
HAL Id: hal-01118352
https://hal.science/hal-01118352

Submitted on 18 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Modeling of Multi-tiered Web Applications
with Varying Service Demands

Ajay Kattepur, Manoj Nambiar

To cite this version:
Ajay Kattepur, Manoj Nambiar. Performance Modeling of Multi-tiered Web Applications with Vary-
ing Service Demands. IPDPS 2015 Workshops, May 2015, Hyderabad, India. pp.10. �hal-01118352�

https://hal.science/hal-01118352
https://hal.archives-ouvertes.fr

Performance Modeling of Multi-tiered Web
Applications with Varying Service Demands

Ajay Kattepur
Performance Engineering Research Center

Tata Consultancy Services
Mumbai, India.

Email: ajay.kattepur@tcs.com

Manoj Nambiar
Performance Engineering Research Center

Tata Consultancy Services
Mumbai, India.

Email: m.nambiar@tcs.com

Abstract—Multi-tiered transactional web applica-
tions are frequently used in enterprise based sys-
tems. Due to their inherent distributed nature, pre-
deployment testing for high-availability and varying
concurrency are important for post-deployment perfor-
mance. Accurate performance modeling of such appli-
cations can help estimate values for future deployment
variations as well as validate experimental results. In
order to theoretically model performance of multi-
tiered applications, we use queuing networks and Mean
Value Analysis (MVA) models. While MVA has been
shown to work well with closed queuing networks, there
are particular limitations in cases where the service de-
mands vary with concurrency. This is further contrived
by the use of multi-server queues in multi-core CPUs,
that are not traditionally captured in MVA. We com-
pare performance of a multi-server MVA model along-
side actual performance testing measurements and
demonstrate this deviation. Using spline interpolation
of collected service demands, we show that a modified
version of the MVA algorithm (called MVASD) that
accepts an array of service demands, can provide supe-
rior estimates of maximum throughput and response
time. Results are demonstrated over multi-tier vehicle
insurance registration and e-commerce web applica-
tions. The mean deviations of predicted throughput
and response time are shown to be less the 3% and
9%, respectively. Additionally, we analyze the effect of
spline interpolation of service demands as a function of
throughput on the prediction results.

Keywords-Performance Modeling, Queuing Net-
works, Mean Value Analysis, Spline Interpolation,
Multi-tier Applications.

I. Introduction

Web based applications deployed by most enterprises
make use of multi-tiered architectures. Each tier pro-
vides a particular functionality required for end-to-end
transactions. Most web applications consist of a front
end (PHP/Python/Perl) Web server for HTTP request
processing, a middle-tier (Apache) Application server the
implements the enterprise application functionality and
a back end (SQL) Database server that stores user and
transaction data. The advantages of employing multi-
tiered architectures include: scalability – each tier can be
scaled in order to handle superior loads; performance –

due to data caching at one tier, load is reduced on other
tiers leading to better performance.

Once such a multi-tiered web application has been devel-
oped and the software design and implementation frozen,
performance testing is performed before deployment. Some
of the recent crashes of high-concurrency based web ap-
plications (eg. http://www.healtcare.gov “ObamaCare”
website crash [1]) highlight the need for accurate pre-
deployment analysis of loads and bottlenecks. For realistic
test outputs, the hardware and software platforms should
be configured close to production environments. The work-
load is simulated according to expected concurrency and
the response time and throughput values are examined.
There are several industry level load testing softwares
developed such as HP’s Loadrunner [2] and IBM’s Rational
Performance Tester [3]. Tools for performance prediction
using fewer load testing samples such as Perfext [4] and
TeamQuest [5] have also been developed. This is then
reflected in Service Level Agreements (SLAs) for the appli-
cation. For instance, with 100 users concurrently accessing,
the response time should be less than 1 second per page;
the maximum CPU utilization with 500 concurrent users
should be less than 50%.

