Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Water Resources Research Année : 2011

Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system

Résumé

The response of a soil-vegetation-atmosphere continuum model to incoming radiation forcing is investigated in order to gain insights into the coupling of soil and atmospheric boundary layer (ABL) states and fluxes. The response is characterized through amplitude and phase propagation of the harmonics in order to differentiate between the response of the system to forcing at different frequencies (daily to hourly to near instantaneous). Stochastic noise is added to the surface energy balance. The amplitude of the noise is maximum at midday when the incoming radiative forcing is also at its peak. The temperatures and turbulent heat fluxes are shown to act as low-pass filters of the incoming radiation or energy budget noise variability at the surface. Conversely, soil heat flux is shown to act as a high-pass filter because of the strong contrast in the soil and air heat capacities and thermal conductivities. As a consequence, heat diffusion formulations that numerically dampen such forcing are potentially incapable of representing rapid fluctuations in soil heat flux (=30 min) and therefore introduce errors in the land-surface energy partitioning. The soil-vegetation-ABL continuum model and an electrical analogy for it are used to explain the frequency-dependent differences in the relative effectiveness of turbulent heat fluxes versus ground heat flux in dissipating noise in radiative forcing. Copyright 2011 by the American Geophysical Union.
Fichier principal
Vignette du fichier
Gentine_et_al-2011-Water_Resources_Research.pdf (1.11 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01119189 , version 1 (22-02-2015)

Identifiants

Citer

P. Gentine, J. Polcher, D. Entekhabi. Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system. Water Resources Research, 2011, 47 (5), pp.W05525. ⟨10.1029/2010WR009268⟩. ⟨hal-01119189⟩
195 Consultations
171 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More