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When the information about uncertainty cannot be quantified in a simple, probabilistic

way, the topic of possibilistic decision theory is often a natural one to consider. The

development of possibilistic decision theory has lead to the proposition a series of

possibilistic criteria, namely: optimistic and pessimistic possibilistic qualitative criteria

[7], possibilistic likely dominance [2,9], binary possibilistic utility [11] and possibilistic

Choquet integrals [24]. This paper focuses on sequential decision making in possibilistic

decision trees. It proposes a theoretical study on the complexity of the problem of

finding an optimal strategy depending on the monotonicity property of the optimization

criteria – when the criterion is transitive, this property indeed allows a polytime solving

of the problem by Dynamic Programming. We show that most possibilistic decision

criteria, but possibilistic Choquet integrals, satisfy monotonicity and that the corresponding

optimization problems can be solved in polynomial time by Dynamic Programming.

Concerning the possibilistic likely dominance criteria which is quasi-transitive but not

fully transitive, we propose an extended version of Dynamic Programming which remains

polynomial in the size of the decision tree. We also show that for the particular case of

possibilistic Choquet integrals, the problem of finding an optimal strategy is NP-hard. It can

be solved by a Branch and Bound algorithm. Experiments show that even not necessarily

optimal, the strategies built by Dynamic Programming are generally very good.

1. Introduction

For several decades, there has been a growing interest in Operation Research and more recently in Artificial Intelligence

towards the foundations and computational methods of decision making under uncertainty. This is especially relevant for

applications to sequential decision making under uncertainty, where a suitable strategy is to be found, that associates a

decision to each state of the world. Several representation formalisms can be used for sequential decision problems, such as

decision trees, influence diagrams or Markov decision processes. A decision tree is an explicit representation of a sequential

decision problem, while influence diagrams or Markov decision processes are compact representations. In this paper, we

focus on the former framework: even in this simple, explicit, case, the set of potential strategies is combinatorial (i.e., its

size increases exponentially with the size of the tree); the determination of an optimal strategy for a given representation

and a given decision criterion is then an algorithmic issue in itself.

A popular criterion to compare decisions under risk is the expected utility (EU) model axiomatized by Von Neumann and

Morgenstern [19]. This model relies on a probabilistic representation of uncertainty: an elementary decision (i.e. a one-step

decision problem) is modeled by a probabilistic lottery over the possible outcomes. The preferences of the decision maker

are supposed to be captured by a utility function assigning a numerical value to each outcome. The evaluation of a lottery is
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then performed through the computation of its expected utility (the greater, the better). In sequential decision making, each

possible strategy is viewed as a compound lottery. It can be reduced to an equivalent simple lottery, and thus compared to

remaining ones according to its expected utility.

Operational Research then proposes an efficient tool for the optimization of expected utility in probabilistic decision

trees: Dynamic Programming. Although the high combinatorial nature of the set of possible strategies, the selection of an

optimal strategy can be performed in time polynomial with the size of the decision tree: the EU model indeed satisfies a

property of monotonicity that guarantees the completeness of Dynamic Programming.

When the information about uncertainty cannot be quantified in a probabilistic way the topic of possibilistic decision

theory is often a natural one to consider [2,4,7]. Giving up the probabilistic quantification of uncertainty yielded to give

up the EU criterion as well. The development of possibilistic decision theory has lead to the proposition and often of the

characterization of a series of possibilistic counterparts of the EU criterion. Rebille [24], for instance, advocates the use

of possibilistic Choquet integrals, which relies on a numerical interpretation of both possibility and utility degrees. On

the contrary, Dubois and Prade [7] have studied the case of a qualitative interpretation and propose two criteria based

on possibility theory, an optimistic and a pessimistic one (denoted Uopt and Upes), whose definitions only require a finite

ordinal, non-compensatory, scale for evaluating both utility and plausibility.

The axiomatization of Uopt and Upes has given rise to the development of sophisticated qualitative models for sequen-

tial decision making, e.g. possibilistic Markov Decision Processes [25,26], possibilistic ordinal Decision Trees [10] and even

possibilistic ordinal Influence Diagrams [14]. One of the most interesting properties of this qualitative model is indeed that

it obeys a weak form of the monotonicity property. As a consequence, Dynamic Programming may be used and an optimal

strategy with respect to Uopt or Upes can be built in polytime, just like in the case of expected utility.

On the contrary, general Choquet integrals are incompatible with Dynamic Programming. Worst, the problem of deter-

mining an optimal strategy with respect to Choquet integrals is NP-hard in the general case [15]. We will show in the

present paper that the problem of determining a strategy optimal with respect to a possibilistic Choquet integrals is NP-hard

as well.

More generally, this paper gives a deep study of complexity of strategy optimization problem w.r.t. possibilistic decision

criteria and proposes a resolution algorithm (Dynamic Programming or Branch and Bound) for each criterion according to

its complexity class (P or NP).

This paper1 is organized as follows: Section 2 presents a refresher on possibilistic decision making under uncertainty

and a short survey on most common possibilistic decision criteria. Section 3 then presents our results about the complexity

of sequential decision making in possibilistic decision trees. Finally, Section 4 is devoted to the proposition of a Branch

and Bound algorithm for the optimization of Choquet-based possibilistic decision trees in the general case. For the sake of

readability, the proofs have been gathered in Appendix A.

2. Possibilistic decision theory

2.1. Basics of possibility theory

Possibility theory, issued from Fuzzy Sets theory, was introduced by Zadeh [31] and further developed by Dubois and

Prade [5]. This subsection gives some basic elements of this theory, for more details see [5].

The basic building block in possibility theory is the notion of possibility distribution [5]. Let X1, . . . , Xn be a set of state

variables whose value are ill-known such that D1, . . . , Dn are their respective domains. Ω = D1 × · · · × Dn denotes the

universe of discourse, which is the cartesian product of all variable domains in X1, . . . , Xn . Vectors ω ∈ Ω are often called

realizations or simply “states” (of the world). The agent’s knowledge about the value of the xi ’s can be encoded by a

possibility distribution π : Ω → [0,1]; π(ω) = 1 means that realization ω is totally possible and π(ω) = 0 means that ω is

an impossible state. It is generally assumed that there exist at least one state ω which is totally possible – π is said then

to be normalized.

Extreme cases of knowledge are presented by:

• complete knowledge, i.e. ∃ω0 s.t. π(ω0) = 1 and ∀ω 6= ω0 , π(ω) = 0,

• total ignorance, i.e. ∀ω ∈ Ω , π(ω) = 1 (all values in Ω are possible).

From π , one can compute the possibility Π(A) and the necessity N(A) of an event A ⊆ Ω:

Π(A) = sup
ω∈A

π(ω), (1)

N(A) = 1− Π( Ā) = 1− sup
ω/∈A

π(ω). (2)

Measure Π(A) evaluates to which extend A is consistent with the knowledge represented by π while N(A) corresponds to

the extent to which ¬A is impossible and thus evaluates at which level A is certainly implied by the knowledge.

1 This paper is an extended version of a preliminary work about the complexity of possibilistic decision trees presented in [8].



Fig. 1. A possibilistic compound lottery (a) and its reduction (b) (same reduction with ⊗ = min and ⊗ = ∗).

The particularity of the possibilistic scale is that it can be interpreted twofold: when the possibilistic scale is interpreted

in an ordinal manner, i.e. when the possibility degree reflects only an ordering between the possible values, the minimum

operator is used to combine different distributions. In a numerical interpretation, possibility distributions are combined using

the product operator. In possibility theory, the possibilistic conditioning may be considered as a special case of informations

fusion. It consists in revising the initial knowledge, represented by a possibility distribution π , and to change it into another

possibility distribution π ′ = π(.|ψ) with ψ 6= ∅ and Π(ψ) > 0. The two interpretations of the possibilistic scale induce two

definitions of the operation of conditioning:

• min-based conditioning, which is relative to the ordinal setting:

π(ω|ψ) =







1 if π(ω) = Π(ψ) and ω ∈ ψ,

π(ω) if π(ω) < Π(ψ) and ω ∈ ψ,

0 otherwise,

(3)

• product-based conditioning, which is relative to the numerical setting:

π(ω|ψ) =
{

π(ω)
Π(ψ)

if ω ∈ ψ,

0 otherwise.
(4)

2.2. Possibilistic lotteries

Following [7]’s possibilistic approach of decision making under uncertainty, a decision can be seen as a possibility dis-

tribution over a finite set of outcomes. In a single stage decision making problem, a utility function maps each outcome

to a utility value in a totally ordered set U = {u1, . . . ,un} (we assume without loss of generality that u1 6 · · · 6 un). This

function models the attractiveness of each outcome for the decision maker. An act can then be represented by a possibility

distribution on U , also called a (simple) possibilistic lottery, and denoted by 〈λ1/u1, . . . , λn/un〉: λi = π(ui) is the possibility

that the decision leads to an outcome of utility ui ; this possibility degree are also be denoted L[ui], e.g. in the algorithms.

For the sake of simplicity, we shall forget about the utility degrees that receive a possibility degree equal to 0 in a lottery.

In the following, L denotes the set of simple lotteries (i.e. the set of possibility distributions over U ).

A possibilistic compound lottery L = 〈λ1/L1, . . . , λk/Lk〉 is a possibility distribution over a subset of L. The possibility πi, j

of getting a utility degree u j ∈ U from one of its sub-lotteries Li depends on the possibility λi of getting Li and on the

conditional possibility λi
j = π(u j |Li) of getting u j from Li , i.e. πi, j = min(λ j, λ

i
j) in the ordinal setting and πi, j = λ j ∗ λi

j

in the numerical one. Hence, the possibility of getting u j from a compound lottery 〈λ1/L1, . . . , λk/Lk〉 is the max, over all

the Li ’s, of the πi, j ’s (and this for the two interpretation of the possibility scale). Thus, [4,7] have proposed to reduce a

compound lottery 〈λ1/L1, . . . , λk/Lk〉 (where Li are simple lotteries) into the following equivalent simple lottery:

Reduction
(

〈λ1/L1, . . . , λk/Lk〉
)

=
〈

max
j=1..k

(

⊗
(

λ j, λ
j
1

))

/u1, . . . , max
j=1..k

(

⊗
(

λ j, λ
j
n

))

/un

〉

(5)

where ⊗ = min for the ordinal setting and ⊗ = ∗ for the numerical one.

Example 1. Let L1 = 〈1/u1,0.7/u2〉 and L2 = 〈1/u1,0.6/u2〉 be two simple lotteries, the possibilistic compound lottery

〈1/L1,0.8/L2〉 and its reduction are represented by Fig. 1.

Obviously, the reduction of a simple lottery is the simple lottery itself. Since min and max are polynomial operations,

the reduction of a compound lottery is polynomial in the size of the compound lottery.2 We review in the following the

2 The size of a simple lottery is the number of its outcomes; the size of a compound lottery is the sum of the sizes of its sub-lotteries plus the number

of its sub-lotteries.



different criteria that have been proposed to evaluate and/or compare (simple) possibilistic lotteries; thanks to the notion

of reduction, they also apply to compound possibilistic lotteries: to evaluate/compare compound lotteries, simply reduce

each one to an equivalent simple one; then use one of the criteria proposed for the evaluation/the comparison of simple

lotteries. Formally, any comparison criterion O , i.e. any preference order <O defined on simple lotteries, can be extended to

compound lotteries as follows:

L <O L′ ⇐⇒ Reduction(L) <O Reduction
(

L′). (6)

Note that a lottery L is indifferent to a lottery L′ w.r.t. a decision criterion O (denoted by L ∼O L′) iff their reduced forms

are also indifferent.

2.3. Qualitative possibilistic utilities (Upes , Uopt , PU)

Under the assumption that the utility scale and the possibility scale are commensurate and purely ordinal, Dubois and

Prade [7] have proposed the following qualitative pessimistic (denoted by Upes) and optimistic (denoted by Uopt) utility

degrees for evaluating any simple lottery L = 〈λ1/u1, . . . , λn/un〉 (possibly issued from the reduction of a compound lottery):

Upes(L) = min
i=1..n

max(ui,1 − λi), (7)

Uopt(L) = max
i=1..n

min(ui, λi). (8)

Upes generalizes the Wald criterion and estimates to what extend it is certain (i.e. necessary according to measure N)

that L reaches a good utility. Its optimistic counterpart, Uopt , estimates to what extend it is possible that L reaches a good

utility. Because decision makers are rather cautious than adventurous, the former is generally preferred to the latter. The

preference order induced by Uopt and Upes is obviously complete transitive.

Claiming that the lotteries that realize in the best prize or in the worst prize play an important role in decision making,

Giang and Shenoy [11] have proposed a bipolar model in which the utility of an outcome is a pair u = 〈u,u〉 where

max(u,u) = 1: the utility is binary in this sense that u is interpreted as the possibility of getting the ideal, good reward

(denoted ⊤) and u is interpreted as the possibility of getting the anti ideal, bad reward (denoted ⊥).

The normalization constraint max(u,u) = 1, implies that the set U = {〈u,u〉 ∈ [0,1]2,max(u,u) = 1} is totally ordered

by the relation <pu defined by:

〈u,u〉<pu 〈v, v〉 ⇐⇒

















u = v = 1 and u 6 v

or

u > v and u = v = 1

or

u = v = 1 and v < 1.

(9)

From this relation we can derive that if u > u′ and u 6 u′ , then 〈u,u〉 <pu 〈v, v〉. Each ui = 〈ui,ui〉 in the utility scale is

thus understood as a small lottery 〈ui/⊤,ui/⊥〉. Hence, a lottery 〈λ1/u1, . . . , λn/un〉 can be viewed as a compound lottery,

and its PU utility is computed by reduction:

PU
(

〈λ1/u1, . . . , λn/un〉
)

= Reduction
(

λ1/〈u1/⊤,u1/⊥〉, . . . , λn/〈un/⊤,un/⊥〉
)

=
〈

max
j=1..n

(

min(λ j,u j)
)

/⊤, max
j=1..n

(

min(λ j,u j)
)

/⊥
〉

. (10)

We thus get, for any lottery L a binary utility PU(L) = 〈u,u〉 in U . Lotteries can then be compared according to Eq. (9):

L <PU L′ ⇐⇒ Reduction(L) <pu Reduction
(

L′). (11)

In [13] Giang and Shenoy show that the order induced by PU is transitive and that it collapses with the one induced

by Uopt (resp. Upes) whenever for any lottery, the possibility u (resp. u) of getting the worst (resp. the best) utility is equal

to 1. One shall thus say that PU captures Uopt and Upes as particular cases.

2.4. Possibilistic likely dominance (LΠ , LN)

When the scales evaluating the utility and the possibility of the outcomes are not commensurate, [2,9] propose to

prefer, among two possibilistic decisions, the one that is more likely to overtake the other. Such a rule does not assign

a utility degree to the decisions, but draws a pairwise comparison. Although designed on a Savage-like framework rather

than on lotteries, it can be translated on lotteries. This rule states that given two lotteries L1 = 〈λ1
1/u

1
1, . . . , λ

1
n/u

1
n〉 and



L2 = 〈λ2
1/u

2
1, . . . , λ

2
n/u

2
n〉, L1 is as least as good as L2 as soon as the likelihood (here, the necessity or the possibility) of the

event “The utility of L1 is as least as good as the utility of L2” is greater or equal to the likelihood of the event “The utility of L2
is as least as good as the utility of L1”. Formally:

L1 <LN L2 iff N(L1 < L2) > N(L2 < L1), (12)

L1 <LΠ L2 iff Π(L1 < L2) >Π(L2 < L1) (13)

where Π(L1 < L2) = maxu1
i ,u

2
j s.t. u

1
i >u2

j
(⊗(λ1

i , λ
2
j )) and

N(L1 < L2) = 1− max
u1
i
,u2

j
s.t. u1

i
<u2

j

(

⊗
(

λ1
i , λ

2
j

))

,

such that ⊗ = min for ordinal setting and ⊗ = ∗ for numerical setting.