Accurate theoretical modeling of performance under
varying load is a useful basis for comparison with measured
load testing data. Moreover, it can also help predict
future performance indexes under changes in hardware
or assumptions on concurrency. By modeling multi-tiered
systems with Queuing Networks, we develop an analytical
model for performance analysis. In our work, we make use
of Mean Value Analysis (MVA) to analyze these closed
queuing networks. MVA is a recursive solution technique
to predict performance of closed networks at higher con-
currency [6]. While MVA has been applied with consider-
able success in cases with consistent service demands, we
demonstrate that varying service demands (as a function
of concurrency) produce considerable deviations in pre-
dicted outputs. Varying service demands are pathological
in nature for muti-tier systems where the utilization of the
CPU|Disk|Network resources of multi-tiered applications
do not scale proportionally with higher concurrency. This
is further contrived by the fact that multi-processor CPUs

http://www.healtcare.gov

make use of multi-server queues rather than the single-
server queues used in MVA. Inclusion of this variation
in service demands into a multi-server variant MVA al-
gorithm, in order to reduce predicted deviations, is the
principal problem tackled in this paper.

Analysis of changes in service demand has had limited
study within the performance modeling community. In
most cases, it is either considered constant or averaged out
over measurements taken with varying workloads. We pro-
pose a solution using an array of service demand collected
over varying concurrent loads as an input, called MVASD.
By interpolating the service demands using cubic splines
[7], we demonstrate prediction of throughput and response
time at bottleneck values. This is combined with the
multi-server queuing model for MVA proposed in [8]. By
updating the slope of estimated throughput and response
time values as a function of the service demand slope,
predicted results are shown to be close to measured load
testing outputs. MVASD is analyzed over vehicle insurance
(VINS) and e-commerce (JPetStore) applications that are
deployed over multi-tier architectures. Predicted through-
put values show less than 3% mean deviation and the
cycle times show less than 9% mean deviation. Additional
analysis of modeling service demand interpolations using
throughput is also studied. This model may be useful for
open systems where throughput can be modified much
easier rather than increasing the concurrency.

Core contributions of this paper are:
1) Demonstrating limitations of multi-server MVA with

varying application service demands with workloads
2) Incorporating spline interpolated service demands to

generate a new algorithm, MVASD, that accepts an
array of service demands

3) Applying MVASD to multi-tiered web applications
for superior performance prediction with increasing
workloads

4) Analyzing service demands interpolated vs. through-
put and concurrency for various samples

The rest of the paper is organized as follows: Section
II presents an overview of the related work in this area.
In Section III, we introduce operational analysis and laws
required for performance modeling of multi-tiered systems.
Performance testing, monitoring utilization and a brief
description of web applications of interest are described
in IV. In Section V, we study traditional single-server
and multi-server MVA models; the limitations of these
models are demonstrated. The upgraded MVASD model
which can accept an array of service demands is introduced
in Section VI along with detailed analysis of prediction
accuracy. The analysis of spline interpolation and models
for service demands in presented in Section VII. This is
followed by conclusions and future work in Section VIII.

II. Related Work
Performance load testing [9] has typically been em-

ployed post-integration by a dedicated team in most

enterprises. By utilizing tools such as HP’s Loadrunner
[2] and IBM’s Rational Performance Tester [3], load and
stress tests of applications are run in order to examine
performance under varying workloads. Open source alter-
natives such as The Grinder [10] allow testing for large
concurrency without added licensing costs.

Analytical models such as queuing networks have been
employed by Urgaonkar et al. in [11] to study multi-
tiered web applications. By accurately modeling the cache
performance in the queuing network model, they generate
more realistic load testing outputs. Impediments to ac-
curate analysis in multi-tiered applications are analyzed
in [12]. High-level modeling of 3-tiered web services as
queuing networks and subsequent performance analysis is
performed in [13]. These include modeling system activity
under heavy loads, multiprocessor effects and dependent
database queries. The analysis of large-scale J2EE applica-
tions in terms of queuing networks and their implications
for throughput and response time predictions has been
studied in [14]. The demonstration of increase in prediction
errors with higher concurrent load is also shown. In [4],
Dattagupta et al. makes use of curve fitting to extrapolate
measured throughput and response time values in order to
predict values at higher concurrencies. Using linear regres-
sion for linearly increasing throughput and sigmoid curves
for saturation, the extrapolation technique is shown to
work well against measured values. The predictor provided
by Teamquest [5] provides options to substitute or improve
server capacity to improve performance at higher loads.
While think times are traditionally set as constants during
tests, these have been modeled with realistic user wait time
stochastic values in [15].

