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Relevance of control theory to design and maintenanceproblems in time-variant reliability: the case of stochasticviabilityCharles Rougé1,2, Jean-Denis Mathias1 and Guillaume De�uant1July 22, 2014AbstractThe goal of this paper is twofold: 1) to show that time-variant reliability and a branch of controltheory called stochastic viability address similar problems with di�erent points of view, and 2) todemonstrate the relevance of concepts and methods from stochastic viability in reliability problems.On the one hand, reliability aims at evaluating the probability of failure of a system subjectedto uncertainty and stochasticity. On the other hand, viability aims at maintaining a controlleddynamical system within a survival set. When the dynamical system is stochastic, this work showsthat a viability problem belongs to a speci�c class of design and maintenance problems in time-variant reliability. Dynamic programming, which is used for solving Markovian stochastic viabilityproblems, then yields the set of design states for which there exists a maintenance strategy whichguarantees reliability with a con�dence level β for a given period of time T . Besides, it leads toa straightforward computation of the date of the �rst outcrossing, informing on when the systemis most likely to fail. We illustrate this approach with a simple example of population dynamics,including a case where load increases with time.Keywords: Viability theory, Time-variant reliability, Dynamical systems, Dynamic programming,Reliability kernel, Design and maintenance problems
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1 Introduction1 This paper connects two lines of research, viability and reliability, that have ignored each other up to2 now despite strong similarities. Both frameworks study the potential for a system to retain desirable3 properties. They were developed in di�erent contexts and sometimes tackle di�erent speci�c technical4 or conceptual issues in relation with the same type of problems, which makes their confrontation5 promising. In particular, this work focuses on showing how concepts and methods coming from the6 so-called stochastic viability framework (Doyen and De Lara, 2010) are applicable to time-variant7 reliability. Indeed, they foster the resolution of a particular class of design and maintenance problems,8 that this paper is to describe with accuracy.9 Reliability theory initially comes from the �eld of mechanical and structural engineering (Rackwitz,10 2001) and has a wide range of applications, from material science (Mathias and Lemaire, 2012) and11 industrial maintenance (Rausand, 1998) to ecology (Naeem, 1998), environmental management (Aliev12 and Kartvelishvili, 1993) and hydrology (Melching, 1992). In these applications, di�erent numerical13 methods enable the estimation of the response surface and the associated probability of a system14 to be in the so-called failure set. Reliability methods provide ever-improving approximations of this15 probability of failure in cases of growing complexity, and have been perfected and tailored to an16 increasing number of applications (Ditlevsen and Madsen, 1996; Rackwitz, 2001; Lemaire, 2009). Let17 us cite for instance Monte Carlo methods, First and Second Order Reliability Methods (FORM and18 SORM), or response surface approximations. A central concern is often with understanding and19 modeling the correlations between the di�erent variables.20 However, many of these developments deal with time-invariant systems, since they are carried out21 under a single de�nite period of time. When the system under consideration evolves in time, the22 reliability problem is referred to as time-variant. The central issue of representing the correlations23 between variables is then extended to account for the time correlations of the processes of interest.24 The probability of reaching the failure set during the evolution is called the cumulative probability of25 failure. Rice's formula (Rice, 1944), which counts the average number of times an ergodic stationary26 process crosses a given �xed level, serves as a basis for computing the cumulative probability of failure27 in the outcrossing approach. This approach is based on the computation and time integration of the28 outcrossing rate, i.e. the rate at which the state reaches the failure set, e.g. Li and Der Kiureghian29 (1995). It has been applied to simple cases where analytical derivations are tractable (Guedes Soares30 and Garbatov, 1998; Sudret, 2008a) or alongside approaches from time-invariant reliability such as31 FORM (Kuschel and Rackwitz, 2000), or �nite elements methods (Sudret, 2008b).32 Thus, bridges exist between the time-variant and -invariant cases. In fact, some outcrossing al-33 gorithms decompose the time-variant problem into a series of time-invariant ones (Hagen and Tvedt,34 1991; Andrieu-Renaud et al., 2004; Sudret, 2008a), and conversely, the outcrossing rate has been de-35 �ned on variables other than time (Sudret, 2008b). Some cases can even be solved both with the36 outcrossing rate approach, and by having time as a parameter (Burgazzi, 2008). Other studies treat37 a time-variant problem like a time-invariant one, by considering time as a parameter (Petryna et al.,38 2002; Schotanus et al., 2004) or as yet another space variable (Wang and Wang, 2013), or by treating39 a �nite number of dates like a series system (Savage and Son, 2011).40 Most of the works cited in the two paragraphs above assume a monotonic decrease of performance41 2