The preference order induced on the lotteries is not transitive, but only quasi-transitive [2]: obviously L1 ≻LN L2 and

L2 ≻LN L3 imply that L1 ≻LN L3 (resp. L1 ≻LΠ L2 and L2 ≻LΠ L3 imply that L1 ≻LΠ L3) but it may happen that L1 ∼LN L2 ,

L2 ∼LN L3 (resp. L1 ∼LΠ L2 , L2 ∼LΠ L3) and L1 ≻LN L3 (resp. L1 ≻LΠ L3).

Note that contrary to Upes , Uopt and PU, which are purely ordinal, possibilistic likely dominance can be defined in the

ordinal setting or the numerical setting of possibility theory.

2.5. Order of Magnitude Expected Utility (OMEU)

Order of Magnitude Expected Utility theory relies on a qualitative representation of beliefs, initially proposed by Spohn

[28], via Ordinal Conditional Functions, and later popularized under the term kappa-rankings. Formally, κ : 2Ω → Z+ ∪ {+∞}
is a kappa-ranking if and only if it obeys to the following axioms:

(S1) min
ω∈Ω

κ
(

{ω}
)

= 0,

(S2) κ(A) =
{

minω∈A κ({ω}) if A 6= ∅ and A ⊆ Ω,

+∞ otherwise.

Note that an event A is more likely than an event B if and only if κ(A) < κ(B): kappa-rankings have been termed as

disbelief functions. They receive an interpretation in terms of order of magnitude of “small” probabilities. Say “κ(A) = i”

is equivalent to say that P (A) is of the same order of εi , for a given fixed infinitesimal ε. As pointed out by [6], there

exists a close link between kappa-rankings and possibility measures, insofar as any kappa-ranking can be represented by a

possibility measure, and vice versa.

Order of magnitude utilities have been defined in the same way [20,29]. Namely, an order of magnitude function

µ : X → Z+ ∪{+∞} can be defined to rank outcomes x ∈ X in terms of degrees of “dissatisfaction”. Once again, µ(x) < µ(x′)
if and only if x is more desirable than x′ , µ(x) = 0 for the most desirable consequences, and µ(x) = +∞ for the least desir-

able consequences: µ(x) = i is equivalent to say that the utility of x is of the same order of εi , for a given fixed infinitesimal

ε.
An Order of Magnitude Expected Utility (OMEU) model can then be defined (see [20,29] among others). Considering that an

order of magnitude lottery L = 〈κ1/µ1, . . . ,κn/µn〉 represents some probabilistic lottery, it is possible to compute the order

of magnitude of the expected utility of this probabilistic lottery: it is equal to mini=1..n{κi +µi}. Hence the definition of the

OMEU value of a kappa lottery L = 〈κ1/µ1, . . . ,κn/µn〉:

OMEU(L) = min
i=1,n

{κi + µi}. (14)

The preference relation <OMEU is thus defined as:

L <OMEU L′ iff OMEU(L) > OMEU
(

L′). (15)

The preference order induced on the lotteries is transitive [12].

2.6. Possibilistic Choquet integrals (ChN , ChΠ )

In presence of heterogeneous information, i.e. when the knowledge about the state of the world is possibilistic while

the utility degrees are numerical and compensatory, Choquet integrals [1] appear as a right way to extend expected utility

to non-Bayesian models [1]. Like the EU model, this model is a numerical, compensatory, way of aggregating uncertain

utilities. But it does not necessarily resort on a Bayesian modeling of uncertain knowledge. Indeed, this approach allows the

use of any monotonic set function µ, also called a capacity or fuzzy measure. Such measures capture Probability measures,

Necessity and Possibility measures and Belief functions, etc. as particular cases.



Chµ(L) = u1 +
∑

i=2,n

(ui − ui−1) ∗ µ(L > ui). (16)

If µ is a probability measure then Chµ(L) is simply the expected utility of L.

Choquet integrals have been proposed by Schmeidler [27] for decision making under probabilistic ambiguity (the capacity

is a lower probability) and by Quiggin [22] and Yaari [30] as a model of “rank dependent utility” (in these works, the

capacity is a transformation of the original probability measure). In the present paper, we are interested in studying the

possibilistic framework for decision making: for cautious (resp. adventurous) decision makers, the capacity µ is the necessity

measure N (resp. the possibility measure Π ):

ChN(L) = u1 +
∑

i=2,n

(ui − ui−1) ∗ N(L > ui), (17)

ChΠ (L) = u1 +
∑

i=2,n

(ui − ui−1) ∗ Π(L > ui). (18)

Example 2. Let L1 and L2 be two possibilistic lotteries such that L1 = 〈0.1/2,0.4/4,1/5〉 and L2 = 〈1/3,0.7/5,0.2/10〉. Thus:

ChN(L1) = 2+
[

(4− 2) ∗ (1− 0.1)
]

+
[

(5− 4) ∗ (1− 0.4)
]

= 4.4,

ChΠ (L2) = 3+
[

(5 − 3) ∗ 0.7
]

+
[

(10− 5) ∗ 0.2
]

= 5.4.

The following proposition emphasizes the pessimistic character of ChN : increasing the possibility of a possibly, good

consequence that is not better than its best possible one cannot increase (and may decrease) its evaluation.

Proposition 1. Given a lottery L = 〈λ1/u1, . . . , λn/un〉 where utilities are ranked in an increasing order. Let ui be a utility in L s.t.

ui 6maxu j∈L,λ j>0 u j . Let L
′ be a lottery constructed from L by just increasing the possibility of ui , i.e. λ

′
i > λi . Thus ChN(L′) 6 ChN(L).

Example 3. Let L1 and L2 be two possibilistic lotteries such that L = 〈0.2/10,0.5/20,1/30〉 and L′ = 〈0.2/10,1/20,1/30〉.
We can check that: ChN (L) = 23 > ChN (L′) = 18.

This result can be extended to the composition of lotteries: compounding a lottery with another lottery that is not

strictly better than the original one cannot increase its Choquet value.

Proposition 2. Let L1 = 〈λ1
1/u1, . . . , λ

1
n/un〉 and L2 = 〈λ2

1/u1, . . . , λ
2
n/un〉 be two lotteries such that

max
ui∈L2,λ

2
i >0

ui 6 max
ui∈L1,λ

1
i >0

ui .

Then:

ChN
(

Reduction(〈1/L1,1/L2〉)
)

6 ChN(L1).

So, the compound lottery 〈1/L1,1/L2〉 cannot be better (with respect to the pessimistic Choquet integral) than L1 , except

when it allows to reach a utility degree not reached by L1 . Simply increasing the possibility of the good utilities reached by

L1 is not a way to increase its ChN utility.

3. On the complexity of decision making in possibilistic decision trees

3.1. Possibilistic decision trees

Decision trees [23] are graphical representations of sequential decision problems under the assumption of full observabil-

ity. This framework proposes an explicit modeling of sequential decision problems, by representing each possible scenario

by a path from the root to the leaves of the tree. Formally, the graphical component of a decision tree T is composed of a

set of nodes N and a set of edges E such that the set N contains three kinds of nodes:

• D = {D0, . . . , Dm} is the set of decision nodes (represented by rectangles). The labeling of the nodes is supposed to

be in accordance with the temporal order, i.e. if D i is a descendant of D j , then i > j. The root node of the tree is

necessarily a decision node, denoted by D0 .

• LN = {LN1, . . . , LNk} is the set of leaves, also called utility leaves: ∀LNi ∈LN , u(LNi) is the utility of being eventually

in node LNi . For the sake of simplicity we assume that only leave nodes lead to utilities.



Fig. 2. Example of a possibilistic decision tree with C = {C1,C2,C3,C4,C5,C6}, D = {D0, D1, D2} and LN = U = {0,1,2,3,4,5}.

• C = {C1, . . . ,Cn} is the set of chance nodes represented by circles.

For any Xi ∈ N , Succ(Xi) ⊆ N denotes the set of its children. Moreover, for any D i ∈ D, Succ(D i) ⊆ C: Succ(D i) is the

set of actions that can be decided when D i is observed. For any C i ∈ C , Succ(C i) ⊆ LN ∪D: Succ(C i) is indeed the set

of outcomes of the action C i – either a leaf node is observed, or a decision node is reached (and then a new action

should be executed).

In the following |D| (resp. |C|, |LN |) denotes the total number of decision nodes (resp. chance nodes, leaves) in the tree.

The size |T | of a decision tree is equal to its number of edges (|E |) and nodes (|N |). In classical, probabilistic, decision trees

[23] the uncertainty pertaining to the possible outcomes of each C i ∈ C , is represented by a conditional probability distri-

bution pi on Succ(C i), such that ∀N ∈ Succ(C i), pi(N) = P (N|path(C i)) where path(C i) denotes all the value assignments to

chance and decision nodes on the path from the root to C i .

In the present work, we obviously use a possibilistic labeling (see Fig. 2). The difference with probabilistic decision

trees is that the chance nodes are not probabilistic but possibilistic lotteries. More precisely, for any C i ∈ C , the uncertainty

pertaining to the more or less possible outcomes of each C i is represented by a conditional possibility distribution πi on

Succ(C i), such that ∀N ∈ Succ(C i), πi(N) = Π(N|path(C i)).

Solving a decision tree amounts at building a strategy that selects an action (i.e. a chance node) for each reachable

decision node. Formally, we define a strategy as a function δ from D to C ∪ {⊥}. δ(D i) is the action to be executed when

a decision node D i is observed. δ(D i) = ⊥ means that no action has been selected for D i (because either D i cannot be

reached or the strategy is partially defined). Admissible strategies must be:

– sound: ∀D i ∈D, δ(D i) ∈ Succ(D i) ∪ {⊥},
– complete: (i) δ(D0) 6= ⊥ and (ii) ∀D i s.t. δ(D i) 6= ⊥,∀N ∈ Succ(δ(D i)), either δ(N) 6= ⊥ or N ∈LN .

Let 1 be the set of sound and complete strategies that can be built from the decision tree. Any strategy in 1 can be viewed

as a connected subtree of the decision tree whose arcs are of the form (D i, δ(D i)), i.e. there being exactly one decision arc

left at each decision node.

The size |δ| of δ is the sum of its number of nodes and edges. It is obviously lower than the size of the decision tree

(but for trivial trees that are already sound and complete strategies to start with).

Strategies can be evaluated and compared thanks to the notion of lottery reduction. Recall indeed that leaf nodes in LN

are labeled with utility degrees. Then a chance node can be seen as a simple lottery (for the rightmost chance nodes) or as

a compound lottery (for the inner chance nodes). Each strategy is a compound lottery and can be reduced to an equivalent

simple one. Formally, the composition of lotteries will be applied from the leafs of the strategy to its root, according to the

following recursive definition for any Ni in N :

L(Ni, δ) =







L(δ(Ni), δ) if Ni ∈ D,

Reduction(〈πi(X j)/L(X j, δ)X j∈Succ(Ni)〉) if Ni ∈ C,

〈1/u(Ni)〉 if Ni ∈ LN .

(19)



Eq. (19) is simply the adaptation to strategies of lottery reduction (Eq. (5)). We can then compute Reduction(δ) = L(D0, δ):

Reduction(δ)(ui) is simply the possibility of getting utility ui when δ is applied from D0 . Since operators max and ∗ (resp.

max and min) are polytime Eq. (19) defines a polytime computation of the reduced lottery.

Proposition 3. For any strategy δ in 1, the simple possibilistic lottery Reduction(δ) can be computed in polytime.

We are now in position to compare strategies, and thus to define the notion of optimality. Let O be one of the decision

criteria defined above (i.e. depending on the application, <O is either <LΠ , or <LN , or the order induced by Upes , or by

Uopt , etc.). A strategy δ ∈ 1, is said to be optimal w.r.t. <O iff:

∀δ′ ∈ 1, Reduction(δ) <O Reduction
(

δ′). (20)

Note that this definition does not require the full transitivity of <O and is meaningful as soon as <O is complete and its

the strict part, i.e. ≻O , is transitive. This means that it is applicable to the preference relations that rely on the comparison

of utility degrees (qualitative utilities, binary utility, Choquet integrals) but also to <LN and <LΠ .

3.2. Dynamic Programming in possibilistic decision trees

Finding optimal strategies via an exhaustive enumeration of δ is a highly computational task. For instance, in a decision

tree with n decision nodes and a branching factor equal to 2, the number of potential strategies is in O (2
√
n).

For standard probabilistic decision trees, where the goal is to maximize expected utility, an optimal strategy can be

computed in polytime (with respect to the size of the tree) thanks to an algorithm of Dynamic Programming which builds

the best strategy backwards, optimizing the decisions from the leaves of the tree to its root. Note that this algorithm does

not generate all the best strategies but returns only one among them.

Regarding qualitative decision trees, Garcia and Sabbadin [10] have shown that such a method can also be used to get a

strategy maximizing Upes and Uopt . The reason is that, like EU, Upes and Uopt satisfy the key properties of transitivity and

weak monotonicity.

Formally a preference order <O is said to be weakly monotonic iff whatever L, L′ and L′′ , whatever (α, β) such that

max(α, β) = 1:

L <O L′ ⇒
〈

α/L, β/L′′〉
<O

〈

α/L′, β/L′′〉. (21)

For the sake of simplicity, we write here the property for a binary composition of lotteries. By associativity of possibilistic

composition, it obviously applies to a composition of more than two lotteries.

This property states that the combination of L (resp. L′) with L′′ , does not change the initial order induced by O between

L and L′ – this allows Dynamic Programming to decide in favor of L or L′ before considering the compound decision. The

principle of backwards reasoning procedure is depicted in a recursive manner by Algorithm 1 for a preference order <O

over possibilistic lotteries.

In this algorithm L[ui] is the possibility degree to have the utility ui in the lottery L, Succ(N).first is the first node in the

set of successors of N , i.e. Succ(N) and ⊗ (Line 1) is the min operator for the ordinal setting and the product operator for

the numerical setting.

The principle of this algorithm is as follows: When each chance node is reached, an optimal sub-strategy is built for

each of its children – these sub-strategies are combined w.r.t. their possibility degrees, and the resulting compound strategy

is reduced: we get an equivalent simple lottery, representing the current optimal sub-strategy. When a decision node X is

reached, a decision Y ∗ leading to a sub-strategy optimal w.r.t. <O is selected among all the possible decisions Y ∈ Succ(X),

by comparing the simple lotteries equivalent to each sub-strategy.

Algorithm 1, Line 2 performs the comparison of two simple lotteries according to the criterion O to optimize (e.g.

ChN (LY ) and ChN(LY ∗)) This procedure crosses each edge in the tree only once. When the comparison of simple lotteries

by <O (Algorithm 1, Line 2) and the reduction operation on a 2-level lottery (Algorithm 1, Line 1) can be performed in

polytime, its complexity is polynomial w.r.t. the size of the tree.

Proposition 4. If <O is transitive and satisfies the weak monotonicity property, then Algorithm 1 computes a strategy optimal w.r.t.

criterion O in time polynomial with respect to the size of the decision tree (assuming that the reduction operation and the comparison

of lotteries can be performed in polytime).