Mean value analysis (MVA) [6] has been proposed as
a recursive technique to estimate performance with in-
cremental increase of loads in closed networks. However,
it requires accurate measurements of service demands as
inputs to the algorithm. In [16], Luthi et al. propose
an extension that can incorporate histograms of values
to make up for variabilities in workloads. Rather than
using single mean values as inputs, linear and interval
splitting techniques are incorporated within the algorithm
to generate histograms of outputs. Tools such as [17]
allow users to simulate exact and approximate versions
of MVA under various constraints. While MVA analysis
typically consider single server queuing models, specially
for tightly coupled multi-core processors, this has to be
modified. Upgrading the approximate MVA algorithm [18]
with multi-server factors is studied in [19] and [20].

Modeling service demands to explore unknown interme-
diate values, using non-linear constrained optimization, is
studied in [21]. However, utilizing the measured values to
augment prediction techniques has not been analyzed. In
our work, we begin with analysis of utilization values with
varying concurrent loads. While research has traditionally
gone into analysis of workload in a single tier (for instance,
web servers in [22]), we study an end-to-end model that

incorporates multiple tiers of software architecture. By
making use of the service demand law [6], the service
demands are extracted for CPU|Disk|Network utilization
of various servers in our analysis. The exact MVA model is
also upgraded to handle multi-server queues as proposed
in [8]. Keeping this as inputs to the mean value analysis,
we demonstrate that improved prediction of performance
is possible compared to traditional MVA models. The new
MVASD technique is applied to two web applications and
is shown to predict throughput and response times within
3% and 9% deviation, respectively.
A closely related work is [23], where the MAQ-PRO

process is proposed that incorporate analytical modeling
to multi-tiered system performance analysis. A modified
version of the MVA is proposed that handles errors in
MVA inputs by incorporating an “overall service demand”
as a function of utilization. Further, MAQ-PRO utilizes
an approximation of multi-server MVA [19], which af-
fects prediction accuracy at higher concurrency. In our
work, we consider throughput and concurrency to be
the input metrics affecting service demand, rather than
utilization. These collected service demands are interpo-
lated via splines (as a function of concurrency|throughput)
in our model. While Layered Queuing Networks (LQN)
have been employed for accurate performance modeling of
multi-tiered web applications in [24][25], it does not handle
such variations in service demands. We rely on exact MVA
and concentrate on the effect of service demands on the
throughputs and response times predicted. Similarly, the
use of software bottlenecks [26] such as synchronization
locks and connection pools have not been considered in
our model. It is assumed that an increase in hardware
resources results in a scale-up in application performance.

III. Operational Analysis
In order to perform operational analysis of web applica-

tions, we specify the notations in Table I. In our analysis,
we consider closed queuing networks with a single class
of customers. Here “resources” refer to queuing centers in
the system under test that may be hardware (CPU, disk,
network) or software (locks, connection pools) based.

Vi Average number of times customer visits resource i
Si Mean service time per customer at resource i
Ui Utilization of resource i
Xi Throughput of resource i
X Throughput of the system
Di Service demand of resource i
N Average number of customers in the system
R Average response time of the system
Z Mean think time of a terminal user

TABLE I
Notations for Operational Analysis.

Fundamental laws applicable to queuing networks have
been proposed using the operational metrics in Table I.

We briefly review them; an interested reader is referred to
[27] and [6] for further details.
• Utilization Law: Utilization is the fraction of time

the resource is busy. Devices with high utilization
cause bottlenecks.

Ui = Xi × Si (1)

• Forced Flow Law: This states that the flows
(throughputs) in the system should be proportional.

Xi = Vi ×X (2)

• Service Demand Law: Total average service time
required by a customer at resource i, denoted Di.

Di = Vi × Si = Ui

X (3)

• Little’s Law: A powerful law stated in [28] that re-
lates the number of users in a system with throughput
and response times. If there are N users in the system,
each with think times Z (time waiting between inter-
actions with the system) and the software application
processes at the throughput rate X producing a wait
time R, the following relationship applies:

N = X(R + Z) (4)

We make use of the service demand law and Little’s law in
deriving service demands required in proceeding sections.