with time. Such an assumption is perfectly reasonable for structures that deteriorate as they grow42 old, but recent time-variant reliability studies have questioned its systematic use, and suggest using43 methods that do not require this hypothesis (Quigley and Walls, 2011; Targoutzidis, 2012; Wang and44 Wang, 2013). A second limitation of the existing literature, linked with the assumption of a monotonic45 decrease in performance through time, is the idea that maintenance is the fact of choosing between a46 limited set of options which essentially are equivalent to rejuvenating the system, e.g. Guedes Soares47 and Garbatov (1998), Kuschel and Rackwitz (2000), Val and Stewart (2003). Without a monotonic48 decrease of performance, other types of maintenance need to be taken into account. Besides, there is no49 framework within the time-variant reliability literature that formally considers design and maintenance50 together. Nevertheless, design and maintenance are closely related, since a system should be designed51 in a way that allows for an appropriate maintenance throughout its lifetime.52 To address these current limits of time-variant reliability, this work uses a stochastic controlled53 dynamical system formulation. Non-controlled dynamics can be found in the time-variant reliability54 literature (Sørensen et al., 2005; Biondini and Frangopol, 2009; Targoutzidis, 2012), and the use of55 controls leads to a general formulation for design and maintenance problems by linking the acceptability56 of a design to the existence of a maintenance strategy such that reliability is guaranteed with a57 con�dence β, i.e., such that the cumulative probability of failure is smaller than 1− β.58 The link between the initial con�guration of a system and the existence of strategies that keep it59 out of a failure state are central to viability theory (Aubin, 1991; Aubin et al., 2011). This is a control60 theory that deals with controlled dynamic systems under state constraints, and whose original focus61 is on controlled deterministic systems. An emphasis is put on �nding the viability kernel, the set of62 all initial states which can be controlled so that their trajectory is maintained within the constraint63 set at all times. Viability algorithms generally yield both the viability kernel and the associated64 viable controls at once, e.g. Saint-Pierre (1994), Bonneuil (2006), De�uant et al. (2007). Viability65 tools have been successfully applied to a variety of �elds such as �nance, robotics, or ecology, e.g.66 De�uant and Gilbert (2011). Recent work has extended the framework of viability theory in discrete67 time by considering uncertainties in the dynamics, leading to the de�nition of the stochastic viability68 kernel (De Lara and Doyen, 2008), a set of states for which the respect of the constraints can be69 guaranteed with a desired minimal probability and for a desired time frame. Dynamic programming can70 compute stochastic viability kernels and determine the control strategy that maximizes the probability71 to maintain the system in the constraint set during that period (Doyen and De Lara, 2010). This is the72 speci�c development which applicability to reliability problems we propose to demonstrate throughout73 this work.74 The paper is organized as follows. Section 2 introduces the notion of reliability kernel to describe75 a time-variant design problem. Then Section 3 extends this notion to a coupled problem of design76 and maintenance through a controlled dynamical system formulation. After that, Section 4 shows how77 the framework of viability theory applies to a speci�c case of this coupled design and maintenance78 problem, and solves it in the Markovian case. Section 5 proposes an application in order to illustrate79 how dynamic programming can be applied to a reliability problem. The discussion of Section 6 further80 argues about the potential of confronting reliability with control theories such as viability. Finally,81 Section 7 summarizes the �ndings.82 3



2 A design problem in time-variant reliability83 This section proposes a general formulation for design problems in time-variant reliability, which comes84 from a similar problem in time-invariant reliability.85 2.1 Time-invariant reliability86 Let us consider a system and a vector of n random variables X which represents the system's state87 variables and their uncertainty. Reliability is concerned with the performance function g(X), and with88 the so-called limit-state (or failure) surface de�ned by (Ditlevsen and Madsen, 1996; Lemaire, 2009):89
g(X) = 0 (1)The limit-state surface separates the failure domain F (where g(X) < 0) from the survival domain S90 (where g(X) ≥ 0). The object of reliability is to determine the probability of failure pf of the system :91

pf = P(X ∈ F ) = P(g(X) < 0)). (2)A diversity of methods have been developed to compute or approximate the limit-state surface and92 the probability of failure in the time-invariant case (Ditlevsen and Madsen, 1996; Lemaire, 2009).93 Choices regarding the design of the system may in�uence the random vector X or the performance94 function. Without loss of generality, the problem can be formulated so these choices only a�ect the95 former. Let us represent choices by a �xed vector π chosen in a space Π ⊂ Rm and m ∈ N. Let96 us call design this vector: each design leads to a distinct random vector X(π). Then the associated97 probability of failure pf (π) is:98
pf (π) = P(g(X(π)) < 0)). (3)This work focuses on �nding values of π such that the system is reliable with a con�dence level β (i.e.,99 a signi�cance level α = 1 − β). In other words, we are interested in �nding elements from the set of100 design choices such that reliability is achieved with a con�dence β. Let us introduce this set as the101 reliability kernel, noted Relπ(β) and formally written as follows:102 Relπ(β) = {π ∈ Π|pf (π) ≤ 1− β} (4)For instance, Relπ(0.99) is the set of available designs such that the system has a 99% chance of being103 in the survival set S. Let us now extend this design problem to the time-variant case.104 2.2 Time-variant reliability105 We now place ourselves between an initial date t0 = 0 and �nal date T , so that the problem is studied106 within a time interval [0, T ] called the planning period. The uncertainty and stochasticity of the system107 are represented at all dates by the vector X(t, π). There is a consensus in the reliability literature108 that X(t, π) aggregates a vector of random variables like in time-invariant viability, as well as a vector109 of one-dimensional random processes that may be correlated with one another as well as with the110 4



random variables (Kuschel and Rackwitz, 2000; Andrieu-Renaud et al., 2004; Sudret et al., 2005).111 These processes may also be autocorrelated in time.112 The performance of the system may also evolve with time, and is now noted g(t,X(t, π)). Likewise,113 the limit-state surface g(t,X(t, π)) = 0 may be dependent on time, and so may the failure domain F (t)114 (where g(t,X(t, π)) ≤ 0) and the survival domain S(t) (where g(t,X(t, π)) ≥ 0).115 Time-variant reliability is concerned with the cumulative probability of failure pf (t, π), the proba-116 bility of reaching the failure set over [0, t]:117
pf(t, π) = P(∃τ ∈ [0, t],X(τ, π) ∈ F (τ)) (5)From now on, we shall simply call �probability of failure� the cumulative probability of failure pf (t, π),118 because it is the time-variant equivalent of the probability of failure pf (t) from equation (5). Much119 like for the time-invariant case, this work focuses on the problem of �nding values of the design vector120

π such that the system is reliable over the planning period [0, T ] with a con�dence level β. A very121 similar problem consists in �nding elements from the reliability kernel Relπ(β, T ), de�ned as:122 Relπ(β, T ) = {π ∈ Π|pf (T, π) ≤ 1− β} (6)For instance, Relπ(0.99, 100) is the set of available designs such that the system has a 99% chance of123 staying in the survival set S(t) until at least T = 100.124 Existing time-variant reliability methods aim at �nding the value of the probability of failure125
pf(T, π) given the value of π. In other words, they only aim at iteratively testing which values of126
π may be acceptable. This is the case for instance for outcrossing (or outcrossing-based) methods127 (Kuschel and Rackwitz, 2000; Rackwitz, 2001; Andrieu-Renaud et al., 2004; Sudret, 2008a). They are128 based on the outcrossing rate ν+(t) de�ned as the instantaneous rate at which the system leaves the129 survival set (Andrieu-Renaud et al., 2004):130

