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Abstract In this article, we present an algorithm to

extract adaptive surfaces from anisotropic volumetric

data. For example, this kind of data can be obtained

from a set of segmented images, from the sampling of

an implicit function or it can be built by using depth im-

ages produced by time-of-flight cameras. However, for

many applications as geometry modelling, rendering or

finite elements, it is better to use an explicit surface

representation. This surface must fit to the geometri-

cal and topological features of the object in order to

obtain a good approximation and to avoid topological

artefacts. Our algorithm is able to extract adaptive sur-

faces that accurately approximate the geometry of the

original object while minimizing aliasing effects. In ad-

dition, our solution is suitable to handle the anisotropy

of volumetric representations. In comparison with rele-

vant methods in the state of the art, ours offers a good

compromise between mesh quality and precision in the

geometrical approximation.

Keywords Surface extraction, Multi-resolution

models, Volumetric representation, Image processing.

1 Introduction

Volumetric data are already being used as a valu-

able source of information in multiple domains. It can

be obtained from the segmentation of a set of images

obtained from a MRI or from 3D rasterization in order

to produce a voxel representation of the object. Simi-
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larly, the recent developments of time-of-flight camera

technology makes it possible to create 3D models from

objects by using depth information in a scene.

Volumetric datasets are often characterized by a strong

anisotropy caused by the increasing resolution of images

(millions of pixels) produced compared with the small

quantity of provided images (usually some hundreds).

This will produce highly stretched voxels affecting the

ability of conventional octree based algorithms to cap-

ture high frequency details of the surface.

Voxel data can be represented as a scalar function F

so that
{
F (x, y, z) ∈ R | (x, y, z) ∈ Z3

}
defined at the

nodes of a regular grid Ω. Let vx,y,z be the voxel centred

at the index (x, y, z). A labelled volumetric object is de-

fined as the set of voxels V = {∀vx,y,z | F (x, y, z) = l}
where l is a value usually established in a segmentation
process.

However, for rendering and geometrical modelling, it is

more suitable to handle an explicit surface representa-

tion. This has increased the development of algorithms

to extract a piecewise surface approximation from the

discrete surface of V , noted ∂V .

Generating accurate surfaces from voxels is challenging

because many datasets can include degenerated config-

urations that will induce non-manifold surfaces. More-

over, ∂V can contain sharp features that will force to in-

crease arbitrarily the sampling. In these cases, uniform

sampling is not efficient because most of the samples

are far from the surface. Therefore, we need a method

that adaptively samples ∂V and generates an accurate

surface.

In order to be used by post processing algorithms as

re-meshing or rendering, the extracted surface must be

a topological 2-manifold, which means that every edge

on the surface has to be shared by at most two polygons

while each vertex in the surface must be surrounded by
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a 1-ring of edges. Additionally, for numerical applica-

tions, the quality of individual polygons is an important

factor that can strongly affect the performance and con-

vergence of numerical algorithms.

In this article, we present a surface extraction method

well adapted to anisotropic volumetric datasets. It pro-

duces visually appealing meshes while preserving the

quality of most of the triangular elements.

2 Related Work

There is a vast bibliography concerning surface gen-

eration methods. Most methods used to extract surfaces

from labelled volumetric data are based on the well

known Marching Cubes algorithm [8]. Dual Contouring

methods have been mainly used with implicit functions

but some of them have been partially adapted to vol-

umetric data. We briefly summarize relevant methods

hereafter.

The Marching Cubes (MC) algorithm is based on a reg-

ular division of the volumetric data in cubical cells that

can be processed separately. All possible intersection

patterns have been reduced to 14 pre-calculated cases

resumed in a look-up table. However, MC extracts very

dense surfaces with many bad-shaped triangles.

Several algorithms have made improvements to MC [20,

15,10]. Kobbelt et al. [6] replace the regular grid by an

octree and only process the cells which intersect the sur-

face. Varadhan et al. [18] control the octree subdivision

using a topology preserving criterion in order to make

every cell MC-compatible and obtain consistent adap-

tive meshes. Kazhdan et al. [5] propose an algorithm

to extract closed manifold surfaces with MC from un-

restricted octrees. However, all these algorithms apply

MC triangularion inside cells and generate a lot of bad

quality triangles. In addition, as surface nodes are lo-

cated on the edges of octree cells, sharp features are

lost during reconstruction.

Fig. 1 (Left) Non-manifold vertex configuration and (right)
non-manifold edge configuration in original Dual Contouring
algorithm.