IV. Performance Testing
Performance load testing of a web application [9] con-

sists of multiple steps: requirements gathering, script gen-
eration, hardware-software test environment setup, test
firing, monitoring and analysis. There are some industry
standard protocols to be followed such as setting the
testing environment within 50% of the deployment en-
vironment; realistic think times; long enough test runs
to capture steady states; sufficient datapools of users to
prevent caching behavior.

A. The Grinder Load Tests
For our work we make use of The Grinder [10]: a Java

load testing framework capable of running distributed
tests using many load injector machines. In The Grinder,
worker processes are deployed on individual machines
(agents); each of these worker processes can deploy worker
threads that simulate concurrent users. The number of
simulated users is equal to number of worker threads ×
number of worker processes × number of agents. Scripts
written in python or clojure are controlled during the
run using The Grinder properties file with the following
typical parameters: grinder.processIncrement is the
interval in milliseconds at which the agent starts new
worker processes; grinder.runs is the number of runs
each worker process will perform. In general, we study in
steady state performance analysis of the system. So, the
tests are run for sufficiently long time (≈10-15 minutes)

in order to remove transient behavior. The output of The
Grinder load test provides the throughput, measured as
number of pages served per second by the application
and response times, measured as the mean number of
seconds taken to load a page, with respect to the number
of concurrent users.

B. Monitoring Utilization
An important aspect to monitor in load tests are uti-

lization levels of CPU|Disk|Network among servers. As
we consider LAMP based web applications, the linux
based load injecting/web/application/database servers are
monitored for the following metrics:
• CPU Usage: The vmstat command reports virtual

memory statistics regarding process, virtual memory,
disk, trap, and CPU activity.

• Disk Usage: The iostat iteratively reports terminal,
disk, and tape I/O activity.

• Network Usage: netstat displays the contents of
network-related data structures in various formats,
depending on the specified options. We make use of a
central network switch and measure the data packets
transmitted (Tx) and received (Rx) over the network.
Over a monitored period t, assuming a 1 GBps net-
work connection between servers, the utilization is
calculated as:

Util.% = # packets Tx|Rx over t× packet size
t× network bandwidth ×100

(5)
In this work, we treat memory usage as an orthogonal
metric that can be increased sufficiently as a function
of CPU utilization, to prevent it becoming a bottleneck.
Also note that we include load injecting servers, that are
typically outside the system of interest, in our analysis
model. This is to study all aspects of service demands
that contribute to end-to-end response times. Most load
tests monitor the load generating server to prevent it from
becoming the bottleneck in the analysis.

C. Vehicle Insurance Application (VINS)
VINS is a web application developed in house at the

Performance Engineering Research Center, Tata Consul-
tancy Services for registration of vehicle insurance. The
VINS application consists of four workflows:

1) Registration - The customer is able to register
his/her personal and vehicle details for insurance.

2) New Policy - A new policy is generated with respect
to a registered vehicle.

3) Renew Policy - A policy can be renewed after it
expires; the current value, sum and premium is
generated based on a formula.

4) Read Policy Details - The customer can view his/her
personal, vehicle and policy details.

In our work, we concentrate on the Renew Policy workflow
of the VINS application which consists of 7 individual
pages included in each performance test. In order to

generate generate large amount of virtual data need to be
loaded in databases for VINS, an in house data generator
is used: it generates 10 GB (13,000,000 customers) of data
within 50 minutes.

D. e-Commerce Application (JPetStore)
JPetStore [29] is an open source version of Sun’s Pet

Store application that has been routinely used for perfor-
mance benchmarking. It can be deployed on a multi-tiered
architecture using Apache web/application front-end and
an SQL back-end. This e-commerce application for buying
pets has multiple pages in its workflow, where customers
may login, browse categories (birds, fishes, reptiles, cats,
dogs), choose pets, update them to the cart and checkout
payments. For our study, we populate 2, 000, 000 items into
the database for viewing and selection by customers.

V. Mean Value Analysis
In order to model the load testing scenario as a closed

queuing network, we make use of Fig. 1. Each of the load
generating, web/application and database servers have
individual queues for CPU|Disk|Network as described in
Section IV and are modeled to be product-form [6]. The
think time adds delay in between successive calls to the
servers from populated concurrent users. Though load
testing servers are typically not a part of the environ-
ment under test, we include utilization of these servers
in order to analyze end-to-end service demands during
load tests. Note that we only consider hardware resources
in our modeling. Software bottlenecks [26] such as those
caused by synchronization locks or limited connection
pools within the application are assumed to be tuned prior
to performance analysis.

