Half a billion simulations: evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model

Abstract : Multi-agent geographical models integrate very large numbers of spatial interactions. In order to validate those models large amount of computing is necessary for their simulation and calibration. Here a new data processing chain including an automated calibration procedure is experimented on a computational grid using evolutionary algorithms. This is applied for the first time to a geographical model designed to simulate the evolution of an early urban settlement system. The method enables us to reduce the computing time and provides robust results. Using this method, we identify several parameter settings that minimise three objective functions that quantify how closely the model results match a reference pattern. As the values of each parameter in different settings are very close, this estimation considerably reduces the initial possible domain of variation of the parameters. The model is thus a useful tool for further multiple applications on empirical historical situations.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01118918
Contributeur : Reuillon Romain <>
Soumis le : vendredi 20 février 2015 - 12:40:59
Dernière modification le : mardi 17 octobre 2017 - 18:44:01
Document(s) archivé(s) le : mardi 26 mai 2015 - 10:27:14

Fichier

schmitt2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Clara Schmitt, Sébastien Rey-Coyrehourcq, Romain Reuillon, Denise Pumain. Half a billion simulations: evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model. 2015. 〈hal-01118918〉

Partager

Métriques

Consultations de
la notice

353

Téléchargements du document

220