We will see in the following that, beyond Upes and Uopt criteria, several other criteria satisfy the monotonicity property

and that their optimization can be managed in polytime by Dynamic Programming. The possibilistic Choquet integrals,

on the contrary, do not satisfy weak monotonicity; we show in the next section that they lead to NP-complete decision

problems.



Algorithm 1: ProgDyn(N: node, δ: strategy).

Data: O is the criterion to optimize.

Result: A lottery L

begin

// Initialization

for i ∈ {1, . . . ,n} do L[ui ] ← 0 // Leaves

if N ∈ LN then L[u(N)] ← 1 // Chance nodes

if N ∈ C then

// Reduce the compound lottery

foreach Y ∈ Succ(N) do
LY ← ProgDyn(Y , δ);

for i ∈ {1, . . . ,n} do

(Line 1) L[ui ] ← max(L[ui ], (⊗(πN (Y ), LY [ui ])));

// Decision nodes

if N ∈ D then

// Choose the best decision

Y ∗ ← Succ(N).first;

foreach Y ∈ Succ(N) do
LY ← ProgDyn(Y , δ);

(Line 2) if LY ≻O LY ∗ then Y ∗ ← Y

δ(N) ← Y ∗;
L ← LY ∗ ;

return L;

3.3. On the complexity of possibilistic decision trees

Formally, for any of the optimization criteria proposed above, the corresponding decision problem can be defined as

follows:

Definition 1 (DT-OPT-O ). (Strategy optimization w.r.t. an optimization criterion O in possibilistic decision trees.)

INSTANCE: A possibilistic decision tree T , a constant lottery θ .

QUESTION: Does there exist a strategy δ ∈ 1 such that Reduction(δ)<O θ?

For instance DT-OPT-ChN corresponds to the optimization of the necessity-based Choquet integrals. DT-OPT-Upes and

DT-OPT-Uopt correspond to the optimization of the possibilistic qualitative utilities Upes and Uopt , respectively.

3.3.1. Possibilistic Qualitative Utilities (Upes,Uopt,PU)

Possibilistic qualitative utilities Upes and Uopt satisfy the weak monotonicity principle. Although not referring to a classi-

cal, real-valued utility scale, but to a 2 dimensional scale, this is also true in the case of PU.

Proposition 5. <Upes , <Uopt and <PU satisfy the weak monotonicity property for both ⊗ = min and ⊗ = ∗.

This proposition is not explicitly proved in the literature although it is a common knowledge in qualitative possibilistic

decision theory (see [7,11]); it is also known that Dynamic Programming applies to the optimization of Upes , Uopt and PU

in qualitative possibilistic Markov decision processes and thus to decision trees (see [10,21,26]). We prove it in the general

case – i.e. for both the qualitative case (⊗ = min) and the quantitative case (⊗ = ∗).
Dynamic Programming applies to the optimization of Upes , Uopt and PU: the polynomiality of these criteria is a direct

consequence of Propositions 4 and 5.

Corollary 1. DT-OPT-Upes , DT-OPT-Uopt and DT-OPT-PU belong to P for both ⊗ = min and ⊗ = ∗.

3.3.2. Possibilistic Likely Dominance (LΠ , LN)

a) Comparing lotteries by LΠ Although <LΠ is not a fully transitive criterion (it is only quasi-transitive). It is easy to show

that:

Proposition 6. <LΠ satisfies the weak monotonicity principle.

Because this criterion is not fully transitive but only quasi-transitive, classical Dynamic Programming shouldn’t be ap-

plied. Nevertheless, it can be extended so as to keep, for each decision node, a judicious subset of all the best (but possibly

indifferent) strategies for the current subtree [17,18] – see Algorithm 2. The recursive procedure thus returns a set S of



simple lotteries and their associated strategies: dominated strategies are removed by a call to a pruning function – see

Algorithm 3, thanks to the monotonicity principle.

At each chance node, a pointwise composition of the lotteries returned by the recursive calls is performed: this leads

to a set of reduced lotteries that is pruned so as to keep, again, judicious non-dominated decisions. The difficulty with this

type of procedure it that the size of the set of lotteries handled by the algorithm may grow exponentially. We show in

the following that it is possible to keep it within polynomial bounds when the criterion to optimize is LΠ . Indeed, when

O = LΠ , the comparison of two lotteries only depends on the relative position of their cores. Formally, for any lottery L,

let L=α = {ui, L[ui] = α}; the core of L corresponds to L=1 . It is easy to show that L <LΠ L′ iff max(L=1) >min(L′
=1). This

allows us to replace any simple lottery L built during the computation by a simple lottery where any utility degree different

from max(L=1) and min(L=1) receives a possibility degree of 0. We call this lottery called the core lottery of L and denote

it by Lcore; namely:

Lcore =
〈

1/min(L=1),1/max(L=1)
〉

.

Example 4. Let L = 〈0.7/10,0.5/20,1/30,1/40〉 and L′ = 〈0.2/10,1/20,0.9/30〉 be two simple lotteries. Lcore = 〈1/30,1/40〉
and L′ core = 〈1/20〉.

It holds, in both numerical and ordinal settings, that

Π(L < L′) = 1 and Π(L′ < L) = 0.9: L <LΠ L′; and that

Π(Lcore < L′ core) = 1 and Π(L′ core < Lcore) = 0: Lcore <LΠ L′ core .

It can now be shown that:

Proposition 7. ∀L, L′ ∈L, L <LΠ L′ ⇐⇒ Lcore <LΠ L′ and L′ <LΠ L ⇐⇒ L′ <LΠ Lcore .

A first consequence of this proposition is that replacing any simple lottery by its core lottery during the computation

does not change the set of optimal strategies of the problem. A second consequence is that if Lcore = L′ core , then for any

L′′ , L <LΠ L′′ ⇐⇒ L′ <LΠ L′′ and L′′ <LΠ L ⇐⇒ L′′ <LΠ L′ which means that lotteries sharing the same core form an

equivalence class. We shall then remove from S the pairs (Lcore, δ) such that there exist in the set another pair (L′ core, δ′):
since leading to the same core lottery, δ and δ′ are equivalent w.r.t. LΠ .

Then we can remark that the number of simple core lotteries is bounded by n2 , n being the number of different utility

values labeling the leaves. As a consequence, the set S of lotteries handled by Extended Dynamic Programming (Algorithm 2)

when optimizing LΠ contains at most n2 elements. The different loops on S in this function are then also polynomially

bounded: O (n4) is a trivial upper bound for the pruning function (assuming that the comparison of simple lotteries can be

done in linear time and the pointwise composition of the sets is bounded by O (m.n4), m being the number of children of

the chance node). The Extended Dynamic Programming procedure is thus polynomial in the size of the decision tree when

O = LΠ .

b) Comparing lotteries by LN When O = LN , the principle is similar to O = LΠ but a little more tricky. The idea is to replace

any simple lottery L by a lottery which keeps track of the bounds of the core (as it is the case with LΠ criterion) but also

of the bound of the next cut of L, since only these two levels play a role in the <LN comparison. We call this lottery the

2nd core lottery of L and denote it L2nd . Formally, let L=α = {ui, L[ui] = α} and α2nd(L) = maxui ,L[ui ]<1 L[ui], then:

L2nd =
{ 〈1/min(L=1), 1/max(L=1)〉 if max(L=1) 6= min(L=1),

〈1/max(L=1), α2nd(L)/min(L=α2nd ), α2nd(L)/max(L=α2nd )〉 otherwise.

The second point corresponds to the case where L (and thus L2nd) is unimodal with mode max(L=1) = min(L=1). In

other terms, a 2nd core lottery is:

• either of the form 〈1/m,1/M〉 where m = min(L=1) < M = max(L=1),

• or of the form 〈α/m,1/u,α/M〉 where u = max(L=1), α = α2nd(L), m = min(L=α) < M = max(L=α).

Example 5. Let L = 〈1/10,0.5/20,0.9/30,1/40,1/50〉 and L′ = 〈0.2/10,0.9/20,0.9/30,1/40〉 be two simple lotteries, then:

L=1 = {10,40,50}, Lcore = L2nd = 〈1/10,1/50〉, L′
=1 = {40}, L′ core = 〈1/40〉 and L′ 2nd = 〈0.9/20,0.9/30,1/40〉.

When two lotteries L and L′ are to be compared w.r.t. LN, the decision is made at possibility degree 1 (i.e. the core level)

as soon as one of them (say L) is not unimodal (and thus L2nd is of the form 〈1/m,1/M〉). Indeed,

(i) If L′ 2nd is of the form 〈1/m′,1/M ′〉 then L ≻LN L′ when m> M ′ , L′ ≻LN L when m′ > M and L ∼LN L′ otherwise.

(ii) If L′ 2nd is of the form 〈α′/m′,1/u′,α′/M ′〉 then L ≻LN L′ when m> u′ , L′ ≻LN L when u′ > M and L ∼LN L′ otherwise.



Let us now study the case where L and L′ are unimodal, then L2nd (resp. L′ 2nd) can be written as 〈α/m,1/u,α/M〉 (resp.

〈α′/m′,1/u′,α′/M ′〉).

(i) If u 6= u′ , then only the modes are used to make the decision: either u > u′ , and then L ≻LN L′; or u′ > u and then

L′ ≻LN L.

(ii) If u = u′ , decision is made at level max(α,α′); when α > α′ , then either u > M (and then L′ ≻LN L); or u < m (and

then L ≻LN L′); or M > u >m (and then L ∼LN L′). Similar results hold for α′ > α. u′ = u and α′ = α, it is easy to show

that the two lotteries are indifferent w.r.t. LN.

We can now show that:

Proposition 8. <LN satisfies the weak monotonicity principle.

Since when comparing L and L′ , only the information contained in L′ 2nd and L2nd matters we can also show that:

Proposition 9. ∀L, L′ ∈L, L <LN L′ ⇐⇒ L2nd <LN L′ and L′ <LN L ⇐⇒ L′ <LN L2nd .

This means that we can replace any simple lottery by its 2nd core lottery during the computation without changing the

set of optimal strategies of the problem. A second consequence of that proposition is that if L2nd = L′ 2nd then for any L′′ ,
L <LN L′′ ⇐⇒ L′ <LN L′′ and L′′ <LN L ⇐⇒ L′′ <LN L′ . Lotteries sharing the same 2nd core form an equivalence class. We

shall then remove from S the pairs (L2nd, δ) such that there exist in the set another pair (L′ 2nd, δ′) where L2nd = L′ 2nd: since
leading to the same 2nd core lottery, δ and δ′ are equivalent w.r.t. LN. The set S will thus contain pairs (Li, δi) where each

Li is indifferent to others, while no pair of lotteries in S share the same 2nd core lottery. Now, it is possible to prove that:

Proposition 10. Let L and L′ be two indifferent 2nd core lotteries of the form L = 〈1/u,α/m,α/M〉 and L′ = 〈1/u′,α′/m′,α′/M ′〉
such that α < α′ . Then:

L ∼LN L′ iff u = u′ and m < u < M.

This means that in a set S of indifferent 2nd core lotteries, all the unimodal 2nd core lotteries share the same mode and

for all of them, but maybe the one with the lowest α2nd , and m < u < M . This latter is very significant, since one can forget

about all the unimodal 2nd core lotteries in the set S for which α2nd is not the lowest one. It can indeed be shown that:

Proposition 11. Let L and L′ be two indifferent 2nd core lotteries of the form L = 〈1/u,α/m,α/M〉 and L′ = 〈1/u,α′/m′,α′/M ′〉
where α < α′ . Let L1 = 〈γ /L, β/L′′〉 and L2 = 〈γ /L′, β/L′′〉 such that L′′ is a lottery and max(γ , β) = 1. Then for any lottery Lb , it

holds that:

(i) L2 ≻LN Lb ⇒ L1 ≻LN Lb;

(ii) Lb ≻LN L2 ⇒ Lb ≻LN L1 .

Actually, replacing L′ by L in a strategy may break ties (for instance, it may happen that 〈γ /L′, β/L′′〉 ∼LN Lb and

〈γ /L, β/L′′〉 ≻LN Lb), but this can never change the strict preference. An important consequence of Proposition 11 is that, if

the strategy corresponding to a lottery L′ belongs to the set of optimal lotteries, so does the strategy associated to L.

Thus, before returning the set S of lotteries computed by the recursive procedure, the pruning function PruneO (see Al-

gorithm 3) can prune not only the dominated lotteries (and the associated strategies) but also all the unimodal core lotteries

except the one with the lowest α2nd . As a consequence, the sets of lotteries handled by Extended Dynamic Programming

when optimizing LN contains at most 2.n2 elements (n2 multimodal core lotteries and n2 unimodal 2nd core lotteries shar-

ing the same α2nd), all being indifferent to each other. The Extended Dynamic Programming procedure is thus polynomial

in the size of the decision tree when O = LN .

In summary, for both LΠ and LN, it is possible to ensure the polynomiality of the size of the set of strategies handled

by Extended Dynamic Programming. Hence the result:

Proposition 12. DT-OPT-LN and DT-OPT-LΠ belong to P .

3.3.3. Order of Magnitude Expected Utility

In kappa decision trees, for any C i ∈ C the uncertainty pertaining to the more or less possible outcomes N of C i is

represented by a kappa degree κi :

∀N ∈ Succ(C i), κi(N) = Magnitude
(

P
(

N|path(C i)
))

.



Algorithm 2: ExtProgDyn(N: node).

Result: A set S of pairs (L, δL)

Data: O is the criterion to optimize (O = LΠ or O = LN).

Constant: The empty strategy δ0
begin

if N ∈ LN // Leaves

then
∀ui , L[ui ] ← 0;

L[u(N)] ← 1;

S ← {(L, δ0)};
if N ∈ C // Chance nodes

then

// Reduce the compound lotteries

foreach Y j ∈ Succ(N) do S j ← ExtProgDyn(Y j) S ← S1;

for j ∈ {2, . . . , |Succ(N)|} do
Res ← ∅;
foreach (L, δ) ∈ S, (L′, δ′) ∈ S j do

// Create a strategy δ′′ and a lottery L′′

δ′′ ← δ ∪ δ′;
∀ui , L

′′[ui ] ← 0;

for i ∈ {1, . . . ,n} do

L′′[ui ] ← max(L[ui ], (⊗(πN (Y j), L
′[ui ])));

if O = LΠ then L′′ ← L′′ core

if O = LN then L′′ ← L′′ 2nd

Res ← Res ∪ {(L′′, δ′′)};

S ← PruneO (Res);

if N ∈ D // Decision nodes

then

// Build the set of possible decisions

S ← ∅;
foreach Y ∈ Succ(N) do S ← S ∪ ExtProgDyn(Y ) foreach (L, δ) ∈ S do δ(N) ← L S ← PruneO (S);

return S;

Algorithm 3: PruneO (S: a set S of pairs (L: strategy, δL : lottery)).