Load Injecting Server

Multi-core
 CPU

Disk Network Rx Network Tx

Web/Application Server

Multi-core
 CPU

Disk Network Rx Network TxThink
Time

Database Server

Multi-core
 CPU

Disk Network Rx Network Tx

Fig. 1. Queuing Network Model for Performance Testing.

A. Single-Server Exact MVA
Mean value analysis (MVA) [6] has been applied with

considerable success in the case of closed queuing networks
in order to predict performance at higher work loads. We
make use of single class models wherein the customers are
assumed to be indistinguishable from one another. The
exact MVA algorithm [6] starts with an empty network; it

then increases the number of customers by 1 at each itera-
tion until there are the required number (N) of customers
in the system. For each queuing station k = 1, ...,K, the
waiting time Rk is computed using the static input service
demands Sk and the number of jobs in the queue Qk as:

Rk = Sk(1 + Qk) (6)

The system throughput is then computed using the sum
of waiting times at each node and Little’s law (eq. 4).
Finally, Little’s law is applied to each queue to compute
the updated mean queue lengths for k = 1, ...,K. Another
popular implementation is Schweitzer’s approximation of
MVA [18] estimates the average number of jobs at node k
to be:

QN−1
k ≈ N − 1

N
Qn

k (7)

which produces faster results compared to exact MVA,
especially at higher concurrency N .

B. Multi-Server Exact MVA
Both exact and approximate MVA consider queues with

a single server – this requires modification in case of multi-
server queues, such as those found in tightly coupled multi-
core CPU processors. Heuristically, this has been done by
normalizing the service demand by the number of CPU
cores employed; however, this approximation can lead to
modeling errors, especially at higher concurrency [6].
In the work done by [19] and [20], a correction factor

is proposed that incorporates the number of servers Ck

at each queuing station k. These are incorporated into
Schweitzer’s approximation of MVA [18] to model multi-
server queues. However, as this is based on the approx-
imate version of MVA, errors in prediction compounded
with variation in service demands can lead to inaccurate
outputs. As we intend to use the exact version of MVA,
we make use of the correction factor proposed in [8]:

Rk = Sk

Ck
(1 + Qk +

Ck∑
j=1

(Ck − j)pk(j)) (8)

where pk(j) represents the marginal queue size probabil-
ities that are recursively updated for each multi-server
queue, Ck represents the number of servers in the multi-
server queue. Marginal probabilities give the probability
values of random variables in the subset without reference
to probability values of other variables. This is incorpo-
rated with exact MVA in Algorithm 1. Notice that for
Ck = 1 (single-server), this reduces to eq. 6. The updated
values calculates the utilization of each server (core in
CPU context) and updates the probability of the queue
being empty. For the rest of the paper, we refer to this
algorithm as exact multi-server MVA.

C. Performance Modeling with Multi-Server MVA
In order to compare the predicted output of the MVA

algorithm and the actual performance of the VINS ap-
plication, a set of load tests were performed to collect

Algorithm 1: Exact Mean Value Analysis (MVA) Al-
gorithm with Multi-Server Queues [8].

Input: Set of queuing stations k ∈ K each with
number of servers Ck; Corresponding Service
demands Sk, Visit counts Vk; Number of con-
current users N ; Think time Z;

Output: Throughput Xn with increasing concur-
rency n ∈ N ; Response time Rn with
increasing concurrency n ∈ N ;

for k ← 1 to K do
Initialize queue at each station: Qk ← 0
Initialize multi-server marginal probabilities:
pk(1)← 1
for j ← 2 to Ck do

pk(j)← 0

for n← 1 to N do
for k ← 1 to K do

Multi-server queue correction factor:
Fk ←

∑Ck

j=1 (Ck − j)pk(j)
Response time at each station:
Rk ← Sk

Ck
(1 + Qk + Fk)

