parameters and the computed by optimization model p; and p;. In
both models, solution functions are calculated by fourth order Runge—Kutta’s method with a step of 1E-3



plains why in the example of the Fig. 6, the generation and the memorization solution
functions are quite different to the initial ones.

4.4 Feasibility Tests

The proposed feasibility tests follow the same procedure than those of the non-cogni-
tive model. Parameters are drawn at random and some measures are extracted. From
these measures, the Runge—Kutta based optimization model is applied, providing new
parameters and an error is calculated. Measures are extracted on four intervals ([0,5],
[0,10], [0,15] and [0,20]), and errors are determined on these four intervals allowing
us to test predictions. For each size, the procedure is repeated fi ¢ times.

An extract of our tests results are presented in the Table 2. These tests have been per-
formed by GAMS/CONOPT3 non-linear optimizer’. In our use context, the solving
process must not take too much time, we thus choose to limit the optimization time to
1.30 min (set in configuratio options of CONOPT3). As previously, the total solving
time integrates the GAMS’s compilation time and the CONOPT3’s optimization time.

Let us note that for groups of 8 and 9 members, the solving time exceeds the limit of
1.30 minutes: this is due to the GAMS compilation time. In addition, for these groups,
the optimizer did not complete its optimization process, and therefore did not provide
the locally optimal solution but only a feasible solution. This explains why the solving
time is approximately constant (about 1.35 min).

The errors are not too different between measure intervals and extrapolated inter-
vals, which seems to confir the adequacy of the Rung—Kutta based optimization
model to our prediction context. Moreover, this optimization model can be directly
applied to groups of small size (from 2 to 6). However, it requires further develop-
ments to reduce the solving time for groups larger than 6. In our tests, the solving time
exceeds the limit of 1.30 min for groups of 10 participants.

4.5 Discussion

The presented fourth order Runge—Kutta based optimization model can be used when
Euler’s method is not enough precise and could result to an infeasible optimization
problem. This method generally increases the precision but also the solving time. It
shares many advantages and disadvantages with Euler’s based problem, which are:

— Advantages:
— Model parameters can be calculated only from measures,
— The solving can be even fast (as for small groups in our tests),
— It can be used when solution functions of differential equations are unknown,
or when their integrals are also not known,
— It processes cases where measures overlap,
— It is more precise than Euler’s based optimization model.