Data: O is the criterion to optimize (O = LΠ or O = LN)

Result: A pruned set Res of pairs (L′, δ′
L)

begin
Res ← S;

foreach (L, δ) ∈ S do

foreach (L′, δ′) ∈ S, δ′ 6= δ do

if (L′ ≻O L) or (L is identical to L′) then
Remove (L, δ) from Res;

if O = LN then

if (L = 〈1/u,α/m,α/M〉) and (∃L′ = 〈1/u,α′/m′,α′/M ′〉 ∈ S), with α′ < α then
Remove (L, δ) from Res;

return Res;

Such that the normalization condition that the degree κ = 0 is given to at least one N in Succ(C i). According to the

interpretation of kappa-ranking in terms of order of magnitude of probabilities, the product of infinitesimal conditional

probabilities along the paths lead to a sum of the kappa levels. Hence the following principle of reduction of the kappa

lotteries:

Reduction
(

〈κ1/L1, . . . ,κk/Lk〉
)

=
〈

min
j=1..k

(

κ
j
1 + κ j

)

/u1, . . . , min
j=1..k

(

κ
j
m + κ j

)

/um

〉

. (22)

It follows from the definition of the order of magnitude expected utility (i.e. OMEU(L = 〈κ1/µ1, . . . ,κn/µn〉) =
mini=1..n{κi + µi}) that this criterion is transitive and also satisfies the weak monotonicity principle:

Proposition 13. <OMEU is complete, transitive and satisfies the weak monotonicity property.

As a consequence Dynamic Programming is sound and complete for the optimization of Order of Magnitude Expected

Utility:

Corollary 2. DT-OPT-OMEU belongs to P .



3.3.4. Possibilistic Choquet integrals (ChN , ChΠ )

Contrary to qualitative utilities, binary possibilistic utility and likely dominance, the situation is much lesser comfortable

for Choquet integrals (either ChN or ChΠ ). The point is that the possibilistic Choquet integrals (as many other Choquet

integrals) do not satisfy the monotonicity principle neither in the ordinal setting nor in the numerical one. This is illustrated

by the following counterexamples.

Counterexample 1 (ChN does not satisfy the monotonicity principle). Let L = 〈0.2/0,0.5/0.51,1/1〉, L′ = 〈0.1/0,0.6/0.5,1/1〉,
L′′ = 〈0.01/0,1/1〉, L1 = 〈α/L, β/L′′〉 and L2 = 〈α/L′, β/L′′〉, with α = 0.55 and β = 1.

• For ⊗ = min, we have: Reduction(L1) = 〈0.2/0,0.5/0.51,1/1〉 and Reduction(L2) = 〈0.1/0,0.55/0.5,1/1〉.
Computing ChN (L) = 0.653 and ChN (L′) = 0.650 we get L <ChN L′ .
But ChN (Reduction(L1)) = 0.653 < ChN(Reduction(L2)) = 0.675, i.e. 〈α/L, β/L′′〉 ≺ChN 〈α/L′, β/L′′〉, which contradicts the

monotonicity property.

• For ⊗ = ∗, we have: Reduction(L1) = 〈0.11/0,0.275/0.51,1/1〉 and Reduction(L2) = 〈0.055/0,0.33/0.5,1/1〉.
Computing ChN (L) = 0.653 and ChN (L′) = 0.650 we get L <ChN L′ .
But ChN (Reduction(L1)) = 0.809 < ChN (Reduction(L2)) = 0.45, i.e. 〈α/L, β/L′′〉 ≺ChN 〈α/L′, β/L′′〉, which contradicts the

monotonicity property.

Counterexample 2 (ChΠ does not satisfy the monotonicity principle). Let L = 〈1/0,0.5/0.51,0.2/1〉, L′ = 〈1/0,0.6/0.5,0.1/1〉
and L′′ = 〈1/0,0.49/0.51〉. L1 = 〈α/L, β/L′′〉 and L2 = 〈α/L′, β/L′′〉, with α = 1 and β = 0.55.

• For ⊗ = min, we have: Reduction(L1) = 〈1/0,0.5/0.51,0.2/1〉 and Reduction(L2) = 〈1/0,0.6/0.5,0.49/0.51,0.1/1〉.
Computing ChΠ (L) = 0.353 and ChΠ (L′) = 0.350 we get L ≻ChΠ

L′ .
But ChΠ (Reduction(L1)) = 0.3530 ≺ ChΠ (Reduction(L2)) = 0.3539, i.e. 〈α/L, β/L′′〉 ≺ChΠ

〈α/L′, β/L′′〉, which contradicts

the monotonicity property.

• For ⊗ = ∗, we have: Reduction(L1) = 〈1/0,0.5/0.51,0.2/1〉 and Reduction(L2) = 〈1/0,0.6/0.5,0.26/0.51,0.1/1〉.
Computing ChΠ (L) = 0.353 and ChΠ (L′) = 0.350 we get L ≻ChΠ

L′ .
But ChΠ (Reduction(L1)) = 0.3530 < ChΠ (Reduction(L2)) = 0.3516, i.e. 〈α/L, β/L′′〉 ≺ChΠ

〈α/L′, β/L′′〉, which contradicts

the monotonicity property.

As a consequence, Dynamic Programming cannot guarantee an optimal policy. Making a step further, we show that it is

impossible to solve the problem in polytime, unless P = NP:

Proposition 14. DT-OPT-ChN and DT-OPT-ChΠ are NP-complete.

The proofs of NP-hardness of these criteria (detailed in Appendix A) follow the principle used by [16] for proving the

difficulty of the problem in the RDU case. For DT-OPT-ChΠ , the transformation we used is a simplification of the one pro-

posed in [16]. For DT-OPT-ChN , the underlying idea is different and is mainly based on the fact that compounding a lottery

with another lottery that is not strictly better than the original one cannot increase its Choquet value (see Section 2.6).

In summary, optimizing possibilistic Choquet integrals is untractable in the general case. We can nevertheless look re-

strictions that make the question polynomial. It is for instance the case when the decision tree is “binary”, i.e. when the

leaves involve two levels of utility.

Proposition 15. DT-OPT-ChN (resp. DT-OPT-ChΠ ) is polynomial on decision trees involving two levels of utility.

4. A Branch and Bound approach for optimizing the Choquet-based possibilistic criteria

As we have seen in the previous section, possibilistic Choquet integrals define NP-hard problems and the polynomial

algorithm of Dynamic Programming may lead to sub-optimal decision policies. As an alternative, we have chosen to proceed

by implicit enumeration via a Branch and Bound algorithm, following [15] for the case of another (non-possibilistic) Choquet

integrals, namely the one encoding the Rank Dependent Utility criterion. The Branch and Bound procedure (see Algorithm 4)

takes as argument a partial strategy δ and an upper bound of the Choquet value Chµ of the best extension of the partial

strategy (µ is either the necessity or the possibility measure, depending on the criterion that is to be optimized). It returns

the Choquet value of the best strategy found so far, δopt . As initial value for δ we retain the empty strategy (δ(D i) =
⊥,∀D i ). For δopt , we can choose the strategy provided by the Dynamic Programming algorithm: indeed, even not necessarily

providing an optimal strategy, this algorithm generally provides a good one. At each step, the current partial strategy, δ, is

developed by the choice of an action for some unassigned decision node. When several decision nodes are candidate, the

one with the minimal rank (i.e. the former one according to the temporal order) is developed first. The recursive procedure

backtracks when either the current strategy is complete (then δopt and Choptµ may be updated) or proves to be worst than

the current δopt in any case.



Algorithm 4: BB(δ: a (partial) strategy, Chµ: its Choquet value) with µ = N or µ = Π .

Result: Choptµ i.e. the value of δopt , the best strategy found so far

begin

if δ = ∅ then Dpend ← {D0} else
Dpend ← {D i ∈ D s.t. δ(D i) = ⊥ and ∃D j , δ(D j) 6= ⊥ and D i ∈ Succ(δ(D j))};

// Is δ a complete strategy?

if Dpend = ∅ then

if Chδ
µ > Choptµ then

δopt ← δ;

Choptµ ← Chδ
µ;

else
Dnext ← argminD i∈Dpend

i;

foreach C i ∈ Succ(Dnext) do
δ(Dnext) ← C i ;

Eval ← Chµ(Lotteryµ(D0, δ));

if Eval > Choptµ then Choptµ ← BranchAndBound(δ,Chδ
µ)

return Choptµ ;

4.1. Computation of an upper bound for the current partial solution

In order to get an upper bound of the Choquet value of the best completion of δ, we call a function Lotteryµ (µ = N

or Π ) that computes a lottery that is better than all the complete strategies that extend δ when applied from a node

given in argument and use the Choquet value of this lottery as an upper bound of the Choquet value of the best strategy

compatible with δ. Whenever Chµ(Lotteryµ(δ)) 6 Choptµ the algorithm will backtrack, yielding the choice of another action

for the last decision nodes considered. Moreover when δ is complete, Lotteryµ(δ) returns L(D0, δ); the upper bound is equal

to the Choquet value when computed for a complete strategy.

Lotteryµ(δ) actually builds a lottery that overcomes with respect of µ all the possible extensions of δ. Formally:

Definition 2. A lottery L ∈L is said to overcome a lottery L′ ∈L w.r.t. N (or “to possibility overcome L′”) iff: ∀ui , N(L > ui)>

N(L′ > ui).

A lottery L ∈ L is said to overcome a lottery L′ ∈ L w.r.t. Π (“to necessarily overcome L′”) iff: ∀ui,Π(L > ui) >

Π(L′ > ui).

ChN(LotteryN(δ)) (resp. ChΠ (LotteryΠ (δ))) is an upper bound of the Choquet value of the best strategy compatible with δ.

Indeed:

Proposition 16. If L′ necessarily (resp. possibly) overcomes L′′ , then ChN (L′) > ChN (L′′) (resp. ChΠ (L′) > ChΠ (L′′)).

Let us build an upper bound of the possibility-based Choquet integral. The computation relies on a Lottery Π (see Algo-

rithm 5 bellow) that computes a lottery that overcomes all the possible extensions of the current strategy. This function

inputs a partial strategy and proceeds backwards, assigning a simple lottery 〈1/u(Li)〉 to each terminal node LNi . At each

chance node C i , it performs the composition of the lotteries in Succ(C i) according to Eq. (19). At each decision node D i it

builds a lottery that overcomes all those in Succ(D i) w.r.t. Π ; this lottery is simply the upper envelop of all the lotteries in

Succ(D i), i.e.

∀i, LX = L
upp
Succ(D i)

(ui) = max
L∈Succ(D i)

L[ui].

It follows directly that LX [ui] > L[ui] for any L ∈ Succ(D i), i.e. LX overcomes each of the lotteries in Succ(D i). Hence, the

Choquet value of LotteryΠ (X, δ) is an upper bound of the Choquet value of the best complete strategy rooted in X and

extending δ, which proves the correctness of our algorithm for µ = Π .

Let us now build an upper bound for the necessity-based Choquet integral. The computation relies on a function LotteryN
(see Algorithm 6) which, as LotteryΠ , inputs a partial strategy and proceeds backwards, assigning a simple lottery 〈1/u(NLi)〉
to each terminal node LNi . At each chance node C i , it performs the composition of the lotteries in Succ(C i) according to

Eq. (19). At each decision node D i it builds a lottery that overcomes all those in Succ(D i) w.r.t. N . But the case of the

necessity-based Choquet integrals is more tricky than the case of the possibility-based integrals. Let us use the following

notations and definitions:



Algorithm 5: LotteryΠ : Computation of a lottery that overcomes w.r.t. Π all the completions of δ when applied

from X .
Data: A node X , a (possibly partial) strategy δ

Result: A lottery LX

// LX [ui ] is the possibility degree to have the utility ui in LX

begin

foreach i ∈ {1, . . . ,n} do LX [ui ] ← 0; // Initialization of LX

if X ∈ LN then LX [u(X)] ← 1

if X ∈ C then

foreach Y ∈ Succ(X) do
LY ← LotteryΠ (Y , δ);

foreach i ∈ {1, . . . ,n} do
LX [ui ] ← max(LX [ui ],⊗(πX (Y ), LY [ui ]));

// ⊗ = min in the ordinal setting; ⊗ = ∗ in the numerical setting

if X ∈ D then

if δ(X) = ⊥ then

foreach Y ∈ Succ(X) do
LY ← LotteryΠ (Y , δ);

foreach i ∈ {1, . . . ,n} do
LX [ui ] ← max(LX [ui ], LY [ui ]);

else
LX ← LotteryΠ (δ(X), δ);

return LX ;

• Given a simple lottery L ∈L, Gc
L is the possibilistic decumulative function of L: ∀u ∈ U ,Gc

L(u) = N(L > u).

• Given a set G = {Gc
L1

, . . . ,Gc
Lk

} of decumulative functions, the upper decumulative envelop of G is the decumulative

function Gc
G defined by:

∀u ∈ U , Gc
G(u) = max

Gc
Li

∈G
Gc

Li
(u).

• Given a decumulative function Gc on U , Rev(Gc) is the lottery defined by:

Rev
(

Gc
)

(ui) =
{
1 if i = n,

1− Gc(ui+1) if i ∈ {1, . . . ,n − 1}.

Now it is easy to show the following lemma:

Lemma 1. The possibilistic decumulative function associated to a lottery Rev(Gc) is equal to Gc .

As a consequence of Lemma 1, we have:

Proposition 17. Given a set {L1, . . . , Lk} ⊆L of simple lotteries over U and G = {Gc
L1

, . . . ,Gc
Lk

} the set of their decumulative functions.

We have: Rev(Gc
G) overcomes any lottery Li ∈ {L1, . . . , Lk}.

Hence, the Choquet value ChN of LotteryN(D0, δ) is an upper bound of the Choquet value of the best complete strategy

compatible with δ, which proves the correctness of our algorithm for µ = N .

4.2. Experimental results

The algorithms presented in the previous section have been implemented over Java and the computational experiments

were carried out on a processor Intel Xeon X5650, 2.66 GHz, 16 GB of RAM. We have compared the performances of the

Branch and Bound approach with those of the sole Dynamic Programming procedure. The tests were performed on complete

binary decision trees with different height. We have considered four sets of problems, the number of decisions to be made

in sequence (denoted seq) varies from 2 to 5, with an alternation of decision and chance nodes: At each decision level i (i.e.

odd levels from 1 to seq∗2), the tree contains 2i−1 decision nodes followed by 2i chance nodes. Thus, the number of chance

nodes in the tree is equal to |C| = |D| ∗ 2 and the number of leaves is equal to |LN | = |D| + |C| + 1. This means that for

the set of problems with a sequence length seq = 2 (resp. 3, 4, 5), the number of decision nodes is equal to |D| = 5 (resp.

21, 85, 341), i.e. the number of nodes in the tree is equal to |N | = |D| + |C| + |LN | = 31 (resp. 127, 511, 2047) nodes. (See

Fig. 3.)



Algorithm 6: LotteryN : Computation of a lottery that overcomes w.r.t. N all the completions of δ when applied

from X .
Data: A node X , a (possibly partial) strategy δ

Result: A lottery LX

// LX [ui ] is the possibility degree to have the utility ui in LX

begin
foreach i ∈ {1, . . . ,n} do LX [ui ] ← 0

if X ∈ LN then LX [u(X)] ← 1

if X ∈ C then

foreach Y ∈ Succ(X) do
LY ← LotteryN (Y , δ);

for i ∈ {1, . . . ,n} do

LX [ui ] ← max(LX [ui ],⊗(πX (Y ), LY [ui ]))
// ⊗ = min in the ordinal setting; ⊗ = ∗ in the numerical setting

if X ∈ D then

if δ(X) 6= ⊥ then
LX ← LotteryN (δ(X), δ);

else

if |Succ(X)| = 1 then
LX ← LotteryN (δ(Succ(X)), δ);

else

foreach Y ∈ Succ(X) ∩ Nδ do
LY ← LotteryN (Y , δ);

foreach i ∈ {1, . . . ,n} do
Gc
Y [ui ] ← 1−maxu j<ui

LY [u j ];

// Compute the upper envelop of Gc

foreach i ∈ {1, . . . ,n} do
Gc [ui ] ← maxY∈Succ(X)∩Nδ

Gc
Y [ui ];

// Compute Rev(Gc)

LX [un] ← 1;

foreach i ∈ {n − 1, . . . ,1} do
LX [ui ] ← 1− Gc [ui+1];

return LX ;

Fig. 3. Structure of the randomly generated decision trees for seq = 2.