Dual contouring (DC) methods (see Ju et al. [4,13])

are able to build adaptive meshes and to capture sharp

features in the presence of Hermite Data (surface nor-

mals). In these methods, surface nodes are not created

on cell’s edges but one node is generated inside every

cell. However, this approach can produce topological

artefacts and non-manifold configurations as illustrated

in figure 2.

By limiting DC octree adaptivity, Varadhan et al. [17]

have proposed an improved DC that avoids non-manifold

configurations. Then, in Dual Marching Cubes (DMC),

Nielson [11] used a look-up table to produce surfaces

that are dual to those created by Marching cubes by

allowing cells to contain more than one dual node in

order to solve the non-manifold vertex configurations.

However, we observe that by simply applying the DMC

algorithm, non-manifold edge configurations can still

appear between cells sharing an ambiguous face (see

figure 2).

Fig. 2 (Left) Two DMC look-up table cases 17 connected by
an ambiguous face. (Right) Non-manifold edge configuration
(line in red).

Concerning non-manifold configurations, several ap-

proaches propose to create dual grids extracted from

an octree data structure. These grids are aligned to

features of the surface by using Hermite data on the

octree cells. Schaefer et al. [14] have proposed to use

a dual hexahedral grid combined with marching cubes

(Dual Marching Cubes DMC2) to extract the surface.

However, as dual cells are not necessarily convex, this

algorithm can produce self-intersected surfaces (see fig-
ure 3). In addition, aligning the grid to shape features

can make many degenerated triangles appear.

Fig. 3 Schaefer et al. DMC2 self intersection problem. Ver-
tices in blue are inside ∂V (white are outside), the surface is
the blue dotted line, red circles are dual nodes and grey lines
are dual cell edges. Yellow lines are (self-intersected) surface
edges that are generated connecting surface nodes located on
dual cell edges.

In order to avoid self intersections, Manson and Schae-

fer [9] built a dual tetrahedral grid that do not con-

tain inverted tetrahedra. Then, they applied a marching
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tetrahedra (MT) to extract the surface. This solution

produces intersection-free surfaces, unfortunately, us-

ing MT, combined with a feature aligned grid produces

meshes with many bad-shaped triangles.

Finally, Manifold Dual Contouring (MDC) [12] pro-

duces adaptive manifold meshes by using DMC over a

regular octree and a topology preserving criterion that

maintains the topology of the original object. Never-

theless, this approach can still generate self-intersected

surfaces and its bottom-up strategy for mesh simpli-

fication is not suitable to handle strongly anisotropic

datasets.

In this article, we are mainly interested in adaptive

surface extraction from the voxel representation of an

object. We want to obtain manifold meshes at several

resolution levels without creating too many degener-

ated triangles. Therefore, we have considered a dual

approach as the most suitable option. We present a

dual algorithm to produce multi-resolution and adap-

tive surfaces that is appropriate to volumetric data. It

produces meshes with good-shaped triangles and is able

to approximate sharp features. The dual approach is in-

spired by Nielson’s Dual Marching Cubes (DMC)[11].

This algorithm allows us to place several surface nodes

inside each octree cell and gives us more freedom in

nodes localization in order to better approximate the

underlying surface ∂V . Our solution extends DMC over

a generalized octree data structure to extract surfaces

adapted to the geometry of ∂V .

We start by defining some preliminary concepts and

the notation that is going to be used. Let be V the

volumetric object as defined in the introduction and

∂V its boundary. In this paper, a cell is defined as an

axis-aligned hexahedral block containing voxels and it

is equivalent to the cell of an octree. Hereafter, our oc-

tree cells are going to be noted as cells. Cell volume

will indicate the voxels contained inside a cell and we

intend to check only the values of the eight voxels in

the corners of every cell. The vertices of every cell are

labelled to indicate whether they are inside the object.

Definition 1 An ambiguous face exists when the face

contains two vertices inside ∂V interleaved with two ver-

tices outside ∂V .

Our algorithm is able to consider at most four sur-

face components inside a single cell. Every component

must have a single connected boundary and be well ap-

proximated by a plane.

3 Octree data structure

In order to adapt our space subdivision approach

to the anisotropy of volumetric data, our octree data

structure is not the usual one: the octree cells do not

have to be always subdivided in the tree main axial

directions. In consequence, we can choose to subdivide

a cell in only one or two axial directions as illustrated

in the figure 4 for a quadtree.

