Interaction between Linguists and Machine Learning

Éric Laporte
Language resources for language processing:
- grammars
- dictionaries
- annotated corpora
- ontologies

Producing usable resources is a challenge to us descriptive linguists

What are our strong points?

Source: Svetla Koeva, Cvetana Krstev
Outline

Three challenges to linguists

Which solutions

Conclusions
Three challenges

Competing with machine learning
Facing quality control
Formalizing
Competing with machine learning

Machine learning was designed to dispense with dictionaries and grammars

Same type of activity
Generalization from examples
If I describe the behaviour of *plat*, I base myself on examples

Which performs better?
Computational power
Linguists have, for example, an ability to compare meanings: *plat* “flat”, “dish”
Facing quality control

<table>
<thead>
<tr>
<th>Language processing module</th>
<th>Precision %</th>
<th>Recall %</th>
<th>Evaluation data</th>
</tr>
</thead>
<tbody>
<tr>
<td>sentence splitter</td>
<td>92.00</td>
<td>99.00</td>
<td>190 sentences</td>
</tr>
<tr>
<td>paragraph splitter</td>
<td>94.00</td>
<td>98.00</td>
<td>268 paragraphs</td>
</tr>
<tr>
<td>clause chunker</td>
<td>93.50</td>
<td>93.10</td>
<td>232 clauses</td>
</tr>
<tr>
<td>POS tagger</td>
<td>95.00</td>
<td>95.00</td>
<td>303 POS tags</td>
</tr>
<tr>
<td>NP extractor</td>
<td>63.50</td>
<td>77.00</td>
<td>352 NPs</td>
</tr>
</tbody>
</table>

Source: Tanev & Mitkov, 2002

In language processing, we test applications for performance.

Testing language resources for quality
- Reliability
- Coverage (or exclusivity to the domain)
- Performance of applications

Quality is not easy to achieve
Computer scientists complain that linguists are purists, do not describe real-world usage.

Cultural distance
Linguistics lacks a tradition of quality control.
Interesting comments are traditionally a result *per se*.
Formalizing

réduire /N0 : chirurgien /N1 : fracture /N2 : /S: rebouter /A:
 réduire /N0 : hum /N1 : minerai /N2 : /S: éliminer l’oxygène de /A:
 réduire /N0 : hum /N1 : (sauce, jus) /N2 : /S: épaissir /A: allonger
 réduire /N0 : hum /N1 : fils /N2 : /S: rapprocher /A: écarter
 réduire /N0 : hum, pays /N1 : hum, pays /N2 : /S: vaincre /A: libérer

réduire /N0 : hum /N1 : hum /N2 : en <esclavage> /S: rabaisser /A: sortir
 réduire /N0 : hum, évêque /N1 : hum /N2 : à <état> /S: contraindre /A:
 réduire /N0 : hum, évêque /N1 : hum /N2 : à <action> /S: contraindre /A: libérer
 réduire /N0 : hum /N1 : <tout> /N2 : à <Npt > /S: diviser /A: recomposer
 réduire /N0 : hum /N1 : inc /N2 : en <miettes, pièces> /S: casser /A: recoller

réduire /N0 : photographe /N1 : photo /N2 : de % /S: diminuer /A: agrandir
 réduire /N0 : hum /N1 : <valeur> /N2 : de % /card /S: diminuer /A: augmenter
 réduire /N0 : hum /N1 : <un texte> /N2 : de % /S: raccourcir /A:

Source: Gross, 2008

Identified fields; no texts (definitions or examples)
Historically, linguistics resists to formalization
Argument classes are represented by lemmas: photo, sequences: un texte “a text”,
sequences with inflected words: en miettes “into pieces”, codes: hum
Outline

Three challenges to linguists

Which solutions

Conclusions
What abilities allow us linguists to take on these challenges?
- Do corpus annotation and revision
- Create and use models
- Select relevant goals
- Apply formal criteria
- Extend lexical and grammatical coverage of resources

Which trends prepares us best?
Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. This paper describes the quantitative areal and laminar distribution of identified neuron populations projecting from areas of prefrontal cortex (PFC) to subcortical autonomic, motor, and limbic sites in the rat. Injections of the retrograde pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH),

Source: French et al., 2009

The dominant model of interaction between linguists and machine learning
Easy to use for machine learning
Analysis of real examples
Confrontation with the real world
Corpus annotation and revision

Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers.
This paper describes the quantitative areal and laminar distribution of identified neuron populations projecting from areas of prefrontal cortex (PFC) to subcortical autonomic, motor, and limbic sites in the rat. Injections of the retrograde pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH),

Source: French et al., 2009

The ‘easy option’

Only apparently satisfactory
Repetitive work
 Does not make full use of human ability to generalize
 Linguist is under-employed
 Who likes annotating a corpus?
Some information is usually missing
 Identifiers of lexical entries in case of lexical ambiguity
 Identifiers of syntactic constructions

These issues are specific to annotated corpora
We have other weapons in our arsenal

Interaction between Linguists and Machine Learning
Identifiers of lexical entries in case of lexical ambiguity

There is water under the sea floor noun
Our neighbour will water the garden verb 2 entries
You packed your own luggage no with-arg
The house was packed with art works with-arg 2 entries
Ann announced her pregnancy no to-arg
Ann announced her pregnancy to the public to-arg same entry

No feature or combination of features is equivalent to the information of whether 2 occurrences belong to a single lexical entry
Creating and using models

- France fell into recession. Pulled out by Germany.
- US Economy on the verge of falling back into recession after moving forward on an anemic recovery.

