Statistical efficiency of structured cpd estimation applied to Wiener-Hammerstein modeling

Abstract : The computation of a structured canonical polyadic decomposition (CPD) is useful to address several important modeling problems in real-world applications. In this paper, we consider the identification of a nonlinear system by means of a Wiener-Hammerstein model, assuming a high-order Volterra kernel of that system has been previously estimated. Such a kernel, viewed as a tensor, admits a CPD with banded circulant factors which comprise the model parameters. To estimate them, we formulate specialized estimators based on recently proposed algorithms for the computation of structured CPDs. Then, considering the presence of additive white Gaussian noise, we derive a closed-form expression for the Cramer-Rao bound (CRB) associated with this estimation problem. Finally, we assess the statistical performance of the proposed estimators via Monte Carlo simulations, by comparing their mean-square error with the CRB.
Type de document :
Communication dans un congrès
23rd European Signal Processing Conference (EUSIPCO-2015), Aug 2015, Nice, France. 2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01118725
Contributeur : José Henrique De Morais Goulart <>
Soumis le : mercredi 24 juin 2015 - 10:35:43
Dernière modification le : samedi 18 février 2017 - 01:20:35
Document(s) archivé(s) le : mardi 15 septembre 2015 - 22:25:47

Fichiers

crb-cpd-unique.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01118725, version 2
  • ARXIV : 1502.06777

Citation

José Henrique De Morais Goulart, Maxime Boizard, Remy Boyer, Gérard Favier, Pierre Comon. Statistical efficiency of structured cpd estimation applied to Wiener-Hammerstein modeling. 23rd European Signal Processing Conference (EUSIPCO-2015), Aug 2015, Nice, France. 2015. <hal-01118725v2>

Partager

Métriques

Consultations de
la notice

382

Téléchargements du document

109