ν+(t) = lim
∆t

>
→0

P ({g(t,X(t, π)) ≥ 0} ∩ {g(t+∆t,X(t+∆t, π)) < 0})

∆t
(7)Time integration of ν+(t) throughout the planning period provides an upper bound for the probability131 of failure:132

pf (T, π) ≤

∫ T

0

ν+(t)dt (8)and this inequality becomes an equality under the assumption that failure occurs only once. The aim133 is then to determine when the time-dependent system crosses the limit-state surface.134 3 A general design and maintenance problem135 Let us now explore the consequences of changing the time-variant design problem of Section 2.2 so as136 to incorporate the maintenance of the system. Since maintenance is done at discrete dates, it is the137 values of X(t, π) at these dates that matter. Thus, we �rst introduce a discrete-time dynamical system138 formulation, then we add to this formulation the possibility to control the system.139 5



3.1 Discrete-time dynamics140 Instead of a representation of the time evolution of a system through its correlation structure, usual141 within reliability theory, in this work time dependence is expressed explicitly using a dynamical system142 formulation. Dynamical systems are present in the time-variant reliability literature (Sørensen et al.,143 2005; Targoutzidis, 2012), and including under discrete time formulations (Biondini and Frangopol,144 2009). In this Section, let us assume that reliability assessments focus on X(t, π) at discrete dates145
t = 0, 1, . . . , T − 1, T , where the time interval between two consecutive dates may not be constant.146 Then, the time correlation structure of the stochastic processes of interest may not be entirely given147 by the discrete sequence of random vectors (X(0, π),X(1, π), . . . ,X(T − 1, π),X(T, π)). This is why148 we introduce another random vectorW(t) which represents how uncertainty and stochasticity a�ect149 the system between two consecutive dates1:150 X(t+ 1, π) = f(t, π,X(t, π),W(t)) (9)where f is the dynamic2. Following a convention from De Lara and Doyen (2008), a realization of the151 sequenceW = (W(0),W(1), . . . ,W(T − 1)) is called a scenario, and it is an element from the set of152 all scenarios S. The correlation structure ofW re�ects the time correlation structure of the stochastic153 processes of interest. Thus, the vectorsW(t1) andW(t2) can be correlated for any two dates t1 and154
t2. Only in the Markovian case areW(t1) andW(t2) statistically independent for all t1 and t2 within155
[0, T ].156 Through the iterative application equation (9) between the initial date 0 and a later date t, X(t, π)157 only depends on the design π, the initial value X(0, π) of the random vector X(t, π), and the scenario158 W. Further assuming, similar to the time-invariant case (Section 2.1), that X(0, π) is only a function159 of the design π, X(t, π) can be written as a function of the following:160 X(t, π) = f(t, π,W) (10)and we call trajectory the sequence (X(0, π),X(1, π), . . . ,X(T − 1, π),X(T, π)).161 Then, the probability of failure is computed using the probability distribution of the scenarios. The162 de�nitions of pf (t, π) from equation (5) and Relπ(β, T ) from (6) apply to the discrete time dynamics163 from equation (9), the only change being that only a set of discrete dates within [0, T ] is now of interest.164 3.2 Design and maintenance in time-variant reliability165 Still on a planning period [0, T ], let us now consider the possibility of acting on the system at each of166 the discrete dates introduced in Section 3.1. Maintenance actions are represented by a vector u called167 a control or control vector. Similar to the design π, a control vector is a choice �xed by the entity that168 maintains the system. The set of available controls at a given discrete date t is noted U(t, π), and it169 1Since the dependence of the state on the parameter π is already clear in equation (9),W(t) can be made independentfrom the parameter π, which is why we do not use the notation W(t, π).2The di�erent dynamics in the text will always be noted as f , even though they are not the same .
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is a subset of Rq. The representation of maintenance actions leads to updating equation (9) into:170 X(t+ 1, π) = f(t, π,X(t, π), u(t),W(t)) (11)In control theory terms, this is a stochastic controlled discrete-time dynamical system.171 In this work, controls are applied so that the system does not reach the failure set. This is what172 the reliability literature calls preventive maintenance (Rausand, 1998). To assess how controls a�ects173 reliability, the whole sequence of controls applied at the dates 0, 1, . . . , T − 1 is of interest. We call174 strategy the sequence u(.) = (u(0), u(1), . . . , u(T−1)). The set of all strategies that can be implemented175 during the time frame [0, T ] is noted U(T ). Notations involved in this formulation are summarized in176 Table 1. The notion of trajectory introduced by equation (10) can be extended to account for u(.), so177 that the iterative application of equation (11) between the initial date and a date t leads to:178 X(t, π) = f(t, π, u(.),W) (12)Given the design π, the strategy u(.) and the scenario W, there is only one sequence of random179 variables, (X(0, π),X(1, π), . . . ,X(T − 1, π),X(T, π)).180 Through the latter equation (12), the probability of failure becomes a function of t, π and u(.):181
pf(t, π, u(.)) = P(∃τ ∈ [0, t],X(τ, π) ∈ F (τ)) (13)and we can now introduce the reliability kernel of the design problem, in cases where the designer182 should also be concerned with the system's subsequent maintenance. Then, the goal is to �nd a183 design π such that there exists a control strategy u(.) that guarantees the system's reliability with a184 con�dence level β. Its reliability kernel is thus rede�ned from equation (6) to become Relπ,u(β, T ),185 formally de�ned as follows:186 Relπ,u(β, T ) = {π ∈ Π|∃u(.) ∈ U(T ), pf(T, π, u(.)) ≤ 1− β} (14)Equation (6) correspond to the case where there is no maintenance, which is equivalent to considering187 that only one strategy is available, and therefore, that it is necessary applied to the system. Conversely,188 there are cases where there is only maintenance, and the problem is to �nd whether there is an adequate189 maintenance strategy: these are maintenance problems. Such cases amount to considering that there190 is only one possible design (Π = {π}), so that either Relπ,u(β, T ) = ∅ or Relπ,u(β, T ) = Π. Thus,191 introducing controls in time-variant reliability leads to a coupled design and maintenance problem, and192 design and maintenance must be considered together. Two other important remarks must be made at193 this stage.194 First, to call a design π reliable, it is necessary to �nd an adequate strategy, but its search is195 very challenging because it is necessary to choose among multiple options at each time step. Thus,196 searching a strategy in U(T )means searching a space of very high dimensionality. Existing time-variant197 reliability methods rather aim at computing the probability of failure pf (t, π, u(.)) for a given design198 and maintenance strategy, therefore they are not suited to handle the proposed design and maintenance199 problem on their own. The general aim of control theories is to �nd the appropriate controls in a given200 7