The values of the utilities have been randomly fired in the set U = {0,1, . . . ,20} following equiprobable distribution. Con-

ditional possibilities relative to chance nodes are also chosen randomly in [0,1] and normalized. Each of the four samples

of problems contains 300 randomly generated problems.



Table 1

Percentage of problems for which the DP value is correct.

Length seq of the sequence

2 3 4 5

ChN Qualitative 91% 76% 51% 34%

Numerical 96% 86% 62% 41%

ChΠ Qualitative 95% 86% 92% 99%

Numerical 95% 88% 93% 98%

Table 2

Average closeness value VDP
VBB

for problems in which VDP 6= VBB .

Length seq of the sequence

2 3 4 5

ChN Qualitative 95.0% 95.6% 94.7% 94.7%

Numerical 94% 97% 97% 98%

ChΠ Qualitative 96.4% 97.8% 98.5% 99.1%

Numerical 97% 98% 98% 99%

Table 3

Execution CPU time for ChN (in seconds).

Length seq of the sequence

2 3 4 5

Qualitative setting ProgDyn 0.013 0.014 0.083 0.30

BB 0.05 0.1 3.77 55214

Numerical setting ProgDyn 0.02 0.02 0.06 0.275

BB 0.05 0.07 3.5 42362

Table 4

Execution CPU time for ChΠ (in seconds).

Length seq of the sequence

2 3 4 5

Qualitative setting ProgDyn 0.01 0.04 0.07 0.15

BB 0.023 0.103 1.943 4817.753

Numerical setting ProgDyn 0.01 0.026 0.033 0.235

BB 1 1.07 1.426 395.13

Quality of solutions provided by Dynamic Programming Since the application of Dynamic Programming can lead to sub-optimal

strategies, we propose to estimate their quality by comparing them to exact values generated by Branch and Bound. More

precisely, we compute for different trees the number of cases for which the value provided by Dynamic Programming is

not the optimal one, and for the problems on which it fails, we report the closeness value equal to VDP
VBB

where VDP is the

possibilistic Choquet integrals relative to the optimal strategy provided by Dynamic Programming and VBB by Branch and

Bound – the results are summarized in Tables 1 and 2.

For the necessity-based qualitative Choquet integrals the percentage of full success of the DP approximation is decreasing

with the number of decision to be made. Notice that this approximation is very good even when it does not predict the

optimal value, with a closeness value greater than 94% in any case. For the possibility-based qualitative Choquet integrals,

the closeness value is also very good (greater than 96% in any case) and the percentage of full success of the DP approxi-

mation is increasing with the number of decision to be made (this is due to the fact that the higher the number of leaves,

the higher the possibility of getting a ChΠ value maximal in the utility scale – to utility degree 20 in our case; for trees

with 2047 nodes indeed, all the problems have a ChΠ equal to 20).

The results are similar when the conditioning is numerical (product-based) rather than qualitative (min-based).

Tables 3 and 4 provide different average execution CPU time for Dynamic Programming and for the complete Branch and

Bound procedure.

Obviously, the execution CPU time for ChN and also for ChΠ in qualitative and numerical setting increases according

to the size of the tree, and is better for Dynamic Programming than for the complete than Branch and Bound algorithm.

Unsurprisingly, the increasing is linear in the first case and clearly exponential for the latter one. But the times remains



Table 5

Results about the complexity of DT-OPT-O .

Upes Uopt PU LΠ LN OMEU ChN ChΠ

P P P P P P NP-complete NP-complete

affordable in average even for very big trees (341 nodes). For reasonable trees (85 decision nodes) the average CPU time is

less than 4 s and the maximal CPU time is about one minute. The results are thus good enough to allow the handling of

real-size problems.

5. Conclusion

In this paper, we have shown that strategy optimization in possibilistic decision trees is tractable for most of the criteria,

extending the results about the qualitative utility criteria Upes and Uopt to other possibilistic criteria. We have in particular

shown that even not fully transitive, the possibilistic likely dominance criteria (LN, LΠ ) can be handled in polytime: the

number of strategies retained in the set-Extended algorithm of Dynamic Programming can be kept polynomial throughout

the process. We have also shown that the problem is intractable for the possibilistic Choquet-based criteria. Finally, we have

extended this work to OMEU, defining a new model for sequential decision trees, extending the notion of reduction to kappa

lotteries and showing that this model obeys the weak monotonicity principle. These results are summarized in Table 5.

It should be noticed that the optimization of the possibilistic Choquet integrals is “only” in NP: the computation of the

Choquet value of a possibilistic strategy is polynomial, whereas this computation can be more costly for other capacity

measures; for instance computing the Choquet value of a strategy on the basis of its multi prior expected utility is itself an

NP-hard problem – and the corresponding optimization problem is probably beyond NP. Concerning possibilistic Choquet

integrals, we have then proposed a Branch and Bound approach that extends the use of Dynamic Programming. Our first

experiments suggest that this approach is computationally sustainable. So, it appears that the use of possibilistic decision

criteria does not lead to an increase in complexity, except for Choquet integrals. This is an interesting result that allows

the extension of our work to possibilistic influence diagrams. Further work includes the development of a direct evaluation

algorithm for possibilistic influence diagrams where possibilistic Choquet integrals are used as a decision criteria inspired

by the variable elimination approach [16].
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Appendix A

Proof of Proposition 1. Let uk be the best possible utility in L, i.e. uk = maxu j∈L,λ j>0 u j , λk 6 1 (i.e. is not necessarily equal

to 1), but ∃ j,16 j 6 k s.t. λ j = 1 and thus ∀ j,k6 j 6 n,1−max(λ1, . . . , λ j) = 0.

L and L′ are written as follows:

L = 〈λ1/u1, . . . , λi−1/ui−1, λi/ui, λi+1/ui+1, . . . , λk−1/uk−1, λk/uk, λk+1/uk+1, . . . , λn/un〉,

L′ = 〈λ1/u1, . . . , λi−1/ui−1, λ
′
i/ui, λi+1/ui+1, . . . , λk−1/uk−1, λk/uk, λk+1/uk+1, . . . , λn/un〉.

This means that ChN (L) can be decomposed into three terms, i.e. ChN (L) = V1 + V2 + V3 where:

V1 = u1 + (u2 − u1)(1 − λ1) + · · · + (ui − ui−1)
(

1−max(λ1, . . . , λi−1)
)

,

V2 = (ui+1 − ui)
(

1−max(λ1, . . . , λi)
)

+ (ui+2 − ui+1)
(

1−max(λ1, . . . , λi, λi+1)
)

+ · · ·

+ (uk − uk−1)
(

1−max(λ1, . . . , λi, λi+1, . . . , λk−1)
)

,

V3 = (uk+1 − uk)
(

1 −max(λ1, . . . , λk)
)

+ · · ·

+ (un − um−1)
(

1−max(λ1, . . . , λn)
)

= 0.

(Since ∀ j,k6 j 6 n,1−max(λ1, . . . , λ j) = 0.)

Thus ChN(L) = V1 + V2 .



In the same manner ChN (L′) can be decomposed into three terms, i.e. ChN(L′) = V ′
1 + V ′

2 + V ′
3 where:

V ′
1 = u1 + (u2 − u1)(1 − λ1) + · · · + (ui − ui−1)

(

1−max(λ1, . . . , λi−1)
)

= V1,

V ′
2 = (ui+1 − ui)

(

1−max
(

λ1, . . . , λ
′
i

))

+ (ui+2 − ui+1)
(

1−max
(

λ1, . . . , λ
′
i, λi+1

))

+ · · ·

+ (uk − uk−1)
(

1−max
(

λ1, . . . , λ
′
i, λi+1, . . . , λk−1

))

,

V ′
3 = (uk+1 − uk)

(

1−max(λ1, . . . , λk)
)

+ · · ·

+ (un − um−1)
(

1−max(λ1, . . . , λn)
)

= V3 = 0.

As a consequence, it holds that: ChN(L) − ChN (L′) = V2 − V ′
2 .

Since λ′
i > λi , thus 1 − max(λ1, . . . , λ

′
i) 6 1 − max(λ1, . . . , λi) and ∀ j, i < j < k, 1 − max(λ1, . . . , λ

′
i, . . . , λ j) 6 1 −

max(λ1, . . . , λi, . . . , λ j).

Thus V ′
2 6 V2 and ChN (L′) 6 ChN (L). ✷

Proof of Proposition 2. Let L = Reduction(〈1/L1,1/L2〉).
Since ∀λ, (λ ∗ 1) = λ and min(1, λ) = λ, Eq. (5) gives the same L for both ⊗ = ∗ and ⊗ = min, i.e. ∀ j ∈ {1..m}, λ j =

max(λ1
j , λ

2
j ).

Since maxui∈L2,λ
2
i >0 ui 6 maxui∈L1,λ

1
i >0 ui , we can get L from L1 in n steps by replacing at each step j ∈ {1..m}, λ1

j by

max(λ1
j , λ

2
j ). According to Proposition 1, this is done without increasing the value of the Choquet integral of L. Formally,

let L0 = L1 , then for j = 1..n, L j = 〈λ j
1/u1, . . . , λ

j
n/un〉 such that for any k 6= j, λ

j
k

= λ
j−1
k

and λ
j
j = max(λ

j−1
j , λ

j−1
2 ). By

construction, Ln = L. Thanks to Proposition 1, ∀ j ∈ {1..m},ChN(L j) 6 ChN (L j−1).

Then ChN(Ln) 6 ChN (L0), i.e. ChN(L) 6 ChN (L1). ✷

Proof of Proposition 3. Let δ ∈ 1 such that δ = {(D0, δ(D0)), . . . , (D i, δ(D i)), . . . , (Dn, δ(Dn))} be a complete and sound

strategy. We first compute the compound lottery corresponding to δ, merging each decision node D i in δ with the chance

node in δ(D i), say Cδ
i . We get a compound lottery L = {Cδ

0, . . . ,C
δ
i , . . . ,C

δ
l
}; the merging is performed linearly in the number

of decision nodes in the strategy.

Then we can suppose without loss of generality that the nodes are numbered in such a way that i < j implies that C δ
i

does not belong to the subtree rooted by Cδ
j (we label the nodes from the root to the leaves). Then, for i = m to 1, we

replace each compound lottery Cδ
i = 〈πi(Xi1)/Xi1, . . . ,πi(Xiki )/Xiki 〉 by its reduction.

Since we proceed from the leaves to the root, the Xi1 (i = 1..m) are simple lotteries. Since the min, ∗ and max operators

can be performed in linear time and size, the reduction of this 2 level compound lottery is linear in the size of the

compound lottery. The size of the resulting compound lottery is bounded by the sum of the size of the elementary lotteries

before reduction, and thus linear. In any case, it is bounded by the number of levels in the scale, which is itself bounded

by the number of edges and leaves in the tree (for the case where all the possibility degrees and all the utility degrees are

different). Hence a complexity of the reduction is bounded by O (|E + LN|), where E is the number of edges and LN is the

number of leave nodes in the strategy.

Thank to the backward recursion, each node in the strategy is visited only once. Thus a global complexity is bounded by

O (C ∗ (E + LN)), where E is the number of edges, LN the number of leave nodes and C the number of chance nodes in the

strategy. ✷

Proof of Proposition 4. The principle of the Backward induction method at work in Dynamic Programming (Algorithm 1) is

to eliminate sub-strategies that are not better than the optimal sub-strategies. The weak monotonicity principle expressed

by Eq. (21) guarantees that the elimination of sub-strategies that are not strictly better than their concurrents is sound

and complete for the decision trees of size 2. Notice that L ≻O L′ does not imply that L′ does not belong to an optimal

strategy3; but it implies that if L′ belongs to an optimal strategy, so does L. When a unique strategy among the optimal

ones is searched for, the algorithm can forget about L′ .

3 That is why we called the property “weak monotonicity” – strong monotonicity is expressed by: L <O L′ iff 〈α/L, β/L′′〉 <O 〈α/L′, β/L′′〉. Strong

monotonicity thus adds to weak monotonicity that if L ≻O L′ then L′ does not belong to an optimal strategy.



The sequel on the proof is by recursion on the depth of the decision tree. The property obviously holds for decision trees

of depth 1:

• If the first node is a chance node, no decision is to be made and there is only one strategy, the empty one;

• If the first node is a decision one, the transitivity of <O guarantees that the max value obtained at Line 2 (Algorithm 1)

is not strictly lower (according to ≻O ) than the others.

Suppose that the property holds for decision trees of depth n. Consider a tree of depth n + 1:

• If the first node is a chance node, the monotonicity principle ensures that the union of the sub-strategies given by the

recursive calls is not dominated according to ≻O ;

• If the first node (say N) is a decision node, the procedure is called recursively on each of its children Y i . Let 1(Y i) be

the set of possible strategies for the sub-decision trees rooted in Y i ; the recursive call on each Y i returns a strategy

δ∗
i such that ∀δ′ ∈ 1(Y i), δ∗

i <O δ′
i (by hypothesis of recursion); then by transitivity of <O , the strategy δ∗ <O δ∗

i ,

∀Y i ∈ Succ(N) is such that δ∗ <O δ′ , ∀δ′ ∈
⋃

i 1(Y i). ✷

Proof of Proposition 5. – Weak monotonicity of PU

Consider any three lotteries L, L′ and L′′ . We can suppose without loss of generality that they are in a reduced form, i.e.:

L = 〈u/⊤,u/⊥〉, L′ = 〈v/⊤, v/⊥〉 and L′′ = 〈w/⊤, w/⊥〉.

Let

L1 = Reduction
(〈

α/L, β/L′′〉) and L2 = Reduction
(〈

α/L′, β/L′′〉).

According to the reduction operation, we get:

L1 = 〈u1/⊤,u1/⊥〉 and L2 = 〈u2/⊤,u2/⊥〉

where u1 = max(⊗(α,u),⊗(β, w)), u1 = max(⊗(α,u),⊗(β, w)),

u2 = max
(

⊗(α, v),⊗(β, w)
)

and u2 = max
(

⊗(α, v),⊗(β, w)
)

.

Suppose that L <PU L′ . We have to prove that L1 <PU L2 . Recall that max(α, β) = 1 and that L <PU L′ arises in 3 cases (i.e.

(i) u = v = 1 and u 6 v , (ii) u > v and u = v = 1, (iii) u = 1, v < 1 and v = 1) which corresponds to 6 different cases. We

show that L1 <PU L2 can be deduced in each of these cases:

• Case 1: u = v = 1 and u 6 v , α = 1. Then:

u1 = max
(

⊗(1,1),⊗(β, w)
)

= 1 and u2 = max(⊗(1,1),⊗(β, w)) = 1.

Thus L1 <PU L2 iff u1 6 u2 .

α = 1 implies that u1 = max(u,⊗(β, w)) and u2 = max(v,⊗(β, w)).

u 6 v thus implies u1 6 v1.

Hence L1 <PU L2 .

• Case 2: u = v = 1 and u 6 v , β = 1.