Fig. 4 Generalized quadtree data structure (left) and its rep-
resentation as Morton codes (right).

For the multi-resolution data structure, we have im-

plemented a hashed octree that uses a Morton space

filling code [7] as index. A Morton code can compactly

encode hierarchical and spatial information about cells.

However, this code have been conceived to work in a

regular grid, so, to be usable in a generalized and adap-

tive data structure, it must be completed with some

spatial coordinates information. Our approach is based

on the idea that, even if an octree cell c is not divided in

all directions, the sub-cells S contained inside it must

fulfil, or tile, all the space inside c. This will also mean

that all Morton codes indexing sub-cells inside c must

be pointing to cells in S. This distribution has to be

done with respect to the space occupied for every sub-

cell as illustrated in figure 4 for cell indexed by 101.

This characteristic of our octree construction algorithm

combined with the spatial coordinates information con-

tained inside cells allows us to access any neighbouring

cell even if the octree has not been divided regularly.

Our algorithm is shown in 1.

Algorithm 1: Get Neighbour algorithm
input : Cell c and a face f .
output: A face adjacent cell a through the face f .
level ← GetLevel (c);
coincidentFace ← GetCoincidentFace (f);
offset ← 1;
while offset ≤ level do

a← GetAdjacentCellByFace (c,f ,offset);
if Exists (a) then

cellLimitC ← GetCellLimitByFace (c,f);
cellLimitA ← GetCellLimitByFace
(a,coincidentFace);
if cellLimitC == cellLimitA then

return adjacentCell;
else

offset = offset +1;
end

end

end
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Our function GetAdjacentCellByFace returns a cell

face adjacent to the provided cell. This is done by ob-

taining the spatial coordinates of the current cell, adding

an offset in the corresponding direction and converting

the spatial coordinates into a Morton code. As anisotropic

subdivision is usually done at the deepest levels of the

octree, our offset will not be larger than the current

depth of the octree. If no neighbouring cell exists, our

method looks her parent cell by shifting the three least

significant bits of its Morton code. The method GetCel-

lLimitByFace returns the geometrical limit of a cell in a

direction deduced from the face provided. This ensures

that two cells are really face adjacent because the ir-

regular subdivision of the octree can produce cells that

are close in terms of Morton encoding but far geomet-

rically.

Finally, as our algorithm is strongly dependent on the

access to neighbouring cells, we use a hash table to in-

dex the octree cells and make almost constant access

times.

4 Octree construction

The octree construction uses an iterative top-bottom

algorithm that builds an octree based on ∂V topolog-

ical and geometrical characteristics. First, to capture

∂V general features, we regularly divide the octree un-

til some user defined minimal depth (usually 2 or 3) is

reached. Then, we apply several criteria in order to de-

cide if a cell must be subdivided: we check if the octree

cell is inhomogeneous, then, we apply a complex cell

criteria as explained below.

Definition 2 Let C be a cell. C is complex if at least
one of its faces is complex. A cell face is complex if:

– It intersects ∂V and all its vertices are either inside

or outside V (see figure 5 left).

– At least one of its edges intersects ∂V more than

once (see figure 5 right).

Fig. 5 (Left) a complex cell with a tunnel and (right) a com-
plex cell with a complex edge.

A Complex face criterion allows us to detect cells that

contain a piece of the surface that is smaller than the

current level of subdivision. In the octree construction

context, this criterion is implemented by extracting the

connected components of the voxels contained in every

homogeneous cell face (all vertices are inside or outside

∂V ). In addition, a complex edge criterion detects con-

figurations that can induce non-manifold surfaces when

a given cell edge intersects ∂V more than once. This

strategy allows us to only check voxels that belongs to

cell faces to ensure that all cells intersected by ∂V are

going to be processed.

Rule 1 Subdivision Rule: If a cell C is complex, it has

to be subdivided. Otherwise, it is no longer subdivided

and it is marked as an octree leaf.

The application of the subdivision rule 1 will build

an octree where no leaf cell that intersects ∂V is com-

plex. From this octree, we can extract closed manifold

surfaces at any level of resolution.

Adaptive surfaces and manifold verification: in

order to adapt our surfaces to the curvature of ∂V , we

propose to use a second rule based on the normals at

the intersection points of cell edges with ∂V . To cal-

culate the normals, we have used a surface approach

based on the measure of the average of unitary normals

in the neighbourhood of an edge intersection with ∂V

[2].