Notation Vector space DescriptionX(t, π) Rn State (random vector) at the discrete date tW(t) Rp (p ≤ n) E�ect of the stochastic processes between t and t+ 1W (Rp)T Scenario, sequence (W(0),W(1), . . . ,W(T − 1))
π Π Design (or design choice): �xed
u U(t, x) ⊂ Rq Control (decision): �xed

u(.) U(T ) Strategy (control sequence)Table 1: Vector notation summary for the general design and maintenance problem in time-variantreliability: with the random vectors in the top half and the decisions to take (deterministic vectors) inthe bottom half.situation, which justi�es the idea of exploring how a particular control theory, namely viability theory,201 may help �nd reliable designs.202 Second, the reliability kernel depends heavily on the information that is available on the system203 at each date when action must be undertaken. Indeed, information on X(t, π) may lead to adapt the204 control to that information. Although some reliability studies use bayesian updating to empirically205 update reliability estimates, e.g. Hsiao et al. (2008), Quigley and Walls (2011), they do not provide a206 formal framework to deal with the issue of information. Control theory did formalize the importance207 of information on the state of the system when it comes to controlling it so it avoids failure (Aubin,208 1991; Clarke et al., 1995; Doyen and De Lara, 2010; Aubin et al., 2011). Thus, open-loop feedbacks209 designate predetermined control strategies that are applied without taking information collected at t210 on X(t, π) into account. Closed-loop feedbacks indicate, to the contrary, that the control is chosen211 based on the acquisition of new knowledge on X(t, π). In fact, viability theory applies to both types of212 feedbacks, but the developments from stochastic viability that are to be discussed in the next Section213 use closed-loop feedbacks.214 4 Relevance of stochastic viability in time-variant reliability215 The relevance of stochastic viability to solve design and maintenance problems in time-variant reliabil-216 ity is now demonstrated. We use closed-loop feedbacks, so that the control u at date t also depends on217 information about the system. We will explore how this changes the general design and maintenance218 problem of Section 3.2, �rst in the full information case in Section 4.1, and then in the more general219 partial information case in Section 4.2. Following that, Section 4.3 presents stochastic viability and the220 associated stochastic viability kernel, which it relates to the reliability kernel of the problem of Section221 4.2. This relationship enables the introduction of dynamic programming to solve that problem, as222 detailed in Section 4.4. This method also leads to approximations of the outcrossing rate as in Section223 4.5.224 4.1 Closed-loop feedbacks with full information225 Full information means that at date t, we have access to complete knowledge of the state x(t, π), which226 is a realization of the random variable X(t, π). The existence of closed-loop feedbacks means that the227 choice of u at date t depends on the state x(t, π). Within a closed-loop formulation, a strategy u(.) (as228 8



introduced in Section 3.2) associates a maintenance decision u(t, x(t, π)) to each date t and state y.229 Since we are working with realizations rather than with the random vector X(t, π) itself, equation230 (11) becomes:231
x(t+ 1, π) = f(t, π, x(t, π), u(t, x(t, π)), w(t)) (15)where w(t) represents the realization ofW(t) in equation (15). It represents the randomness in updat-232 ing the state from date t to t+1, and we also call scenario the sequence w(.) = (w(0), w(1), . . . , w(T−1)).233 Let us now introduce y(t) = (x(t, π), π), a vector which aggregates the state and design vectors.234 The framework of so-called stochastic viability theory1 De Lara and Doyen (2008) and Doyen and De235 Lara (2010) focuses on the dynamic of y(t) instead of that of x(t, π). The dynamic (15) becomes:236

y(t+ 1) = f(t, y(t), u(t, y(t)), w(t)) (16)Stochastic viability then calls y(t) the state vector, and closed-loop feedbacks are determined by y(t).237 Yet, if neither x nor f depend on the design, setting y(t) = x(t) puts equation (15) under the form of238 equation (16) (see Section 5).239 4.2 Closed-loop feedback with partial information240 In many cases, there is no direct access to the realization x(t, π). In this paper, we assume that241 this partial information is a realization z(t, π) of a known random variable Z(x(t, π), π). Under this242 assumption, the dynamics of this realization z(t, π) can be deduced from that of X(t, π):243
z(t+ 1, π) = f(t, π, z(t, π), u(t, z(t, π)), w(t)) (17)where u depends on the vector z(t, π) because we still are in the closed-loop feedback case. The full244 information case of Section 4.1 corresponds to the case P[Z(x(t, π), π) = x(t, π)] = 1, Then, setting245

y(t) = (z(t, π), π) yields the same equation as (16):246
y(t+ 1) = f(t, y(t), u(t, y(t)), w(t)) (18)where y(t) is again called the state of the system from a stochastic viability perspective. Yet again, if247