7 OnaPC computer (Pentium Dual-Core E5200 2.5GHZ and 4 GO RAM) with Windows XP operating
system.



Table 2 Cognitive tests results

Group size ~ Measures  Solving time  Error [0, 5] Error [0, 10]  Error [0, 15]  Error [0, 20]
2 [0, 5] Mean:0:2 Mean: 0.282  Mean: 0.579  Mean: 1.767  Mean: 3.544
Var: 0:1 Var: 0.008 Var: 0.128 Var: 0.876 Var: 2.443
Min: 0:1 Min:0.199 Min: 0.114 Min: 0.722 Min: 1.117
Max: 0:3 Max: 0.439 Max: 1.020 Max: 2.983 Max: 5.522
[0, 10] Mean: 0:3 Mean: 0.111  Mean: 0.209  Mean: 0.838
Var: 0:4 Var: 0.005 Var: 0.019 Var: 0.942
Min: 0:1 Min: 0.030 Min: 0.040 Min: 0.182
Max: 0:6 Max: 0.191 Max: 0.452 Max: 2.749
[0, 15] Mean: 0:5 Mean: 0.303  Mean: 0.778
Var: 0:9 Var: 0.028 Var: 0.406
Min: 0:1 Min: 0.019 Min: 0.087
Max: 0:9 Max: 0.506 Max: 1.971
[0, 20] Mean: 0:8 Mean: 0.442
Var: 0:22 Var: 0.054
Min: 0:3 Min: 0.031
Max: 0:14 Max: 0.713
4 [0, 5] Mean: 0:23 Mean: 0.543  Mean: 0.950 Mean: 5.182  Mean: 9.763
Var: 0:58 Var: 0.017 Var: 0.351 Var: 8.295 Var: 24.326
Min: 0:18 Min: 0.350 Min: 0.309 Min: 0.061 Min: 0.520
Max: 0:38 Max: 0.674 Max: 1.819 Max: 8.467 Max: 15.062
[0, 10] Mean: 0:37 Mean: 0.485 Mean: 4.104  Mean: 8.622
Var: 3:2 Var: 0.132 Var: 4.807 Var: 22.979
Min: 0:19 Min: 0.004 Min: 1.840 Min: 3.020
Max: 0:50 Max: 0.933 Max: 6.700 Max: 15.464
[0, 15] Mean: 0:45 Mean: 0.371  Mean: 1.700
Var: 3:44 Var: 0.043 Var: 0.818
Min: 0:25 Min: 0.141 Min: 0.361
Max: 1:12 Max: 0.755 Max: 3.072
[0, 20] Mean: 1:15 Mean: 0.418
Var: 2:37 Var: 0.012
Min: 1:0 Min: 0.207
Max: 1:35 Max: 0.507
8 [0, 5] Mean: 1:30 Mean: 0.804  Mean: 3.937 Mean: 5.139  Mean: 5.409
Var: 1:39 Var: 0.766 Var: 3.893 Var: 3.568 Var: 2.609
Min: 1:10 Min: 0.004 Min: 0.698 Min: 2.046 Min: 2.949
Max: 1:35 Max: 2.420 Max: 6.685 Max: 7.103 Max: 7.459
[0, 10] Mean: 1:35 Mean: 1.831  Mean: 2.039  Mean: 2.357
Var: 0:1 Var: 0.914 Var: 3.453 Var: 5.760
Min: 1:34 Min: 0.936 Min: 0.787 Min: 0.508
Max: 1:36 Max: 3.566 Max: 5.719 Max: 6.906




Table 2 continued

Group size ~ Measures ~ Solving time  Error [0, 5] Error [0, 10]  Error [0, 15]  Error [0, 20]
[0, 15] Mean: 1:35 Mean: 4.715  Mean: 5.779
Var: 0:1 Var: 37.694 Var: 75.011
Min: 1:35 Min:0.593 Min:0.187
Max: 1:36 Max: 16.866  Max: 22.984
[0, 20] Mean: 1:35 Mean: 3.009
Var: 0:1 Var:16.500
Min: 1:35 Min: 0.207
Max: 1:35 Max: 10.895
9 [0, 5] Mean: 1:35 Mean: 1.090 Mean: 2.956 Mean: 2.844  Mean: 2.864
Var: 0:1 Var: 0.469 Var: 7.034 Var: 6.319 Var: 4.475
Min: 1:35 Min: 0.490 Min: 0.293 Min: 0.191 Min: 0.134
Max: 1:35 Max: 2.351 Max: 7.628 Max: 6.971 Max: 6.413
[0, 10] Mean: 1:35 Mean: 1.112  Mean: 1.125  Mean: 1.352
Var: 0:1 Var: 1.209 Var: 0.624 Var: 1.460
Min: 1:35 Min: 0.065 Min: 0.164 Min: 0.319
Max: 1:36 Max: 2.746 Max: 1.989 Max: 3.652
[0, 15] Mean: 1:36 Mean: 3.293  Mean: 4.098
Var: 0:1 Var: 16.018 Var: 24.401
Min: 1:35 Min: 0.090 Min: 0.180
Max: 1:38 Max: 10.968  Max: 13.750
[0, 20] Mean: 1:36 Mean: 4.358
Var: 0:1 Var: 31.961
Min: 1:35 Min: 0.004
Max: 1:36 Max: 15.427
— Disadvantages:

— Even if the model is more precise, Runge—Kutta’s method provides an approx-
imation of solution functions,
— The optimization model requires an manual configuration
— As Euler’s method, Runge—kutta’s method is also sensitive of function varia-
tions inside steps (x;+1 — Xx;).