Then

u1 = max
(

⊗(α,1),⊗(1, w)
)

= max(α, w) and

u2 = max
(

⊗(α,1),⊗(1, w)
)

= max(α, w) = u1.

Thus L1 <PU L2 iff u1 6 u2 .

β = 1 implies that u1 = max
(

⊗(α,u), w
)

and u2 = max
(

⊗(α, v), w
)

;

since u 6 v , we get u1 6 u2 . Hence L1 <PU L2 .

• Case 3: u = v = 1 and u > v , α = 1. This case is similar to case 1 (exchanging the roles of positive and negative utilities).

• Case 4: u = v = 1 and u > v , β = 1. This case is similar to case 2 (exchanging the roles of positive and negative utilities).



• Case 5: u = 1, v < 1, v = 1, α = 1. Then:

u1 = max
(

⊗(1,1),⊗(β, w)
)

= 1 and

u2 = max
(

⊗(1,1),⊗(β, w)
)

= 1.

That is to say u1 = 1> u2 and u1 6 u2 = 1, i.e. L1 = 〈1/⊤,u1/⊥〉 and L2 = 〈u2/⊤,1/⊥〉. Thus using Eq. (9), L1 <PU L2 .

• Case 6: u = 1, v < 1, v = 1, β = 1. Then:

u1 = max
(

⊗(α,1),⊗(1, w)
)

= max(α, w),

u1 = max
(

⊗(α,u),⊗(1, w)
)

= max
(

⊗(α,u), w
)

,

u2 = max
(

⊗(α, v),⊗(1, w)
)

= max
(

⊗(α, v), w
)

,

u2 = max
(

⊗(α,1),⊗(1, w)
)

= max(α, w).

Since ⊗ is decreasing, max(⊗(α,u), w) 6 max(α, w) (i.e. u1 6 u2) and max(α, w) > max(⊗(α, v), w)) (i.e. u1 > u2).

Thus using Eq. (9), L1 <PU L2 .

So, in any case, L <PU L′ implies that L1 <PU L2 .

– Weak monotonicity of Upes and Uopt

Consider any three lotteries L, L′ , L′′ and let L1 = Reduction(〈α/L, β/L′′〉) and L2 = Reduction(〈α/L′, β/L′′〉). We can,

without loss of generality, suppose that L, L′ and L′′ are constant lotteries (thanks to certainty equivalence axiom, see [7]),

i.e. L = 〈1/u〉, L′ = 〈1/u′〉 and L′′ = 〈1/u′′〉: in L (resp. L′ , resp. L′′), any utility degree different fro u (resp. u′ , resp. u′′)
receives a possibility degree equal to 0. Then, for both interpretations of ⊗:

L1 = 〈α/u, β/u′′〉 and L2 = 〈α/u′, β/u′′〉.

Let us first show that L <Upes L
′ implies L1 <Upes L2 .

– If L ∼Upes L
′ , i.e. u = u′ , L1 and L2 are identical, thus L1 ∼Upes L2 .

– If L ≻Upes L
′ , we get u > u′ since Upes(L) = u and Upes(L

′) = u′ .

Let a = max(u′′,1 − β), then: Upes(L1) = min(max(u,1 − α),a) and Upes(L2) = min(max(u′,1 − α),a). u > u′ implies

max(u,1 − α) > max(u′,1− α). Thus Upes(L1) > Upes(L2). We show in the same manner that L <Uopt L
′ implies L1 <Uopt L2 .

– If L ∼Uopt L
′ , i.e. u = u′ , L1 and L2 are identical, thus L1 ∼Uopt L2 .

– If L ≻Uopt L
′ , we get u > u′ since Uopt(L) = u and Uopt(L

′) = u′ .

Let a = max(u′′,1 − β), then: Uopt(L1) = max(min(u,1 − α),a) and Uopt(L2) = max(min(u′,1 − α),a). u > u′ implies

min(u,1 − α) > min(u′,1− α). Thus Uopt(L1) > Uopt(L2). ✷

Proof of Proposition 6. In what follows we develop a formal proof for Proposition 6 which is a direct consequence of the

basic axiom defined by Dubois et al. [3]. Consider any three lotteries L, L′ and L′′ . We can suppose without loss of generality

that they are in a reduced form, i.e.:

L = 〈λ1/u1, . . . , λn/un〉, L′ =
〈

λ′
1/u1, . . . , λ

′
n/un

〉

and L′′ =
〈

λ′′
1/u1, . . . , λ

′′
n/un

〉

.

Let L1 = Reduction(〈α/L, β/L′′〉) and L2 = Reduction(〈α/L′, β/L′′〉) with max(α, β) = 1. The possibility of getting a utility

degree ui from L1 (resp. L2) is equal to λ1
i = max(⊗(α, λi),⊗(β,λ′′

i )) (resp. λ2
i = max(⊗(α, λ′

i),⊗(β,λ′′
i ))).

When α = 1, we have

λ1
k = max

(

λi,⊗(β,λ′′
i )

)

and λ2
i = max

(

λ′
i,⊗(β,λ′′

i )
)

.

When β = 1, we have

λ1
i = max

(

⊗(α, λi), λ
′′
i

)

and λ2
i = max

(

⊗
(

α, λ′
i

)

, λ′′
i

)

.

Let U⊤ = {ui: λi = 1} (resp. U ′
⊤ = {ui: λ′

i = 1}, U1
⊤ = {ui: λ1

i = 1}, U2
⊤ = {ui: λ2

i = 1}) the set of utility degrees receiving a

possibility equal to 1 in L (resp. L′ , L1 , L2). These sets are not empty since the distributions are normalized. It holds that

L <LΠ L′ , i.e. Π(L < L′) >Π(L′ < L) if and only if maxui∈U⊤ >minui∈U ′
⊤

[3]. Let us show that L <LΠ L′ implies L1 <LΠ L2 .

• If α = 1: we have U⊤ ⊆ U1
⊤ and U ′

⊤ ⊆ U2
⊤ . Hence maxui∈U⊤ belongs to U1

⊤ and minui∈U ′
⊤

belongs to U2
⊤ , maxui∈U1

⊤
>

maxui∈U⊤ and minui∈U2
⊤
6minui∈U ′

⊤
.

Thus maxui∈U1
⊤
>minui∈U2

⊤
.



• If α < 1 and β = 1: let ui be any of the degrees that receive a possibility degree equal to 1 in L′′ . Since β = 1, ui

belongs to both U1
⊤ and U2

⊤ . Thus Π(L1 < L2) = Π(L2 < L1) = 1.

Thus L <LΠ L′ implies that L1 <LΠ L2 in both cases. ✷

Proof of Proposition 7. We give the proof for ∀L, L′ ∈ L, L <LΠ L′ ⇐⇒ Lcore <LΠ L′ . (The proof of ∀L, L′ ∈ L, L′ <LΠ L ⇐⇒
L′ <LΠ Lcore is similar.)

L <LΠ L′ ⇐⇒ Π(L < L′) > Π(L′ < L). Because the possibility distributions are normalized, max(Π(L < L′) >

Π(L′ < L) = 1):

L <LΠ L′ iff Π
(

L < L′) = 1.

Π(L < L′) = 1 if there exists u ∈ L=1 and u′ ∈ L′
=1 such that u > u′ . This condition is equivalent to max(L=1) > u′ .

Then L <LΠ L′ implies Lcore <LΠ L′ (the core of Lcore precisely contains max(L=1)). Reciprocally, if Lcore <LΠ L′ , then ∃u′

s.t. max(L=1) > u′ , and thus L <LΠ L′ . ✷

Proof of Proposition 8. Consider any three lotteries L, L′ and L′′ . Let L1 = Reduction(〈α/L, β/L′′〉) and L2 = Reduction(〈α/L′,
β/L′′〉) with max(α, β) = 1.

Recall that L <LN L′ means that Π(L ≻ L′) > Π(L′ ≻ L). When L and L′ are unimodal and share the same mode, L2nd

is of the form 〈γ /m,1/u,γ /M〉 and L′ 2nd is of the form 〈γ ′/m′,1/u,γ ′/M ′〉; then Π(L ≻ L′) 6 max(γ ,γ ′), Π(L ≺ L′) 6
max(γ ,γ ′) and L <LN L′ iff either (γ > γ ′ and M > u) or (γ ′ > γ and u >m′) or (γ = γ ′ and max(u,M) > min(u,m′)).

Let us first assume that α = 1, then two cases can be distinguished:

– Case 1: max(L=1) > min(L′
=1) (and then Π(L ≻ L′) = 1, which implies L <LN L′); since α = 1, max(L=1) belongs to the

core of L1 and min(L′
=1) belongs to the core of L2; thus Π(L1 ≻ L2) = 1 which implies L1 <LN L2 .

– Case 2: min(L′
=1) >max(L=1). Then the two lotteries are unimodal and share the same mode, say u (if this was not the

case, we had Π(L′ ≻ L) = 1 and Π(L ≻ L′) < 1, which contradicts L <LN L′). L2nd is of the form 〈γ /m,1/u,γ /M〉 and

L′ 2nd is of the form 〈γ ′/m′,1/u,γ ′/M ′〉. Since α = 1, the core of L2nd1 and L2nd2 contains u (and only u).

• If β > max(γ ,γ ′), L2nd1 = L2nd2 (value u at level π = 1 and bounds of the core of L′′ at level π = β), and thus L1 ∼LN L2 .

• If β < min(γ ,γ ′), L2nd1 = L2nd and L2nd2 = L′ 2nd and thus L <LN L′ implies L1 <LN L2 .

• If γ > β > γ ′ , L2nd1 contains u at level π = 1, a value equal or greater than M at level γ and the core of L2nd2 contains u.

Moreover L <LN L′ implies that M > u (otherwise we had Π(L ≻ L′) < γ and Π(L′ ≻ L) = γ ). Thus L1 <LN L2 .

• If γ ′ > β > γ , L2nd2 contains u at level π = 1, a value equal or lower than m′ at level γ ′ and the core of L2nd1 contains u.

Moreover L <LN L′ implies that u >m′ (otherwise we had Π(L ≻ L′) < γ and Π(L′ ≻ L) = γ ). Thus L1 <LN L2 .

When α < 1 (and thus β = 1) the core of L1 and L2 is the one of L′′ and two cases can be distinguished:

– Case 1: L′′ is not unimodal, the comparison is made at level π = 1 and thus L1 ∼LN L2;

– Case 2: L′′ is unimodal, L′′ 2nd is of the of the form 〈γ ′′/m′′,1/u′′,γ ′′/M ′′〉; because L and L′ are also unimodal, so are

L1 and L2 – because α < 1, their mode is u′′ . Thus:
• If α < γ ′′ , then L2nd1 = L2nd2 = L′′ 2nd: L1 ∼LN L2;

• If α > γ ′′ and u 6= u′′ , then the second level on L1 (resp. L2) contains the core of L1 (resp. L2), i.e. contains u. Thus

L2nd1 is of the form 〈α/v,1/u′′,α/V 〉 with v 6 u and V > u and L2nd2 is of the form 〈α/v ′,1/u′′,α/V ′〉 with v ′ 6 u

and V ′ > u;

If u > u′′ , then Π(L1 ≻ L2) = α and Π(L2 ≻ L1) = α;

If u < u′′ , then Π(L1 ≻ L2) = α and Π(L2 ≻ L1) = α. In both cases L1 ∼LN L2;

• If u = u′′ and γ ′′ >max(min(α,γ ′),min(α,γ ′) then the second level on L1 (resp. L2) is the one of possibility degree

π = γ ′′ and contains the second level of L′′:
L2nd1 is of the form 〈γ ′′/v,1/u′′,γ ′′/V 〉 with v 6m′′ and V > M ′′ and L2nd2 is of the form 〈γ ′′/v ′,1/u′′,γ ′′/V ′〉 with

v ′ 6m′′ and V ′ > M ′′ . Since M ′′ 6= u′′ and m′′ 6= u′′ , Π(L2 ≻ L1) = Π(L1 ≻ L2) = γ ′′; L1 ∼LN L2;

• If u = u′′ and max(min(α,γ ),min(α,γ ′)) > γ ′′ then the second level on L1 (resp. L2) is the one of possibility

degree π = min(α,γ ) (resp. π = min(α,γ ′)) and contains the second level of L (resp. L′): L2nd1 is of the form

〈min(α,γ )/v,1/u,min(α,γ )/V 〉 with v 6m and V > M , and L2nd2 is of the form 〈min(α,γ ′)/v ′,1/u,min(α,γ ′)/V ′〉
with v ′ 6m′ and V ′ > M ′ .
If L <LN L′ because M > u and γ > γ ′ , then V > u and thus Π(L1 ≻ L2) = min(α,γ ) and Π(L1 ≺ L2) 6min(α,γ ):

L1 <LN L2; If L <LN L′ because u > m′ and γ ′ > γ , then u > v ′ and thus Π(L1 ≻ L2) = min(α,γ ′) and Π(L1 ≺ L2) 6

min(α,γ ′): L1 <LN L2;

• If u = u′′ and min(α,γ ) > γ ′′ > min(α,γ ′) then (i) γ > γ ′ and then L <LN L′ implies M > u and (ii) the sec-

ond level on L1 is the one of possibility degree π = min(α,γ ) contains the second level of L: L2nd1 is of the form



〈min(α,γ )/v,1/u,min(α,γ )/V 〉 with V > M: from M > u, we get Π(L1 ≻ L2) = min(α,γ ). Since Π(L2 ≻ L1) 6

min(α,γ ): L1 <LN L2;

• If u = u′′ and min(α,γ ′) > γ ′′ > min(α,γ ) then (i) γ ′ > γ and then L <LN L′ implies u > m′ and (ii) the second

level on L2 is the one of possibility degree π = min(α,γ ′) and contains the second level of L′: L2nd2 is of the form

〈min(α,γ ′)/v,1/u,min(α,γ ′)/V 〉 with v 6m′; from u > m′ we get Π(L1 ≻ L2) = min(α,γ ′). Since Π(L2 ≻ L1) 6

min(α,γ ′): L1 <LN L2 . ✷

Proof of Proposition 9. We give the proof for ∀L, L′ ∈ L, L <LN L′ ⇐⇒ L2nd <LN L′ . (The proof of L′ <LN L ⇐⇒ L′ <LN L2nd

is similar.)

L <LN L′ iff 1 − Π(L′ ≻ L) > 1 − Π(L ≻ L′), which is equivalent to Π(L ≻ L′) > Π(L′ ≻ L). This inequality is satisfied in

three cases only:

• max(L=1) > min(L′
=1) (then Π(L ≻ L′) = 1).

• max(L=1) = min(L′
=1) = max(L′

=1) = min(L=1) (let u denote this value), α2nd > α′ 2nd and max(L=α2nd ) > u (then Π(L ≻
L′) = α2nd and Π(L′ ≻ L)6 α2nd).

• max(L=1) = min(L′
=1) = max(L′

=1) = min(L=1) (let u denote this value), α′ 2nd > α2nd and u > min(L′
=α′ 2nd ).

Since L2nd precisely contains max(L=1) and min(L=1) (at level 1) and max(L=α2nd ) (at level α2nd), L <LN L′ ⇒ L2nd < L′ .
Reciprocally, if L2nd < L′ , then it is easy to check that one of the three previous cases is fulfilled and thus L <LN L′ . ✷

Proof of Proposition 10. Let L = 〈1/u,α/m,α/M〉 and L′ = 〈1/u′,α′/m′,α′/M ′〉, with α 6= α′ . (Similar results hold for

α′ > α.)