z and f do not explicitly depend on π, then using y(t) = z(t) turns equation (17) into (16).248 Working with the dynamics of equation (16) only makes sense if the knowledge of y(t) = (z(t, π), π)249 helps in assessing the reliability of the system. Therefore, in the remainder of this article, we also as-250 sume that it is possible to compute the conditional probability P(X(t, π) ∈ S(t)|y(t)). This assumption251 holds in the full information case because then, P(X(t, π) ∈ S(t)|y(t)) = 1 if y(t) = (x(t, π), π) where252
x(t, π) is the realization of X(t, π), and 0 otherwise.253 Since π is �xed beforehand and does not depend on time, it is given by the initial state y0 = y(0).254 As for equation (12), for a given initial state y0, a given strategy u(.) and a given scenario w(.), there is255 a unique trajectory y(y0, u(.), w(.)) = (y(0), y(1), . . . , y(T − 1), y(T )). With these notations, and since256 probabilities then take into account all the scenarios, we can then write the probability of failure as a257 1As a matter of fact, �probabilistic� may be a more accurate word than �stochastic�.9



function of t, y0 and u(.):258
pf (t, y0, u(.)) = P [∃τ ∈ [0, t],X(t, π) ∈ F (τ)|y0, u(.)] (19)The search of reliable designs can be turned into that of initial states y0 such that there is a control259 strategy u(.) which guarantees that the system is reliable with a con�dence level β during the planning260 period. The corresponding reliability kernel, derived from equation (14), is simply noted Rel(β, T )261 (instead of Relπ,u(β, T )). It is the following set:262 Rel(β, T ) = {y0 ∈ Y|∃u(.) ∈ U(T ), pf(T, y0, u(.)) ≤ 1− β} (20)where the set Y is the state space. In order to compute this kernel, let us now relate it to a mathematical263 object from stochastic viability theory, the stochastic viability kernel.264 4.3 The stochastic viability kernel265 Similar to reliability, stochastic viability theory (De Lara and Doyen, 2008; Doyen and De Lara, 2010)266 focuses on the probability for a system to stay in the survival set during a given time frame. In discrete267 time, it focuses on the time evolution of a state vector, through a governing equation that is none other268 than equation (16). Stochastic viability assumes that the state vector y(t) is known at each time step,269 and that given y(t), the probability of being in the survival set at t is also known.270 Thus, stochastic viability focuses on a very similar problem to that described in Section 4.2. One271 of its central concepts is the so-called stochastic viability kernel, which importance comes from the272 original deterministic control framework of viability theory (for a quick overview of viability theory and273 the viability kernel, see Appendix A). It is de�ned as the set of all states for which there is a strategy274 such that the system has a probability β or higher of staying in the survival set S(t) for a given time275 horizon T . It can be formally de�ned by the following equation in which it is noted Viab(β, T ):276 Viab(β, T ) = {y0 ∈ Y|∃u(.) ∈ U(T ),P(∀t ∈ [0, T ],X(t, π) ∈ S(t)|y0, u(.)) ≥ β} (21)Stochastic viability is related to the closed-loop reliability problem of Section 4.2 through the277 remark that:278

pf (T, y0, u(.)) = 1− P(∀t ∈ [0, T ],X(t, π) ∈ S(t)|y0, u(.)) (22)Through equations (20) and (21), the stochastic viability kernel is the reliability kernel of equation279 (20):280 Rel(β, T ) = Viab(β, T ) (23)Yet, by itself, equation (23) does not allow for the computation of the reliability kernel Rel(β, T ).281 Its interest comes from the fact that there exists a dynamic programming algorithm to compute the282 stochastic viability kernel.283
10



4.4 A dynamic programming solution284 In this Section, we are in the Markovian case, meaning that all the w(t) of equation 16 are statistically285 independent from each other. Then, Doyen and De Lara (2010) establish that the problem of �nding the286 stochastic viability kernel can be solved by dynamic programming, a widespread category of recursive287 algorithms designed to solve the problem backwards from date T to the initial date. Thus, dynamic288 programming also allows for solving the reliability-viability problem in the Markovian case.289 Let us assume that the continuous bounded sets that form the state and control spaces have been290 discretized, as is the case in practice. The state is then represented by a �nite set of points yi of the291 discrete space Ad. Likewise, the discrete control space Ud is represented by points noted uj, and each292 control space Ud(t, yi) is a subset of Ud. Then the transition equation (16) is given by the probabilities293
P(f(t, yi, uj, w(t)) = yk), which we assume to be handily computable. As speci�ed in Section 4.2, we294 also need to assume that at date t, we know enough about the probability distribution of X(t, π) to295 compute P(X(t, π) ∈ S(t)|yi), and that we know the value of yi.296 Then, Doyen and De Lara (2010) link Viab(β, T ) to a value function V (t, yi) that is de�ned both297 by an initial equation at date T and by a recursive equation. The initial equation is as follows:298

V (T, yi) = P(X(T, π) ∈ S(T )|yi) (24)while the latter reads for all t between dates 0 and T − 1:299
V (t, yi) =



 max
uj∈Ud(t,yi)

∑

yk∈Ad

V (t+ 1, yk).P(f(t, yi, uj , w(t)) = yk)



 .P(X(t, π) ∈ S(t)|yi) (25)Doyen and De Lara demonstrate that Viab(β, T ) is the set of all states such that V (0, yi) ≥ β. Thus,300 the states for which there exists a reliable strategy u(.) with a con�dence level β are also given by301
V (0, yi) ≥ β. Besides, another result from Doyen and De Lara (2010) is that the computation of the302 value function yields the control strategy u∗(.) that minimizes the probability of failure for a trajectory303 starting at a state y0, so that:304