Rule 2 Let C be a cell and Ii=0...n its intersection points

with ∂V . Let be ni=0...n the normals on Ii=0...n. If Min(ni•
nj |i 6= j} ≤ δ, C must be subdivided. δ is a user pro-

vided parameter with values in the closed interval [0, 1].

The previous rule gives valuable information about

the shape of ∂V inside the cell. As consequence, δ close

to 1 will produce an almost regular mesh. On the con-

trary, δ close to 0 will generate a highly simplified sur-

face. The curvature rule 2 is applied once a cell has

succeed the complex cell test. In this way, a normal can

be calculated at the unique intersection point of every

edge that traverses ∂V and the curvature rule 2 can be

checked. Cells that have not been subdivided because

the curvature of ∂V exceeds δ inside them are marked

as compact.

Our subdivision rule 1 ensures that our octree will

be subdivided until there are no more complex cells.

The limit case will be a regular divided octree, with-

out any non-manifold vertex configuration because of

the dual equivalence between the Marching Cubes and

the Dual Marching Cubes look-up tables. However, the
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Algorithm 2: Octree construction
input : Root cell c. Minimal minLevel and maximal

maxLevel level subdivision.
output: A regular octree until level minLevel and an

adaptive octree subdivision between minLevel and
maxLevel.

Add c to the list toProcess;
while toProcess is not empty do

currentCell← First(toProcess)
n ← Level (currentCell)
if (n≥ minLevel) and (n ≤ maxLevel) then

divide← no
if Complex (currentCell) then

divide← yes
else

if (Inhomogeneous (currentCell) and
(HighCurvature (currentCell)) then

divide← yes
else

Mark currentCell as a compact leaf.
end

end
if divide then

Comment: currentCell has to be divided;
S = {q1, q2, q3, ..., q8} ← Divide(currentCell);
foreach cell qi in S do

Add qi in toProcess
end

end

end

end

addition of the rule 2 for the curvature can lead to non-

manifold configurations. This is due to the local appli-

cation of subdivision rules 1 and 2. A cell c is not subdi-

vided if it is not complex and its curvature is less than

a user defined threshold. That means that the topol-

ogy of ∂V inside c can be well approximated by using

one of the cases of the DMC look-up table. However, c

neighbouring cells can keep subdividing until revealing

a more complex topology that was not visible from c.

This can include ∂V multiple traverses through c edges

(see figure 6 top).

In order to solve this, we propose to extract information

about ∂V shape in face adjacent cells over the faces of

compact cells. Even if Westermann et al. [19] have pro-

posed a similar approach to fix surface cracks by using

an extension of the marching cubes triangulation, their

approach is limited to neighbouring cells with at most

one level of difference in the octree. Our approach does

not have this limitation and it is just guided by the

topological complexity of ∂V on the faces of compact

cells.

First, for every compact cell c, we get the adjacent

cells at the same octree level. Then, for every adjacent

cell through a face f , we extract all its leaf cells S that

are face adjacent with c. By using the cells in S we build

a quadtree with all the faces of cells in S that are adja-

cent to c. This quadtree contains the values of F (x, y, z)

over its vertices and can represent the intersection be-

tween V and f produced by the octree subdivision (see

figure 6 middle). So, we can apply a complex face and

complex edge test and determine if the face is complex.

If so, we divide the adjacent compact cell and we add

its sub-cells to the compact cells list (see figure 6 mid-

dle).

Our algorithm is entirely based on the information pro-

vided by the evaluation of F (x, y, z) in the octree ver-

tices. We have implemented this procedure recursively

and its stop guarantee is provided by the fact that

Fig. 6 2D illustration of our local refinement and manifold verification algorithm. First row shows an object in black contained
inside two cells (left). Then, we apply our refinement algorithm over the right cell (center). This octree cells configuration will
generate a non-manifold configuration (right) with dual nodes (in red) contained in not refined (compact) cells (in light blue).
Middle row, we extract the value of octree vertices that are contained inside grey cells edges (left), if those edges are complex,
we refine the compact cells (center) and we update the list of compact cells (in grey) to check (right). Bottom row, we repeat
this test recursively (left) until verified all compact cells (center). Then, we can extract the surface (right).
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neighbouring cells that have the same size will be cov-

ered by the DMC look-up-table. In practice, our al-

gorithm stops when all compact cells having complex

faces or edges have been eliminated by subdivision (see

figure 6 bottom).