• If u 6= u′ , then only the modes are used to make the decision: either u > u′ , and then L ≻LN L′ , i.e. Π(L > L′) = 1 and

Π(L′ < L) < 1; or u′ > u and then L′ ≻LN L, i.e. Π(L > L′) < 1 and Π(L′ < L) = 1.

• If u = u′ , decision is made at level max(α,α′); when α > α′ , then either u > M (and then L′ ≻LN L); or u < m (and

then L ≻LN L′); or M > u >m (and then L ∼LN L′).

So, u = u′ is a necessary condition for the indifference of the two lotteries.

Moreover, M = u (resp. m = u) is not possible since the possibility of u is equal to 1 for both L and L′ and the possibility

of M (resp. m) is strictly lower than 1. Thus two cases are possible:

• Case 1: M =m, then the two possible cases are:

– If u > M = m, then Π(L′ > L) = α (at level α, L′ can take value u and L value m) and Π(L > L′) < α (one have go

below α to find a value for L strictly greater than u); Π(L > L′) cannot be equal to Π(L′ > L′), i.e. L and L′ cannot

be indifferent.

– If u < M = m, then Π(L > L′) = α (at level α, L′ can take value u and L value m) and Π(L′ > L) < α (one have go

below α to find a value for L strictly lower than u); i.e. L and L′ cannot be indifferent.

• Case 2: M 6=m, then by construction M >m, i.e. three cases are possible:

– If u > M , then Π(L′ > L) = α (at level α, L′ can take value u and L value M) and Π(L > L′) < α (one have go below

α to find a value for L strictly greater than u). So L ∼LN L′ is not satisfied.

– If u <m, then Π(L > L′) = α (at level α, L′ can take value u and L value m) and Π(L′ > L) < α (one have go below

α to find a value strictly lower than u). So L ∼LN L′ implies m6 u. L ∼LN L′ is not satisfied.

– If M > u >m, then Π(L > L′) = α = Π(L′ > L).

Hence, when M >m, L ∼LN L′ implies M > u >m.

Reciprocally, it is easy to check that M > u >m and α > α′ imply Π(L > L′) = α and Π(L′ > L) = α. ✷

Proof of Proposition 11(i). We have L1 = 〈γ /L, β/L′′〉 and L2 = 〈γ /L′, β/L′′〉 where L = 〈1/u,α/m,α/M〉 and L′ =
〈1/u,α′/m′,α′/M ′〉 are two indifferent 2nd core lotteries (i.e. L ∼LN L′), α < α′ and max(γ , β) = 1.

Thanks to Proposition 9 we can assume without loss of generality that L1 , L2 and Lb are 2nd core lotteries (if it is not

the case, simply replace them by their 2nd core lotteries). Since the cores of L and L′ are equal, the cores of L1 and L2 are

also equal. So L1 is unimodal iff L2 is unimodal (and both share the same mode).

• If Lb is not unimodal, then the decision is made at possibility level 1, where L1 and L2 , are identical. Hence the property.

• If L1 and L2 are not unimodal, then the decision is made at possibility level 1, where L1 and L2 , are identical. Hence

the property.



• If the three lotteries are unimodal but the mode of L1 and L2 is not equal to the one of Lb , then the decision is made

at possibility level 1, where L1 and L2 are identical. Hence the property.

• If Lb , L1 and L2 are unimodal and share the same mode, u.

L1 can be written as 〈1/u,a1/m1,a1/M1〉, with m1 < M1 and a1 < 1,

L2 can be written as 〈1/u,a2/m2,a2/M2〉, with m2 < M2 and a2 < 1,

Lb can be written as 〈1/u,b/mb,b/Mb〉, with mb < Mb and b < 1.

Notice that u /∈ {M1,m1,M2,m2,Mb,mb} (the possibility degree of u is equal to 1 while the possibility degrees of M1 ,

m1,M2,m2,Mb and mb are equal to a1 , a2 or b which are all strictly less than 1).

Since α < α′ , a1 < a2 . Moreover, LN satisfies the principle of weak monotonicity, thus L ∼LN L′ implies L1 ∼LN L2 . Thanks

to Proposition 10, L1 ∼LN L2 and a1 < a2 imply m2 < u < M2 .

By hypothesis, L2 ≻LN Lb . We have m2 < u < M2 , suppose that a2 > b, this implies Π(L2 > Lb) = a2 and Π(Lb > L2) = a2 .

Thus a2 > b contradicts the hypothesis. Hence b > a2 .

Since b > a2 , Π(L2 > Lb) > Π(Lb > L2) iff Π(L2 > Lb) = b and Π(Lb > L2) < b. Which means that at level b, u > Mb (if

u < Mb , Π(Lb > L2) = b and u = Mb is not possible).

a1 < b (Since a1 < a2 and a2 < b): the comparison of L1 and Lb is made at level b. From u > Mb we conclude Π(L1 >

Lb) = b and Π(Lb > L1) < b, i.e. L1 ≻LN Lb . Hence when Lb , L1 and L2 are unimodal and share the same mode, L2 ≻LN Lb
implies L1 ≻LN Lb . ✷

Proof of Proposition 11(ii). The proof is similar to the previous one. Thanks to Proposition 9 we can assume without loss of

generality that L1 , L2 and Lb are 2nd core lotteries. Consider the case where they are unimodal and share the same mode,

u (if not, refer to the previous proof). Then:

L1 can be written as 〈1/u,a1/m1,a1/M1〉, with m1 < M1 and a1 < 1,

L2 can be written as 〈1/u,a2/m2,a2/M2〉, with m2 < M2 and a2 < 1,

Lb can be written as 〈1/u,b/mb,b/Mb〉, with mb < Mb and b < 1.

Following the previous proof, we have u /∈ {M1,m1,M2,m2,Mb,mb} and also L1 ∼LN L2 and a1 < a2 imply m2 < u < M2 .

By hypothesis, Lb ≻LN L2 . But a2 > b and m2 < u < M2 imply that Π(L2 > Lb) = a2 and Π(Lb > L2) = a2 . Thus a2 > b

contradicts the hypothesis. Hence b > a2 .

Since b > a2 , Π(L2 < Lb) > Π(Lb < L2) iff Π(L2 < Lb) = b and Π(Lb < L2) < b. Which means that at level b, u < mb (if

u >mb , Π(Lb < L2) = b and u =mb is impossible).

a1 < b (Since a1 < a2 and a2 < b): the comparison of L1 and Lb is made at level b. From u < mb we conclude that

Π(L1 < Lb) = b and Π(Lb < L1) < b, i.e. L1 ≻LN L1 . Hence, when L1 , L2 and Lb are unimodal and share the same mode,

Lb ≻LN L2 implies Lb ≻LN L1 . ✷

Proof of Proposition 13. Let L, L′ and L′′ be 3 kappa lotteries. We can suppose without loss of generality that they are in

reduced form, i.e. that:

L = 〈κ1/µ1, . . . ,κn/µm〉, L′ =
〈

κ ′
1/µ1, . . . ,κ

′
n/µm

〉

and L′′ =
〈

κ ′′
1 /µ1, . . . ,κ

′′
n /µm

〉

.

Let L1 = Reduction(〈α/L, β/L′′〉) and L2 = Reduction(〈α/L′, β/L′′〉).
According to Eq. (22) the kappa-ranking of utility degree u1

k
from L1 is

κ1
k = min

(

(α + κk),
(

β + κ ′′
k

))

.

Thus:

OMEU(L1) = min
i=1..m

(

min
[

(κi + α),
(

κ ′′
i + β

)]

+ ui

)

.

Similarly:

OMEU(L2) = min
i=1..m

(

min
[(

κ ′
i + α

)

,
(

κ ′′
i + β

)]

+ ui

)

.

Suppose that OMEU(L)6 OMEU(L′), i.e.

min
i=1..m

{κi + ui}6 min
i=1..m

{

κ ′
i + ui

}

⇒ min
i=1..m

{κi + ui} + α 6 min
i=1..m

{

κ ′
i + ui

}

+ α

⇒ min
i=1..m

{κi + ui + α} 6 min
i=1..m

{

κ ′
i + ui + α

}

.

As a consequence, we get:



min
(

min
i=1..m

{

κ ′′
i + ui + β

}

, min
i=1..m

{κi + ui + α}
)

6min
(

min
i=1..m

{

κ ′′
i + ui + β

}

, min
i=1..m

{

κ ′
i + ui + α

}
)

.

By associativity of the min operator, we get:

min
i=1..m

min
({

κ ′′
i + ui + β

}

, {κi + ui + α}
)

6 min
i=1..m

min
({

κ ′′
i + ui + β

}

,
{

κ ′
i + ui + α

})

.

Hence: mini=1..m min[(κi + α), (κ ′′
i + β)] + ui 6mini=1..m min[(κ ′

i + α), (κ ′′
i + β)] + ui .

That is to say that OMEU(L1)6 OMEU(L2). ✷

Proof of Proposition 14. We first show that DT-OPT-ChN and DT-OPT-ChΠ belong to the NP class. Next, we prove that 3CNF

can be polynomially reduced to our problem, following the principle used by [16] for proving the difficulty of the problem in

the RDU case. For DT-OPT-ChΠ , the transformation we used is a simplification of the one proposed in [16]. For DT-OPT-ChN ,

the underlying idea is different and is mainly based on the fact that compounding a lottery with another lottery that is not

strictly better than the original one cannot increase its Choquet value (see Section 2.6).

Membership to NP

The membership of DT-OPT-ChN (resp DT-OPT-ChΠ ) to NP is straightforward, using the following procedure:

1. Call to the NP oracle

• Guess a strategy δ from T

2. Polytime checking

• Compute L = Reduce(δ), using Eq. (5)

3. Compute Chµ (µ is N or Π )

• max ← 0

• Chµ ← u1

• If µ = N , then ∀i = 1,m − 1

– if max < λL
j , then max ← λL

j

– Chµ ← Chµ + (ui+1 − ui) ∗ (1 −max)

• If µ = Π , then ∀i =m,2

– If max < λL
j , then max ← λL

j

– Chµ ← Chµ + (ui − ui−1) ∗max

• Check that Chµ > θ

Since the reduction operation is linear in the size of the compound lottery and the computation of the necessity-based

Choquet value (resp. the possibility-based Choquet value) is linear in the number of utility levels in the utility scale, the full

procedure is polynomial. Hence DT-OPT-ChN (resp. DT-OPT-ChΠ ) belongs to NP.

NP-hardness of DT-OPT-ChN

The hardness of DT-OPT-ChN is obtained by a reduction from the 3-SAT problem. Each instance of the 3-SAT problem is

a CNF-formula consisting of m clauses, denoted by Cl = {Cl1, . . . ,Clm}, on a set of n propositional variables X = {X1, . . . , Xn}
such that ∀Xi ∈ X , xi and ¬xi are called literals. The set of all literals is denoted by L and li denotes any literal in L.

Each clause Cli is composed of 3 literals. Given a 3CNF, the question is whether there is a value-assignment of its literals

which satisfies its clauses or not. The principle of the transformation from any 3CNF into a possibilistic decision tree can be

summarized as follows:

• For each literal li ∈ L we define a utility uli and a possibility degree λli . We also define a utility degree u⊤ such that

∀li ∈L, u⊤ > uli .

• For each Xi ∈ X we associate a decision node D Xi
with two children relative to the two choices xi and ¬xi , i.e. Cxi =

〈1/u⊤, λxi/uxi 〉 and C¬xi = 〈1/u⊤, λ¬xi/u¬xi 〉.
• For each Cli ∈ Cl, we associate a decision node DCli with three children relative to its three literals. In fact, for each

literal li ∈ Cli , we associate a chance node C
Cli
li

= 〈1/u⊤, λli/uli 〉 meaning that the satisfaction of Cli is ensured by the

choice of li . When selecting a chance node for DCli , a strategy specifies how it intends to satisfy Cli .

More formally, given a CNF Cl = {Cl1, . . . ,Clm} on X = {x1, . . . , xn}, the necessity-based transformation into a possibilistic

tree ΠT can be ensured by the following procedure.



1. Fix ǫ ∈ [0,1] such that ǫn < 0.5

2. ∀xi ∈ X

• uxi ← 2(n − i) + 1

• λxi ← ǫ i+1

• u¬xi ← 2(n − i) + 2

• λ¬xi ← ǫ i

3. Let u⊤ ← 2n + 1

4. Create a decision node D0 as the root of ΠT

5. Create a chance node H as the unique child of D0

6. ∀Xi ∈ X Create a decision node D Xi
with two children Cxi and C¬xi s.t.:

• Cxi is the simple lottery 〈1/u⊤, λxi/uxi 〉
• C¬xi is the simple lottery 〈1/u⊤, λ¬xi/u¬xi 〉
• Add D Xi

to the children of H , with a possibility degree equal to 1

7. ∀Cli ∈ Cl

• Create a decision node DCli
• ∀li ∈ Cli

– Create a chance node C
Cli
li

corresponding to the simple lottery 〈1/u⊤, λli/uli 〉
– Add C

Cli
li

to the children of DCli
• Add DCli to the children of H , with a possibility degree equal to 1

This transformation is performed in O (m + n) since the resulted decision tree contains m + n + 1 decision nodes, 3m +
2n + 1 chance nodes and (3m + 2n) × 2 leaves.

A strategy δ can select the literals in a consistent manner (in this case, if L is chosen for xi , ¬l is never chosen for a

DCli ) or in a contradictory manner (i.e. δ selects L in some decision and ¬l for some others). By construction, there is a

bijection between the non-contradictory strategies, if any, and the models of the formula.

The simple lottery equivalent to some strategy δ is the following: π(⊤) = 1, π(ul) = λl if literal L is chosen for

some decision node, π(ul) = 0 otherwise. The set of simple lotteries equivalent to contradictory strategies is included in:

LNC = {L: L[u⊤] = 1,∀l ∈ L, L[ul] ∈ {0, λl} and min(L[ul], L[u¬l] = 0}. The set of simple lotteries equivalent to contradictory

strategies is included in: LC = {L: L[u⊤] = 1,∀l ∈ L, L[ul] ∈ {0, λl},∃l ∈ L s.t. min(L[ul], L[u¬l]) 6= 0}.
The principle of the proof is to set the values of the λl ’s and the ul ’s in such a way that the Choquet value of the worst

of the non-contradictory lotteries is greater than the Choquet value of the best contradictory lottery. To this extend, we

choose an ǫ ∈ [0,1] such that ǫn < 0.5.

Then we set: λxi = ǫ i+1 , uxi = 2(n − i) + 1, λ¬xi = ǫ i , u¬xi = 2(n − i) + 2 and u⊤ = 2n + 1. It holds that:

– The worst non-contradictory lottery in LNC (i.e. the one having the lowest ChN value), denoted by L
↓
NC , is such as all

the positive literals are possible and the possibility of any negative literal is equal to 0, i.e.4

L
↓
NC = 〈λxn/uxn , . . . , λx1/ux1 ,1/u⊤〉.

This holds since according to the proposed encoding, utilities of positive literal are always lower than their negative

version (uxi = 2(n − i) + 1 < u¬xi = 2(n − i) + 2).

– The best contradictory lottery in LC (i.e. the one having the greatest ChN value), denoted by L
↑
C is such as all negative

literals are possible and the possibility of any positive literal is equal to 0 except for x1 (i.e. the one having the greatest

utility value within all positive literals), i.e.5

L
↑
C = 〈λ¬xn/u¬xn , . . . , λx1/ux1 , λ¬x1/u¬x1 ,1/u⊤〉.