V (0, y0) = 1− pf (T, y0, u
∗(.)) (26)A major advantage of the stochastic viability approach is that the maintenance controls are not �xed305 beforehand. It dynamically and simultaneously computes both the optimal maintenance strategy and306 the associated probability of viability (or reliability) associated to that strategy.307 4.5 Approximating the date of �rst outcrossing308 Whereas the outcrossing rate (equation (7)) is usually integrated over a period of time to yield the309 probability of failure, the dynamic programming algorithm presented above does not compute it di-310 rectly. Nevertheless, given an initial state y0 and a strategy u(.) ∈ U(T ), it is useful to know around311 which dates the system is most likely to leave the survival set. Noting tout the date at which the system312 �rst leaves the survival set for the �rst time, the probability P(tout = t) is related to the probability313
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of failure pf (t, y0, u(.)) de�ned in equation (19):314
pf (t, y0, u(.)) =

t
∑

τ=0

P(tout = τ) (27)Applying the latter equation at dates t and t− 1 directly leads to:315
P(tout = t) = pf (t, y0, u(.))− pf (t− 1, y0, u(.)) (28)If we note ∆(t) the amount of time between dates t and t+1, then P(tout = t)/∆(t) is an approximation316 of the rate of the �rst outcrossing. Computation of the probability of failure pf(t, y0, u(.)) for t < T317 and a �xed maintenance strategy u(.) can be achieved both by backward and forward programming,318 and both methods are presented in Appendix B.319 5 Application320 In this Section we apply the dynamic programming techniques from Section 4.4 to a simple dynamical321 model of controlled population growth. The aim through this is to demonstrate that 1) despite the322 apparent simplicity of the equations, complex control strategies can and may have to be devised, and323

2) that dynamic programming is adequate to do so. The reader should keep in mind that this applica-324 tion does not intend to showcase that dynamic programming is more precise or less computationally325 demanding than other techniques in time-variant reliability; yet, these techniques are not meant to326 �nd appropriate maintenance strategies. This Section also intends to show that dynamic programming327 also applies to the case, classical in time-variant reliability, of a performance function that decreases328 with time, and it uses the results from Section 4.5 to compute the outcrossing rate.329 5.1 A simple population model330 We consider a modi�ed version of a simple model of population growth introduced by Aubin and Saint-331 Pierre (2002). It is discretized and uncertainty is integrated as an additive term to the population332 variable at each time step. All quantities being non dimensional for simplicity, the evolution of the333 state x = (a, b) reads:334
{

a(t+ 1) = a(t) + (a(t)b(t) + w(t))∆t

b(t+ 1) = b(t) + u(t, a(t), b(t))
(29)This is the full information case from Section 4.1. The initial state x0 represents the system's design,335 so we can write π = x0 = (a0, b0). Since neither the dynamic nor the state vector depend explicitly on336

x0, equation (29) is under the form x(t+1) = f(t, x(t), u(t, x(t)), w(t)) like in equation (16). Therefore,337 dynamic programming and other computations can be carried out using y(t) = x(t), and we shall keep338 the notation x(t) instead y(t) throughout this section.339 The state variables are the population a(t) and its growth coe�cient b(t). The time interval between340 two consecutive dates is constant at ∆t = 1. The state variable b(t) is controlled by a unique control341 variable u(t, x(t)). The feedback rule, that is, the control to be associated to each state, is to be342 12



determined in order to maximize the system's reliability. The control space is U = [Umin, Umax] and343 represents the inertia in the evolution of the population. These bounds are taken to be Umin = −0.5344 and Umax = 0.5.345 The uncertainty w(t) is a realization of a Gaussian random variableW(t) of mean 0 and standard346 deviation 0.25. In the same way as in Section 4.4, we are in the Markovian case, so that the Gaussian347 random variablesW(t1) and W(t2) at two di�erent dates t1 and t2 are statistically independent. In348 fact, the term w(t).∆t from equation (29) re�ects in discrete time the hypothesis that in continuous349 time, the state variable a(t) is disturbed by a white noise process.350 The size of the population is constrained, so that the survival set is represented by the following351 performance function:352
g(t, x(t)) = g(t, a(t), b(t)) = (a(t)− 0.2)(c(t)− a(t)) (30)so that the survival set is de�ned by a(t) ∈ [0.2, c(t)] where c(t) is the carrying capacity of the system353 (c(t) ≥ 0.2). In ecology, the carrying capacity is the maximal size of the population that can be354 sustained by the environment it lives in. For a given expression of g(t, x(t)) in equation (30), the355 design problem is related to assessing reliability at a time horizon T for a given initial state x0. Since356 reliability also depends on the way the system is subsequently controlled � or maintained � this problem357 is a design and maintenance problem as described in Section 3.2.358 In this study, the state space has been discretized, with resolutions ∆a = 0.01 and ∆b = 0.05,359 and the control space is likewise discretized with a resolution ∆u = 0.05. In this discrete space, the360 transition function between two time steps was obtained by interpolating from equation (29). In what361 follows, the relevant range for b was found to be [−1.5, 2.5].362 5.2 Constant carrying capacity363 Let us assume that the carrying capacity is constant at c = 3. Then, the performance function from364 equation (30) is under the following form g1:365