Proof of correctness: Let state that in Dual March-

ing Cubes, all the patches have to pass through in-

tersected edges. In the case of a complex edge, let be

C a compact cell at depth n and S a set of cells at

level {n + x | x > 0}. Let be E an edge of S and

ei the edges of cells in S so that {∀ei | ei ⊂ E} and

{∀j 6= i | ej ∩ ei = ∅}. Without lost of generality, we

can say that if we force every edge in C to traverse ∂V

only once, we also assure that only one cell in S is tra-

versed by ∂V . This comes from the fact that all edges

ei ∈ S are disjoint. Then, ∂V can traverse just one cell

edge in S.

In the case of a complex face, let F be a face of a com-

pact cell. Then, if we assure that no isolated connected

component exits inside F , there cannot be intersected

edges to connect with the dual nodes created for the

simple connected components around the edge of the

compact cell. �
Our local refinement algorithm can be used to produce

surfaces that are not only adapted to the curvature but

guided by external criteria. For some applications, a

model has to be refined locally in some areas corre-

sponding to the interest of the user. An example of this

feature is illustrated in figure 7, where our algorithm

is applied to the ”Lucy” surface model that is progres-

sively refined to obtain a more detailed surface on the

top of the model. Our algorithm guarantees that the

refined model is still a closed valid manifold.

Fig. 7 Progressive ”Lucy” (mesh and surface) model ex-
tracted from a 512×256×128 voxels volume. A more refined
mesh is produced adaptively on the top of the model.

Finally, in order to improve the general quality of

triangles in our surfaces, we can keep the level differ-

ence between octree leaf cells in 1, even though, our

algorithm is not limited by this.

5 Dual nodes generation

Once we have applied the manifold verification algo-

rithm, we use the Dual Marching Cubes look-up-table

(LUT) (see figure 8) to create the surface nodes inside

our octree cells.

Fig. 8 DMC Look-up table of surface patches generated by
using connected components on the graph defined by the cell
vertices. Blue vertices are inside ∂V , external faces are orange,
internal faces are grey. Dual nodes are noted in red.

However, the application of the DMC LUT does not

guarantee that all edges connected by two dual nodes

are shared by at most two polygons. If we see a cell as a

graph with eight vertices and twelve edges, DMC inserts

dual nodes based on the number of connected compo-

nents that are inside ∂V and generates non-manifold

edge configurations in cells sharing an ambiguous face.

In figure 9 left, there is only one connected component

inside ∂V (in blue) and, in consequence, only one dual

node is created.

We have solved this problem by considering the con-

nectivity of the graph of vertices that conforms a cell

(eight vertices and twelve edges). As showed in the fig-

ure 9, blue vertices are inside the surface ∂V and white

ones are outside. Then, a blue connected component is

composed by one or more blue vertices that are con-

nected by edges which two endpoints are blue. Respec-
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Fig. 9 (Left) Non-manifold edge generated through an am-
biguous face since two portions of the surface share a common
edge (in red). (Right) Connectivity inversion, two dual nodes
are created in each cell and a tunnel in ∂V is recovered. Dual
nodes are noted in red.

tively, white connected components are defined in the

same way for white vertices. For each cell c with a single

blue component and one or multiple ambiguous faces,

we enumerate the adjacent cells Ac through the am-

biguous faces that also have a single blue component.

Then, for each cell in Ac, we extract the white con-

nected components. In these cells, the existence of an

ambiguous face implies the existence of at least two

such white connected components. Therefore, we use

the white components to generate the dual nodes in c

and in all adjacent cells in Ac. This strategy produces

two vertices instead of one and solves the problem re-

covering the tunnel in ∂V (see figure 9). Some examples

of patches generated by our algorithm are shown in fig-

ure 10.

(a) (b)

(c) (d)

Fig. 10 Four cases where two cells share an ambiguous face.
In the cases (a) and (b), there is only one ambiguous face
per cell. The use of blue connected components will produce
a non-manifold edge. Therefore, we use the white connected
components to extract the surface patches. In (c), there is a
cell with three ambiguous faces (right) and more that one blue
connected component, then, it is possible to use the blue com-
ponents to produce the patches. In (d), two cells with three
ambiguous faces containing more that one blue component
that can be used to produce the dual nodes and extract the
surface patches.

Locating dual nodes inside cells instead of cell edges

produces surfaces having less waving and reconstruc-

(a) Dual marching cubes (DMC2) with 54.888 triangles.

