On Flat versus Hierarchical Classification in Large-Scale Taxonomies

Abstract : We study in this paper flat and hierarchical classification strategies in the context of large-scale taxonomies. To this end, we first propose a multiclass, hierarchi-cal data dependent bound on the generalization error of classifiers deployed in large-scale taxonomies. This bound provides an explanation to several empirical results reported in the literature, related to the performance of flat and hierarchical classifiers. We then introduce another type of bound targeting the approximation error of a family of classifiers, and derive from it features used in a meta-classifier to decide which nodes to prune (or flatten) in a large-scale taxonomy. We finally illustrate the theoretical developments through several experiments conducted on two widely used taxonomies.
Type de document :
Communication dans un congrès
27th Annual Conference on Neural Information Processing Systems (NIPS 26), Dec 2013, Lake Tao, United States. pp.1824--1832, 2013
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01118815
Contributeur : Massih-Reza Amini <>
Soumis le : mardi 24 février 2015 - 13:56:13
Dernière modification le : jeudi 11 octobre 2018 - 08:48:04
Document(s) archivé(s) le : mardi 26 mai 2015 - 17:35:24

Fichier

FlatvsHierarClassif-NIPS2013.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01118815, version 1

Collections

Citation

Rohit Babbar, Ioannis Partalas, Eric Gaussier, Massih-Reza Amini. On Flat versus Hierarchical Classification in Large-Scale Taxonomies. 27th Annual Conference on Neural Information Processing Systems (NIPS 26), Dec 2013, Lake Tao, United States. pp.1824--1832, 2013. 〈hal-01118815〉

Partager

Métriques

Consultations de la notice

227

Téléchargements de fichiers

253