g1(t, x(t)) = (a(t)− 0.2)(3− a(t)) (31)Dynamic programming leads to the strategy u(.) that optimizes reliability at any horizon, and the only366 approximation is that of the discretization. This is showcased for T = 100 by Figure 1, which shows367 that only initial states grouped around b0 = 0 have a good reliability. There is, however, a sizable368 reliability kernel Rel(0.95, 100), which shows which initial states � or which system designs � lead to369 the lowest probability of failure. Such reliability kernels can also be computed at any horizon, which370 allows for observing the evolution of Rel(0.95, T ) as T increases. Its size decreases very little until it371 abruptly ceases to exist when T tops 254 (Figure 2).372 This stability of the reliability kernel Rel(0.95, T ) as the horizon increases is matched by that of373 the optimal strategy. Whatever the horizon, the backward sequence of feedback maps x 7→ u(t, x)374 from the �nal date T to the initial date is the same, and what is more, the map becomes constant for375
t ≤ T −10. It is noted u∗ and represented on Figure 3. For a given value of a, the value of u∗ increases376 as b increases. Yet the relationship between u∗ and b is di�erent for each single value of a, so that the377 13
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map is very complex. This map has been obtained through the use of dynamic programming, and it378 is important to recall that usual time-variant reliability kernel are not devised to yield such complex379 maintenance strategies.380
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∗(.)))382 after less than 10 time steps, where λ ≈ 2×10−4 is the probability of leaving at t conditional on staying383 in the survival set up to t− 1. λ is independent on the initial state, so that the di�erences in reliability384 displayed in Figure 1 account for the probability of leaving the survival set within these �rst ten time385 steps. After t = 10, the probability of failure increases very slowly.386 5.3 Decreasing carrying capacity387 Let us now suppose that the system performance decreases over time. We choose a simple model of388 linear decrease from Savage and Son (2011) with a diminishing carrying capacity c(t) = 3− 0.01t. Let389
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us note this function g2, equation (30) becomes:390
g2(t, x(t)) = (a(t)− 0.2)(3− 0.01t− a(t)) (32)As expected, this linear decrease in performance a�ects reliability, so that Rel(0.95, T ), even though391 it assumes a similar shape as for g1, vanishes for T > 54 (Figure 4). Besides, unlike for the case of392 a constant carrying capacity, the optimal control maps change at each time step. This would make393 them very di�cult to �nd if it were not for dynamic programming.394
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Figure 4: Initial states x0 belonging to Rel(0.95, T ), for di�erent values of the horizon T and theperformance function g2.Yet, for t ≤ T −10 it seems that the map u∗(t, .) does not depend on the horizon T . Thus, the maps395 for T = 100 and T = 200 are identical until the date t = 92, while those for T = 150 and T = 200396 are identical until t = 145. This makes the computation of the outcrossing rates values computed397 with the optimal strategy for T = 200 applicable to lower time horizons. No matter the initial state,398 the outcrossing rate is low after the �rst ten time steps then gradually increases to peak at t = 124399 (Figure 5). Then, it decreases because the decreasing quantity (1 − pf (t, x0, u
∗(.)) in equation (28)400 compensates the growth of the probability of leaving the survival set at t conditional on staying in401 it until t − 1. Like for the previous case, the amplitude of the outcrossing rate after t = 10 depends402 on the odds of leaving the survival set within the �rst few time steps. The cumulative probability of403 failure through time can be computed alongside the outcrossing rate (Figure 6).404 17
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6 Discussion405 The limitations of dynamic programming algorithms should be kept in mind. In practice, they can406 only solve systems which state space has a low dimension. Too high a dimension leads to the so-called407 �curse of dimensionality� which designates the exponential increase of the needed computational time408 and memory. There exist approximation and decomposition algorithms that have been used to deal409 with the dimension problem in dynamic programming, such as the Benders decomposition (Perreira410 and Pinto, 1985) or dual approximations, e.g. Shapiro (2011), but their applicability lies well outside411 the scope of this work.412 Yet, the confrontation of reliability with control theory looks very promising. In this paper, it led413 to the formal de�nition of coupled design and maintenance problems without restrictive hypotheses414 on the aging of the system with time, nor on the e�ects of maintenance. While stochastic viability415 was used, other branches of control theory may be relevant to such design and maintenance problems,416 both in the closed- and open-loop cases. In fact some works are very close to viability theory, such as417 the invariance framework (Clarke et al., 1995) or reach-avoid problems in probabilistic hybrid systems,418 e.g. Abate et al. (2008), Summers and Lygeros (2010). They may help in the formulation and / or the419 resolution of time-variant reliability problems. Conversely, reliability may be instrumental in solving420 control problems. For instance, it is necessary to know P(X(t, y(t)) ∈ S(t)) in viability problems, but421 this knowledge may not be easy to get. Time-invariant reliability methods may then provide e�cient422 approximations of these probabilities.423 The interest of the confrontation of reliability and viability does not stop with the potential method-424 ological developments. Both theories, since they tackle very similar performance problems, have been425 used in �elds concerned with environmental and resources management. Thus, reliability theory has426 been used for more than three decades for water resources systems, following the pioneering work by427 Hashimoto et al. (1982) later completed by Moy et al. (1986) and Kundzewicz and Laski (1995). It has428 also been used in groundwater management, be it for water quantity (Oviedo-Salcedo, 2012) or quality429 (Skaggs and Barry, 1997) issues. In ecology, the de�nition of ecosystem failure byNaeem (1998) has430 fostered discussions on the link between species redundancy and ecosystem reliability (Naeem and Li,431 1997; Rastetter et al., 1999). The goal is to assess whether the performance of the system is consistent432 or satisfactory over a given time frame, which can be expressed in terms of whether and how reliability433 may reach or best a threshold value. The stochastic viability framework, which uses the word of via-434 bility instead of reliability, has tackled the same type of performance problem for �shery management435 (Doyen et al., 2007; De Lara and Martinet, 2009; Doyen et al., 2012), with an emphasis on �nding436 management options that maintain both the �sh stocks and economic bene�ts from �shing. Viability437 has also be used for the aptly named population viability analysis (De Lara and Doyen, 2008) which438 tries and assesses the risk that a species may go extinct. The simple example of population viability439 analysis from Section 5 showcases how both stochastic viability and time-variant reliability may be440 relevant to similar problems.441 Finally, both viability and reliability have been used to explore other concepts related to the442 performance of a system. On the one hand, resilience has been de�ned as the possibility for the443 system to recover and get to a set of states robust to uncertainty after a major event dragged it into444 the failure set, this robust set being the stochastic viability kernel (Rougé et al., 2013). In the same445 20