(b) Our algorithm with 46.888 triangles.

Fig. 11 Comparison of our algorithm with DMC2 [14] and
MC [8] on a volumetric ”Block” dataset of 512 × 512 × 128
voxels with a curvature parameter λ of 0.9 and a maximal
octree depth of 7. DMC2 has problems to capture some of
the sharp edges and produces more degenerated triangles.

tion artefacts. In addition, dual nodes inside cells pro-

vide more freedom in order to capture sharp edges. To

illustrate this, in figure 11, we compare the result of our

algorithm with DMC2 [14] on a mechanical ”Block” vol-

umetric object of 512 × 512 × 128 voxels. As it can be

seen, our algorithm produces smoother surfaces while

avoiding reconstruction artefacts especially visible in

sharp edges. This is mainly explained because, even if

DMC2 aligns the dual grid to the features of the vol-

ume, as it uses MC to extract the surface, it localizes the

surface nodes on the edges of topological cubes reducing

its ability to capture sharp edges. On the contrary, even

if our algorithm uses an octree, as it localizes nodes in-

side cells, it has more freedom to place surface nodes

close to the features of the V .
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6 Connectivity generation

A minimal edge is one that does not contain any

other edge in a neighbouring octree cell (see figure 12).

In dual contouring algorithms, there is a one to one re-

lationship between the surface patches and the minimal

edges that are intersected by the surface.

Fig. 12 Examples of minimal edges. The minimal edges
does not contain any other smaller edge. Some examples are
showed in blue. Non minimal edges contain more that one
edge in edge adjacent cells of smaller size (in orange). Not all
minimal (or not minimal) edges are highlighted in this figure.

Then, in order to extract the connectivity of the

surface, we used an algorithm proposed in Dual Con-

touring [4] that traverses the octree to enumerate the

minimal edges intersected by the surface. This method

is based on three recursive methods: CellProc, FaceProc

and EdgeProc.

CellProc receives a cell c as parameter, FaceProc re-

ceives two face adjacent cells and EdgeProc receives

four edge adjacent cells (in the regular case, three in

the adaptive case). The algorithm works as follows,

CellProc receives a cell c and calls itself recursively in

every sub-cell of c. Then, it makes twelve calls to Face-

Proc with every pair of face adjacent sub-cells. Finally,

it makes six calls to EdgeProc with all four sub-cells

sharing an edge (see figure 13 top).

Fig. 13 CellProc, FaceProc and EdgeProc methods as they
are used to extract the topology.

FaceProc receives two cells sharing a common face

f and calls itself four times with every pair of sub-

cells sharing a face contained in f . Then, it makes four

calls to EdgeProc with every four sub-cells that share

an edge contained in f (see figure 13 middle). Finally,

EdgeProc receives four edge adjacent cells and makes

two recursive calls to EdgeProc with all four sub-cells

sharing a half-edge contained in the edge (see figure 13

bottom).

Only EdgeProc generates surface patches traversing min-

imal edges. When EdgeProc receives four cells that share

a minimal edge, it connects the dual nodes in those cells

that are related to the minimal edge to form a quad in

the uniform case (see figure 14 left) and a triangle in

the adaptive one as illustrated in figure 14 right.

Fig. 14 EdgeProc patch creation. In the regular case, Edge-
Proc receives four cells (left) and creates a patch with the
four minimizers (in red) of edge adjacent cells. (Right) In the
adaptive case, EdgeProc receives one of the cells repeated, so,
only three cells and it creates a triangular patch. Blue vertex
is inside ∂V , all others are outside.

7 Dual nodes localization

Dual nodes localization is important to improve the

geometrical approximation of the surface. A good local-
ization algorithm will strongly avoid, or at least reduce,

aliasing on the surface. In addition, our method must

be robust enough to be applied over the usually noisy

volumetric data surfaces.

We propose a dual node localization algorithm based

on the centroid bs of every connected component of V

inside a cell. Let be C a leaf cell in the octree where

V ∩ C 6= ∅. As we know the dimensions of C and its

mass M , we can obtain its centroid bc. Then, we cal-

culate the centroid of V ∩ C named bs and its mass

ms. Finally, the mass and barycentre of the comple-

mentary be of (V ∩ C) can be calculated using equa-

tion Mbc = msbs +mebe. Then, we use bs, be and their

respective masses to estimate an initial position vp for

the dual node that will lie on the segment between bs
and be.