Source: Narayanan, 2012

Spatial metaphors of abstract concepts

We represent phenomena within models

Psycholinguistic model
Mental processes of language users

Purely linguistic model with lexical entries
Conventional metaphors: distinct lexical entries

\[
N_0 \text{ fall } \text{ Loc } N_1 \quad \text{A man fell onto the tracks}
\]

\[
N_0 \text{ Vsup recession} \\
\text{France (had a + was in + came into + fell into) recession}
\]

\[
N_0 \text{ Vsup verge} \\
The lane has a wide verge
\]

\[
N_0 \text{ Vsup on the verge of } N_1 \\
I'm on the verge of crying
\]

Linguistic forms are easier to observe than mental processes

Origin: structural linguistics
Creating and using models

Models with lexical entries
As compared to corpus annotation
- Make full use of human ability to compare meanings
- Lexical entries represent more accurate meanings than words (fall, verge)
- Challenge to language processing: complex objects
But lexical entries make sense as elements of a formal model
Selecting relevant goals

Example: inventorying arguments of predicates

Goal 1: assign each argument a semantic role

John opened the door The door opened
Agent Patient Patient

Students like social media
Experiencer Causer? Theme? Stimulus?

Goal 2: number each argument (Gross, 1975, 1994)

John opened the door The door opened
N_0 N_1 N_1

Students like social media
N_0 N_1

Neither goal has been fulfilled yet, even for the most studied languages
Selecting relevant goals

Goal 1: qualify each argument with a semantic role

Students like social media
Experiencer Causer? Theme? Stimulus?

Goal 2: number each argument

Students like social media

\[N_0 \quad N_1\]

Comparison as regards use in applications
Goal 2 is sufficient to identify the arguments of a predicate
This is what is required for translation, information extraction...
Other benefits of goal 1 are hypothetical
Selecting relevant goals

Goal 1: qualify each argument with a semantic role

Students like social media

Experiencer Causer? Theme? Stimulus?

Goal 2: number each argument

Students like social media

N_0 N_1

Comparison as regards accuracy

Goal 1 has no decisive criteria for distinguishing semantic roles

Majority vote among annotators, crowdsourcing

Goal 2 involves inventorying and arbitrary numbering: practicable
Selecting relevant goals

Crowdsourcing for semantic role labelling
Influence of syntax is a major pitfall of semantic role labelling

They talked me into this project
Agent Patient Goal

into, locative preposition, therefore *goal*, a spatial role

Snow covers the car
Agent Patient

‘The subject is the doer of the action’ (primary school)

Volunteers are most likely to fall into these pitfalls
Selecting relevant goals

Goal 2 is more useful and more accurately defined
Applying formal criteria

Dérisoire "derisive" describes quantity with quantity nouns
Toute cette histoire est dérisoire “All this stuff is derisive”
Le prix de ce sac est dérisoire “The price of this bag is miniature”

What is a quantity noun?
Le prix de ce sac est de combien? — *Il est de 30 euros*
“What amount is the price of this bag? — It is 30 euros”
* *Toute cette histoire est de combien?* — *Elle est de Dnum N *
“What amount is all this stuff? — It is $Dnum$ N”

With a formal criterion, recognition of a quantity noun depends less on the observer

Origin: distributional linguistics
Applying formal criteria

What is a quantity noun?

Le prix de ce sac est de combien? — Il est de 30 euros

“What amount is the **price** of this bag? — It is 30 euros”

*Toute cette **histoire** est de combien? — Elle est de Dnum N*

*“What amount is all this **stuff**? — It is Dnum N”*

Methods with formal criteria

As compared to semantic intuition

- Make full use of human ability to compare meanings
- Reproducibility of observation
- Resource reliability
Extending coverage

Descriptive scan
Origin: lexicon-grammar (Gross, 1975, 1994)
As compared to corpus annotation
Confrontation with the real world
Dictionaries of multiword expressions
Grammars of support-verb constructions
Rare uses of words and rare words
Challenge to language processing
Select entries relevant to an application
But it makes sense to be able to do so
Outline

Three challenges to linguists

Which solutions

Conclusions
Conclusion

4 notions related to scientificity
Models
Accuracy of goals
Reproducibility of observation
Coverage

Linguistics has methodological weapons
to take on the challenges of language processing

Deeply rooted in the history of linguistics
Structural linguistics
Distributional linguistics
Lexicon-grammar
The legacy of these 3 trends has potential for future

What about current fashionable trends of linguistics?
Thanks

CONTACT
ÉRIC LAPORTE
00 +33 (0)1 60 95 75 52
ERIC.LAPORTE@UNIV-PARIS-EST.FR