This holds since (i) according to the proposed codification, utilities of negative literal are always greater than their

positive version (uxi = 2(n− i)+ 1 < u¬xi = 2(n− i)+ 2), moreover the presence of x1 and ¬x1 causes the contradiction

(we choose x1 since ux1 is the greatest utility value within all positive literals) and (ii) the less the number of utilities

in the lottery receiving a non-negative possibility degree, the greater the Choquet value (Proposition 2).

Considering L
↓
NC , the utilities that receive a positive possibility degrees are, by increasing order: uxn < uxn−1 < · · · < ux1 <

u⊤ (∀i = 1..n,¬xi , receive a possibility degree equal to 0). Hence:

4 For the sake of simplicity we omitted terms where possibility degrees are equal to 0.



ChN(L
↓
NC = uxn

+ (uxn−1 − uxn )(1− λxn)

+ (uxn−2 − uxn−1)
(

1−max(λxn , λxn−1)
)

+ · · ·
+ (ux1 − ux2)

(

1−max(λxn , . . . , λx2)
)

+ (u⊤ − ux1)
(

1−max(λxn , . . . , λx2 , λx1)
)

= 1 + 2(1− λxn) + 2(1− λxn−1) + · · · + 2(1− λx1)

= 2n + 1− 2(λxn + · · · + λx1).

Considering L
↑
C , the utilities that receive a positive degree of possibility are, by increasing order: u¬xn < u¬xn−1 < · · · <

u¬x2 < ux1 < u¬x1 < u⊤ (all the xi , i > 1, receives a possibility degree equal to 0). Hence:

ChN
(

L
↑
C

)

= u¬xn

+ (u¬xn−1 − u¬xn )(1− λ¬xn)

+ (u¬xn−2 − u¬xn−1)
(

1−max(λ¬xn , λ¬xn−1)
)

+ · · ·
+ (u¬x2 − u¬x3)

(

1−max(λ¬xn , . . . , λ¬x3)
)

+ (ux1 − u¬x2)
(

1−max(λ¬xn , . . . , λ¬x2)
)

+ (u¬x1 − ux1)
(

1−max(λ¬xn , . . . , λ¬x2 , λx1)
)

+ (u⊤ − u¬x1)
(

1−max(λ¬xn , . . . , λ¬x2 , λx1 , λ¬x1)
)

= 2

+ 2(1 − λ¬xn)

+ 2(1 − λ¬xn−1)

+ · · ·
+ 2(1 − λ¬x3)

+ (1 − λ¬x2)

+ (1 − λx1)

+ (1 − λ¬x1)

= 2

+ 2(1 − λ¬xn)

+ 2(1 − λ¬xn−1)

+ · · ·
+ (1 − λ¬x2)

+ (1 − λ¬x2) (since by definition λx1 = λ¬x2)

+ (1 − λ¬x1)

= 2(1− λ¬xn)

+ 2(1 − λ¬xn−1)

+ · · ·
+ 2(1 − λ¬x2)

+ (1 − λ¬x1)

= 2+ 2(n − 1) − 2(λ¬xn + · · · + λ¬x2) + 1− λ¬x1

= 2n + 1− 2(λ¬xn + · · · + λ¬x2) − λ¬x1 .



Table 6

Quantification of the decision tree in Fig. 4.

x1 ¬x1 x2 ¬x2 x3 ¬x3

u 5 6 3 4 1 2

λ 0.49 0.7 0.343 0.49 0.24 0.343

It follows that:

ChN
(

L
↓
NC

)

− ChN
(

L
↑
C

)

= 2n + 1− 2(λxn , . . . , λx1)

= −2n − 1+ 2(λ¬xn , . . . , λ¬x2) + λ¬x1

= 2(λ¬xn , . . . , λ¬x2) + λ¬x1 − 2(λxn , . . . , λx1)

= λ¬x1 − 2λxn (since by definition λ¬xi = λxi−1
).

Recall that by construction λ¬x1 = ǫ and λxn = ǫn+1:

ChN(L
↓
NC ) − ChN(L

↑
C ) is equal to ǫ − 2ǫn+1 . Since we have chosen ǫ in [0,1] is such a way that ǫn < 0.5, we get

ChN (L
↓
NC ) − ChN(L

↑
C ) > 0, i.e. ChN (L

↓
NC ) > ChN (L

↑
C ).

This shows that the Choquet value of any non-contradictory strategy, if such a strategy exists, is greater than the Choquet

value of the best contradictory strategy. Moreover, the CNF is consistent iff there exists a non-contradictory strategy. This

means that the CNF is consistent iff there exists a strategy with a Choquet value ChN greater than ChN(L
↑
C ) = 2n + 1 −

2(λ¬xn + · · · + λ¬x2 ) − λ¬x1 .

To illustrate the necessity-based transformation, we will consider the 3CNF (x1 ∨ x2 ∨ x3)∧ (¬x1 ∨¬x2 ∨¬x3) correspond-

ing to the decision tree of Fig. 4. Table 6 represents necessary values for the quantification of this decision tree by following

steps of transformation for ǫ = 0.8. The best contradictory lottery L
↑
C = 〈0.343/2,0.49/4,0,49/5,0.7/6,1/7〉 s.t. ChN(L

↑
C ) =

2 ∗ 3+ 1− (2 ∗ (0.343+ 0.49)) − 0.7 = 4.643. If we consider the strategy σ = {(D0 = d0), (DCl1 = d
x1
Cl1

), (DCl2 = d
¬x3
Cl2

), (Dx1 =
dx1 ), (Dx2 = dx2 ), (Dx3 = d¬x3 )), the compound lottery corresponding to σ is L = 〈0.343/2,0.343/3,0.49/5,1/7〉 with

ChN (L) = 6.011 > ChN (L
↑
C ) = 4.643 which means that the 3CNF is satisfiable by the instance x1 ∧ x2 ∧ ¬x3 .

NP-hardness of DT-OPT-ChΠ

The hardness of DT-OPT-ChΠ is proved by the reduction from a 3-SAT problem. More precisely, given a CNF Cl =
{Cl1, . . . ,Clm} on X = {X1, . . . , Xn} the possibility-based transformation into a possibilistic decision tree ΠT can be en-

sured by the following procedure.

1. Fix ǫ such that 0 < ǫ < 1

2. Create a decision node D0 as the root of ΠT

3. Create a chance node H

4. Add H as a child of D0

5. ∀xi ∈ X

• Create a decision node D Xi
with two children Cxi and C¬xi s.t.:

• Cxi is initialized with the lottery 〈1/0〉
• C¬xi is initialized with the lottery 〈1/0〉

6. ∀Cli ∈ Cl, ∀ literal l j ∈ Cli:

Add to Cl j the lottery 〈ǫ i/
∑i−1

k=0 10
k〉

Consider a 3CNF with m clauses Cl = {Cl1, . . . ,Clm} on the set X = {X1, . . . , Xn} of propositional variables. The set of

all literals is denoted by L and li denotes any literal in L. In the following, we will use a constant 0 < ǫ < 1. Obviously,

∀i ∈ {1..m}, ǫ i < 1, and i < j implies ǫ i > ǫ j .

A decision tree is built with a root node D0 having as unique child a chance node (denoted by H) that branches on n

decision nodes D Xi
, i = 1 . . .n (with a possibility degree equal to 1 for each child). Each D Xi

must make a decision on the

value of Xi (i.e. xi or ¬xi ), that is why it has two children, Cxi and C¬xi , which are chance nodes. Consider any literal li ∈L

and its corresponding chance node Cli , for the purpose of normalization of its possibility distribution, we systematically add

to Cli a leave labeled with utility 0 with a possibility degree equal to 1. In addition, for any Cli ∈ Cl satisfied by li , a leave

node is added as a child of Cli , with a possibility degree equal to ǫ i and a utility degree equal to
∑i−1

k=0 10
k . In other words,

the associated utility to Cl1 (resp. Cl2 , Cl3, . . . ,Clm) is 1 (resp. 11,111, . . . , 1..1
︸︷︷︸

m terms

)). One can check that:



Fig. 4. NP-hardness of DT-OPT-ChN : transformation of the 3CNF ((x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)) s.t. Cl1 = (x1 ∨ x2 ∨ x3) and Cl2 = (¬x1 ∨ ¬x2 ∨ ¬x3)

with ǫ = 0.8.

– The reduction is performed in O (n +m).

– There is a bijection between the interpretation of the CNF and the admissible strategies.

– ChΠ value of a strategy δ is equal to
∑

i=1,m,δ satisfies Cli
10i−1 ∗ ǫ i .

The greater the number of clauses satisfied by a strategy, the greater its ChΠ value. Hence the CNF is consistent iff

there exists a strategy with a Choquet value (greater or) equal to
∑

i=1..m 10i−1 ∗ ǫ i , i.e. which satisfies all clauses. Fig. 5

gives an example of this transformation for the 3CNF ((x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)) where Cl1 = (x1 ∨ x2 ∨ x3)

and Cl2 = (¬x1 ∨ ¬x2 ∨ ¬x3). With ǫ = 0.2 we obtain u(Cl1) = 1, u(Cl2) = 11, π(Cl1) = 0.2 and π(Cl2) = 0.04. We have
∑

i=1,2 10
i−1 ∗ 0.2i = 0.64. If we consider the strategy σ = {(D0 = d0), (Dx1 = dx1 ), (Dx2 = dx2 ), (Dx3 = d¬x3 ), the compound

lottery corresponding to σ is L = 〈1/0,0.2/1,0.04/11〉 with ChΠ (L) = 0.64 which means that the 3CNF is satisfiable by the

instance x1 ∧ x2 ∧ ¬x3 . ✷

Proof of Proposition 15. Let U = {u1,u2} be the set of considered utilities.

First of all, let us remark that the composition of several lotteries built on U only leads by reduction to a simple lottery

built on U only.

Let L = 〈λ1/u1, λ2/u2〉, L′ = 〈λ′
1/u1, λ

′
2/u2〉 and L′′ = 〈λ′′

1/u1, λ
′′
2/u2〉 be three simple lotteries built on U .

Let L1 = Reduction(〈α/L, β/L′′〉) and L2 = Reduction(〈α/L′, β/L′′〉).



Fig. 5. NP-hardness of DT-OPT-ChΠ : transformation of the 3CNF ((x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)) with ǫ = 0.2.

Let us first show that the monotonicity property holds for ChN in binary decision trees.

Suppose that ChN (L)> ChN (L′); By definition we have:

ChN(L) = u1 + (u2 − u1) ∗ (1 − λ1) and ChN(L′) = u1 + (u2 − u1) ∗ (1 − λ′
1).

Thus ChN(L) > ChN (L′) implies λ′
1 > λ1 .

• If α = 1: L1 = 〈max(λ1,⊗(β,λ′′
1))/u1,max(λ2,⊗(β,λ′′

2))/u2〉 and

L2 = 〈max(λ′
1,⊗(β,λ′′

1))/u1,max(λ′
2,⊗(β,λ′′

2))/u2〉. Thus:

ChN(L1) = u1 + (u2 − u1) ∗
(

1−max
(

λ1,⊗(β,λ′′
1)

))

and

ChN(L2) = u1 + (u2 − u1) ∗
(

1−max
(

λ′
1,⊗(β,λ′′

1)
))

.

For both ⊗ = min and ⊗ = ∗, λ′
1 > λ1 implies:

max
(

λ′
1,⊗

(

β,λ′′
1

))

>max
(

λ1,⊗
(

β,λ′′
1

))

.

Thus ChN (L1) > ChN (L2).

• If α < 1, β = 1: L1 = 〈max(⊗(α, λ1), λ
′′
1)/u1,max(⊗(α, λ2), λ

′′
2)/u2〉 and L2 = 〈max(αλ′

1, λ
′′
1)/u1,max(αλ′

2, λ
′′
2)/u2〉.

Thus:

ChN(L1) = u1 + (u2 − u1) ∗
(

1−max
(

⊗(α, λ1), λ
′′
1

))

and

ChN(L2) = u1 + (u2 − u1) ∗
(

1−max
(

⊗
(

α, λ′
1

)

, λ′′
1

))

.

For both ⊗ = min and ⊗ = ∗, λ′
1 > λ1 implies: max(⊗(α, λ′

1), λ
′′
1)>max(⊗(α, λ1), λ

′′
1). Thus ChN (L1) > ChN (L2).

Thus ChN (L) > ChN(L′) implies ChN(L1) > ChN(L2): the monotonicity property is satisfied for binary decision trees of two

levels. Since L1 and L2 are themselves binary, it is satisfied in any binary decision tree.

Let us now show that the monotonicity property holds for ChΠ in binary decision trees. Thus, suppose that ChΠ (L) >

ChΠ (L′);

ChΠ (L) = u1 + (u2 − u1)λ2 and ChΠ

(

L′) = u1 + (u2 − u1)λ
′
2.

Thus ChΠ (L)> ChΠ (L′) implies λ2 > λ′
2 .

• If α = 1: L1 = 〈max(λ1,⊗(β,λ′′
1))/u1,max(λ2,⊗(β,λ′′

2))/u2〉 and

L2 = 〈max(λ′
1,⊗(β,λ′′

1))/u1,max(λ′
2,⊗(β,λ′′

2))/u2〉. Thus:



ChΠ (L1) = u1 + (u2 − u1) ∗max
(

λ2,⊗(β,λ′′
2)

)

and

ChΠ (L2) = u1 + (u2 − u1) ∗max
(

λ′
2,⊗(β,λ′′

2)
)

.

From λ2 > λ′
2 it can be easily derived that ChΠ (L1) > ChΠ (L2).

• If α < 1, β = 1: L1 = 〈max(⊗(α, λ1), λ
′′
1)/u1,max(⊗(α, λ2), λ

′′
2)/u2〉 and L2 = 〈max(αλ′

1, λ
′′
1)/u1,max(αλ′

2, λ
′′
2)/u2〉.

Thus:

ChΠ (L1) = u1 + (u2 − u1) ∗max
(

⊗(α, λ2), λ
′′
2

)

and

ChΠ (L2) = u1 + (u2 − u1) ∗max
(

⊗
(

α, λ′
2

)

, λ′′
2

)

.

ChΠ (L1)> ChΠ (L2) is thus easily derived from λ2 > λ′
2 . ✷

Proof of Proposition 16. Proposition 16 trivially follows from the definition of the Choquet integral: Chµ(L) =
∑

i=1,m(ui −
ui−1).µ(L > ui): if µ(L′ > ui)>µ(L′′ > ui) (i.e. if L′ overcomes L′′ according to µ) then each term of the sum is greater for

L′ than for L′′; thus Chµ(L′) > Chµ(L′′). ✷

Proof of Lemma 1. Obviously, Gc
Rev(Gc)

(u1) = 1 = Gc(u1).

Note that ∀i = 2,n, Rev(Gc)(ui)> Rev(Gc)(ui−1).

Hence Gc
Rev(Gc)

(ui) = 1−max j=1,i−1 Rev(G
c)(u j) = 1− Rev(Gc)(ui−1).

Since Rev(Gc)ui−1 = 1− Gc(ui), we get Gc
Rev(Gc)

(ui) = Gc(ui).

Thus Gc
Rev(Gc)

= Gc . ✷

Proof of Proposition 17. From Lemma 1, we have Gc
Rev(Gc

G
)
(u) = Gc

G(u). By definition, Gc
G(u) is an upper envelop of G . So,

Rev(Gc
G), which is equal to Gc

G , overcomes any lottery Li , i = 1, . . . ,k. ✷
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