However, in some configurations, this initial position

vp can lie far from the surface (either inside or outside

∂V ). To approach the dual node to the surface, we use

the segment defined by bs and be and noted as S. First,
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we move the dual node from its initial position vp to the

intermediate point of the segment connecting vp with

the endpoint of S that traverses ∂V , noted ve. Then, we

test if this intermediate point is over the surface, if it is

the case, we stop, if not, we apply recursively the same

operation to the half-segments of the segment vp to ve.

In order to validate if the node v is over the surface,

we use the voxels spacing as an interval and we check

if the current node position falls into an interval that

makes part of the discrete surface of ∂V . Dual node

localization process is illustrated in figure 15.

Fig. 15 2D illustration of the algorithm to estimate a good
dual node localization by using connected components. Cell
centroid (red), V ∩ C centroid (green), (V ∩ C)c centroid
(blue), dual node (yellow).

Our dual node localization method has two main

characteristics: it sticks dual nodes to the volumetric

surface of the component and, as each surface compo-

nent inside a cell must have a simple connected bound-

ary, it tends to localize the node inside the kernel or

center area of the surface which points can be connected

to any other point of the surface by using a line [18].

These properties are useful to avoid self intersections

and to improve the general quality of triangles.

In figure 16, we compare our approach with the

Dual Marching Tetrahedra (DMT) algorithm [9]. In fig-

ure 16a, DMT generates a good approximation but the

mesh and the histograms of angles show a lot of trian-

gles degenerated having very small (under 5◦) minimal

angles or huge maximal angles (over 100◦). This is be-

cause DMT uses a dual tetrahedral grid aligned to the

features of ∂V combined with Marching Tetrahedra tri-

angulation. On the other side, as it can be seen in figure

16b, our approach produces a more homogeneous min-

(a) Dual marching Tetrahedra with 133.512 triangles and aver-
age min/max angles of 16.5/103.4.

(b) Ours with 127.188 triangles and average min/max angles of
33.1/89.6.

Fig. 16 Comparison between the DMT algorithm of Man-
son and Schaefer and our algorithm on a volumetric ”Block”
dataset of 512 × 512 × 256 voxels with a curvature param-
eter λ of 0.9 and a maximal octree depth of 8. Histograms
show that our algorithm obtains much better min/max angle
distributions.

imal and maximal angle distributions around 30◦ and

85◦ respectively, producing far less degenerated trian-

gles.

We considered other localization methods such as

Quadric Error Functions [3], however, these methods

can easily localize surface nodes outside the original

volumetric object (generating self-intersections) and be

strongly affected by noisy segmentation processes that

will not produce a smooth discrete surface. Our ex-

periments have shown that our method works well on

smooth or noisy segmented surfaces.
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Fig. 17 Multi-resolution ”Armadillo” model (512 × 512 × 256 voxels) with a curvature threshold of 0.9 and five different
resolutions based on a maximal octree depth from 4 (1.458 triangles) to 8 (347.922 triangles). The topology of the surface
changes through different resolutions (see red circles).

8 Results

One of the main characteristics of our solution is its

ability to generate closed manifold surfaces at any reso-

lution level. It can be used to produce multi-resolution

models based on a user defined resolution. In figure 17,

several ”Armadillo” models are built based on a maxi-

mal octree level from 4 to 8. These models do not nec-

essary have the same topology (see red circles around

fingers) because thin features cannot be captured at

lower resolutions and some sections of surface can be

separated in the final mesh. However, this feature can

be useful in visualization where the speed of transmis-

sion is more important than the topology of the model.

On the contrary, when the topology of the model is

an important factor, the curvature threshold can be

used to obtain simplified models that will keep the same

topology of the original volumetric object. This is shown

in figure 18 where several topological equivalent sur-

faces are extracted from an ”Armadillo” model of 512×
512×256 voxels. Observe that all surfaces keep the same

topology and no thin components are separated.

Table 1 resumes sizes, approximation and timing

statistics for the surfaces of figure 18. Hausdorff and

Curvature #Triangles Hausdorff RMS Time(secs)
0.9 89094 0.0043 0.15 9.1
0.7 42822 0.0091 0.21 8.3
0.5 27274 0.012 0.33 7.3
0.3 20740 0.014 0.41 6.5
0.1 16922 0.014 0.45 6.3

Table 1 Statistics obtained for the surface extraction of a
volume ”Armadillo” (5123 voxels) with different curvature
values. Surfaces are always a closed manifold.