In our application context, we intend to determine parameters of dynamic models
during the brainstorming session with the presented optimization models. Thanks to
these calculated parameters, we will be able to predict the number of ideas in the
session future. Therefore, it does not necessarily need to compute new parameters
after each measure (idea). Indeed, if current measures well fi to the solutions func-
tions determined before with previous ideas, it is not required to reapply the proposed

optimization models.

In their experimentations, Coskun and Yilmaz (2009) noted that in the firs half of
the brainstorming session, the non-cognitive model fit better to the number of ideas



recorded than the cognitive model, and conversely, the cognitive model was better in
the second half of the session. Therefore, the use of the both models (non-cognitive and
cognitive) and our both optimization models (Euler based and Runge—Kutta based)
could be interesting for the prediction of ideas number.

5 Conclusion

In this paper, we presented an approach allowing the prediction of ideas number during
a brainstorming session. This prediction is based on two dynamic models of brain-
storming, the non-cognitive and the cognitive models proposed by Brown and Paulus
(1996), and extended by Coskun and Yilmaz (2009). These models describes for each
participant, the evolution of ideas number over time according to three social factors
(decay, blocking and matching), and are formalized by differential equations. The
solution functions of these models offer a precise description of ideas number over
time. Through them, it is then possible to calculate the number of ideas of each par-
ticipant on any time intervals and thus in the future®. However, to be able to compute
solution functions, it is necessary to determine the parameters of these models.

In many dynamic models, analytical solution functions or their integrals are un-
known. In our approach, we propose to use optimization model for model parameters
calculation in which solution functions are approximated by numerical methods. In
our context of prediction, we want to determine models’ parameters in real-time (that
is during the brainstorming session), therefore the time of parameters calculation is
very important and must be reasonable.

We developed a generic optimization model based on Euler’s numerical method
and we applied it to the non-cognitive model. Through artificia tests, this optimization
model appears appropriate to the parameters calculation of the non-cognitive, and sat-
isfie our time constraint. Moreover, these tests confir  the adequacy of the proposed
approach to predict the ideas number in the future. However, the Euler based generic
optimization model can not be applied to the cognitive model on measure intervals.
We then proposed the use of a more precise numerical method, the forth order Run-
ge—Kutta’s method. A new generic optimization model based on it for parameters
calculation was presented, and we applied it to the cognitive model. Our tests showed
the adequacy of this new optimization model to our prediction context. This optimi-
zation model can be directly applied to groups of small size (from 2 to 6), however
requires further developments to reduce parameters calculation time for groups larger
than 6.

We believe that our approach for determining parameters of dynamic models from
measurements can be useful in many other situations, either by adapting the generic
optimization models proposed or by changing the numerical method. Some advanta-
ges of this approach are: models parameters can be calculating only from measures,
the parameters calculation time may be short, it can be used when solution functions
or their integral functions are not known, the measures can overlap, and the change
of numerical method is relatively easy. Some disadvantages are: numerical methods

8 Which we call prediction.



provide an approximation of solution functions, the optimization model requires hand
configuration and the proposed numerical methods are sensitive to the function vari-
ations inside steps.

This approach will be tested on face to face real brainstorming sessions by using
microphones to measure the duration of ideas production, and in electronic brainstorm-
ing sessions by using a timer. Through these experimentations, it might be possible to
study in more details the eventual dynamic of the social factors (parameterization of
the dynamic models). We also plan to extend this work to ideas quality by adapting it
to the Bounded Ideation Theory proposed by Briggs and Reinig (2010). Finally, the
proposed predictions will be integrated to our efficien y measure of decision making
meetings (see Camilleri and Zarat 2009) and will contribute to our GDSS facilitation
tool.
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