work, stochastic viability methods such as dynamic programming are used to compute the probability446 of reaching a given stochastic viability kernel within a given time frame after an event. On the447 other hand, resilience but also vulnerability have been de�ned alongside reliability as performance448 indicators for water resources systems (Hashimoto et al., 1982) and further, a method computing all449 three concepts using FORM also exists (Maier et al., 2001). Thus, bringing viability and reliability450 methods together may improve the de�nition and computation of other related concepts such as451 resilience and vulnerability.452 7 Conclusion453 Stochastic viability and reliability have the same broad goal of computing the probability for a system454 to not violate its constraints. This work used stochastic viability to propose new concepts and methods455 in time-variant reliability.456 Conceptually, similarities between stochastic viability and reliability led to the de�nition of the457 reliability kernel to deal with design problems: this is an analog of the stochastic viability kernel.458 Viability being a branch of control theory, the notion of reliability kernel has been extended to cases459 where both the design and maintenance of the system have to be considered together. This kernel then460 regroups the possible designs such that the system can be maintained in the survival set with a high461 probability and for a su�cient amount of time. Besides, its de�nition relies on a formulation that is462 independent from the assumption of a monotonic decrease in performance over time, even though the463 application shows that the framework is well-suited to tackle these cases as well.464 As for the method, dynamic programming is applicable to time-variant reliability in the speci�c465 cases in which a design and maintenance problem is also a stochastic viability problem, namely when466 the uncertainty and stochasticity of the system can be summarized at discrete dates by a vector called467 the state vector, and when the search of the design is related to that of the initial state. If the468 uncertainty can be expressed by independent random variables, then dynamic programming yields469 both the reliable designs and the adequate maintenance strategy for these designs.470 Acknowledgements471 This work has been supported by a Région Auvergne's scholarship. The authors also want to thank an472 anonymous reviewer, whose constructive remarks on earlier versions of this manuscript considerably473 improved its content.474
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A Background on viability theory475 In its original deterministic version (Aubin, 1991), viability theory deals with controlled systems such476 that w(t) ≡ 0, and for which full information is available: y(t) = (x(t), π). Equation (16) can be477 simpli�ed into:478
y(t+ 1) = f(t, y(t), u(t)) (33)In this framework, a trajectory is de�ned by an initial state y0 and a strategy u(.), so the state can479 be noted y(t, y0, u(.)). The central question of viability is whether that trajectory leaves a survival set480

S(t), at any given date within the time frame [0, T ]. An answer to this question is brought about by481 a central object, the viability kernel, which is the set of all initial states for which the system can be482 controlled so its trajectory does not leave the survival set:483 Viab(T ) = {y0 ∈ Y|∃u(.) ∈ U(T ), ∀t ∈ [0, T ], y(t, y0, u(.)) ∈ S(t)} (34)Thus, an initial state can either be viable or not, which we can translate into reliability terms by484 stating that in a deterministic context, the probability of failure is either 1 when y0 ∈Viab(T ), and485
0 otherwise. Properties of the viability kernel have provided the foundation of viability algorithms.486 This is for instance the case for algorithms that use the binary nature of a state under deterministic487 viability (e.g. Saint-Pierre, 1994; De�uant et al., 2007), or the fact that viable trajectories are tangent488 to the surface of the viability kernel (Bonneuil, 2006). An interest of these algorithms is that they �nd489 both the viable initial states and the associated viable controls.490 B Computation of pf(t, y0, u(.)) for t < T and a �xed u(.)491 In what follows we assume a prede�ned value of u(t, y) for each t and y.492 B.1 Forward493 This is done through the direct computation of the possible trajectories x(t, y0, u(.), w(.)) for all dates494
0 < t ≤ T , as long as they do not leave the survival set. We recursively compute the value function495
V1(t, y0, u(.), yk):496

V1(t, y0, u(.), yk) = P
(

{y(t, y0, u(.), w(.)) = yk} ∩
{

∀τ < t,X (t, π) ∈ S(τ)|y), u(.)
}) (35)The value function V1 gives the probability of transitioning from y0 at the initial date to yk at date t,497 while keeping the system in the survival set. In other words, we have:498

pf (t, y0, u(.)) = 1−
∑

yk∈Y

V1(t, y0, u(.), yk) (36)The value function V1 is computed through a forward iterative scheme. Initialization reads:499
V1(0, y0, u(.), yk) =

{

P (X(0, π) ∈ S(0)|y0) if y0 = yk

0 if y0 6= yk
(37)22



then the function V1 is recursively updated at each date 1 ≤ t ≤ T :500
V1(t, y0, u(.), yk) =





∑

yi∈Y

V1(t− 1, y0, u(.), yi).P(f(t− 1, yi, u(t− 1, yi), w(t − 1)) = yk)





.P(X(t, π) ∈ S(t)|yk)

(38)The advantage of using the above approach is that it yields the failure probabilities at all dates501 recursively, in a single run. The inconvenient lies with the large amount of computational memory it502 requires, since it connects all the points of the successive survival sets with each other.503 B.2 Backward504 Let us introduce a value function V2 to compute the probability of not failing between the initial date505 and set a date t ∈ [0, T ]. V2 is to be computed recursively backwards from t to 0. It is initialized506 through:507
V2(t, yi) = P(X(t, π) ∈ S(t)|yi) (39)and then for τ ∈ [0, τ [, the backward transition equation reads:508

V2(τ, yi) =





∑

yk∈Y

P(f(t, yi, u(τ, yi), w(τ)) = yk).V2(τ + 1, yk)



.P(X(τ, π) ∈ S(τ)|yi) (40)These equations are exact analogous to equations (24) and (25) for the value function V , where509 there is only one possible control u(τ, yi) at each date τ and state yi. Thus, equation (26) becomes510
V2(0, yi) = 1− pf(t, y0, u(.)). This is less expensive than the algorithm for V since there is no need to511 solve an optimization problem at each date and state to get the feedbacks. However, it is necessary to512 run this algorithm for each date separately so as to get the probability of failure at multiple dates.513
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