RMS distance (measured with Metro [1]) in the differ-

ent models are not strongly affected by the curvature

simplification and a good approximation is still reached

with a high level of simplification. Times in the table in-

clude the octree construction. The most expensive step

is the normals calculation and our dual node localiza-

tion algorithm because they are calculated directly on

volumetric data.

In order to compare our solution with other relevant

methods in the literature, we used the Adaptive March-

ing Cubes (AMC) of Kazhdan et al. [5] and the Dual

Marching Cubes (DMC2) of Schaefer et al. [14]. We ap-

plied these algorithms over a set of volumetric datasets

extracted from classic polygonal models (see our recon-

Fig. 18 Simplified surfaces with respect to the curvature threshold. Surfaces are extracted from an ”Armadillo” volume of
512 × 512 × 256 voxels using an octree of maximal level 7. Observe how thin features as the fingers are connected in all the
surfaces (see red circles). Statistics of the extraction process for these surfaces are provided in table 1.
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Criterion # Triangles # Degenerated* Triangles Minimal Average Angles
Models/Methods AMC DMC2 Ours AMC DMC2 Ours AMC DMC2 Ours

Dragon 122074 107342 133586 2360 11942 140 31.4 28.2 33.1

Horse 36408 42316 61262 850 5020 162 31.23 27.6 32.4

Buddha 119124 134342 165921 1411 12459 271 31.9 28.8 32.84

Armadillo 137098 156820 90773 3160 15741 173 31 27.88 36.8

Block 55250 71144 57796 1136 8659 58 33.94 29.86 31.4
FanDisk 43094 52344 46896 1252 7040 63 32.53 27.6 33.4

Table 2 Comparison of our method with Adaptive Marching Cubes (AMC) [Kazhdan et al. 2007] and Dual Marching Cubes
(DMC2) [Schaefer et Warren 2004]. All surfaces are extracted with an octree of maximal depth of 8 in order to capture the
finer components of the surface and a curvature λ parameter of 0.9 to reduce the number of triangles in the flat areas of the
volume. * A degenerated Triangle is defined as having a minimal angle of at most 2 degrees.

structions in figure 19). We set the curvature parameter

λ in 0.9 to force a cell subdivision if there is a slight cur-

vature in the surface ∂V , and the maximal depth of the

octree in 8 so to guarantee that we capture the main

features of the models. All these results are summarized

in table 2.

As it can be seen, even if all three algorithms are al-

most equivalent in mesh size and minimal angles, our

algorithm generates consistently far less bad-shaped tri-

angles defined as triangles containing minimal angles

smaller that 2 degrees. In the case of AMC, MC trian-

gulation is used inside cells and its technique to close

the surface where the resolution changes usually pro-

duces a lot of bad-shaped triangles. On the other side,

DMC2 builds a dual hexahedral grid from an octree us-

ing a dual node inside every octree cell (see [14]) but it

still uses the MC triangulation. In addition, dual cells

are not necessarily convex and their shapes can be very

twisted. On the contrary, our method relies on the oc-

tree cells, uses multiple dual nodes inside every cell and

provides more freedom in surface nodes localization.

Our experiments over multiple curvature and octree

depth parameters showed that our method keeps gener-

ating surfaces with far less degenerated triangles. This

is understandable because the main reasons for creat-

ing bad shaped triangles in AMC and DMC are their

restrictions in the nodes localization which is not funda-

mentally affected by a higher resolution (higher octree

depth), neither a more regular space subdivision (bigger

curvature threshold).

9 Conclusions and perspectives

We have presented a robust surface extraction algo-

rithm that can be used to obtain adaptive surfaces from

highly anisotropic volumetric data. Our method oper-

ates directly on volumetric data and does not need any

pre-calculated information. We have seen that almost

all methods tackle one or two particular issues but they

do not solve all the iso-surface extraction problems at

once. It is clear that is not easy to find a way to ad-

dress all limitations but our method provides a good

trade-off between surface quality and geometrical accu-

racy. As our solution can obtain manifold meshes at any

level of resolution, it can be used for data exploration,

visualization and transmission applications.

In future work, we would like to improve the surface ap-

proximation by using more precise curvature estimators

inside octree cells. Another interesting possibility is to

use curvature information to move the division planes

to the more curved zones of the surface instead of di-

viding octree cells at middle points to better capture

the surface features. In addition, we are implementing
an out-of-core version of our solution combined with

parallel strategies in order to process huge datasets.
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