Total response times using visit counts:
Rn ←

∑K
k=1 VkRk

Throughput with Little’s Law: Xn ← n

Rn + Z
for k ← 1 to K do

Update queues at each station:
Qk ← XnVkRk

Update multi-server marginal probabilities:
pk(1)← 1− 1

Ck
(XnSk +

∑Ck

j=2 pk(j))
for j ← 2 to Ck do

pk(j)← 1
j XnSkpk(j − 1)

return Xn, Rn

response time and throughput values at varying levels of
concurrency. The application was deployed on 16 - core
CPU machines, 10 GB of data on the database, with
datapool of 200,000 users and think times of 1 second. The
Grinder tests were run with concurrency varying from 1
to 1500 users (varying number of processes and threads)
for 100 runs on the Renew Policy workflow (7 pages). In
Table II, the utilization values are used in conjunction
with the service demand law (eq. 3) to extract the service
demands at individual queuing stations. We assume that
the mean throughput levels X can be estimated either
through historic access logs or monitoring visit counts
at CPU|Disk|Network access points. As seen, with in-
creased concurrency, the load injecting server disk and the
database server disk reach near-saturation (in red).

Collected throughput and service demand values are
utilized as inputs to Algorithm 1. In Fig. 2 compared to the
measured values from The Grinder, there are significant
deviations in outputs provided by Algorithm 1. Here, the

Users Load Server Application Server Database Server
CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx

1 0.648 0.032 0.004 0.003 0.278 0.052 0.0024 0.0038 0.75 0.44 0.0014 0.0009
20 0.95 0.565 0.058 0.032 0.37 0.015 0.043 0.077 3.47 8.22 0.026 0.021
105 2.14 2.74 0.281 0.131 0.69 0.015 0.226 0.405 8.92 19.92 0.136 0.109
203 3.46 11.365 0.545 0.256 1.32 0.095 0.438 0.783 13.15 25.9 0.263 0.21
504 7.95 35.13 1.38 0.639 2 1.08 0.956 1.783 19.625 36.43 0.455 0.372
1001 15.55 71.1 2.75 1.29 3.55 0.024 1.692 3.241 36.23 71.9 0.568 0.485
1204 17.485 74.85 3.29 1.56 4.12 0.03 1.983 3.807 33.67 67.61 0.598 0.518
1503 21.566 88.76 4.08 1.95 5.66 0.037 2.33 4.12 34.98 92.75 0.543 0.65

TABLE II
Utilization % observed during Load Testing of the VINS application.

Fig. 2. Throughput and Response Time model outputs generated
by Algorithm 1 in the VINS application.

label MVA i refers to outputs produced by the algorithm
when input with service demands measured at concurrency
level i (for instance, MVA 203 refers to inputing service
demands S203

k collected with concurrency 203 as input to
Algorithm 1). Note that even for single user tests, the
sum of collected service demands do not exactly add up to
the response time provided in The Grinder. This further
demonstrates the overheads that might occur internally
at the CPU, disk or network level, which complicates
accurate modeling of these applications.

Fig. 3. Service Demands for the VINS Database Server.

As service demands Sk are the key inputs needed for
MVA, we plotted the observed service demands for the
database server in Fig. 3. Due to variations in individual
service demands at changing concurrency, the outputs
produced at each run of Algorithm 1 considerably varies.

While there are improvements when service demands are
taken at higher concurrency levels, it would mean testing
until near-saturation to generate inputs for the algorithm.
As this model fails to meet expected outputs, we explore
the possibility of using an extended version of MVA that
accepts an interpolated array of service demands in the
next section.

VI. MVASD: Multi-Server MVA with Varying
Service Demands

In case of variable service demands that change as a
function of concurrent users N , incorporating an array
of service demands into the MVA in crucial. Indeed, in
papers such as [23] and [16], this issue has been identi-
fied with heuristic models. We propose Algorithm 2 that
incorporates service demands collected at unique points:
this algorithm is referred to as MVASD. Typically this can
be done using statistical analysis of log access files to check
utilization levels of CPU|Disk|Network at various queuing
nodes. While the measured service demands {Si1

k , ...,S
iM

k }
is measured at only M points, these are interpolated in
order to generate values over each interval n. The set
of service demands SSn

k (using Service Demand Law,
eq. 3), represent the changes in demand with increasing
concurrency. The updated response time iterative update
model is:

Rk = SSn
k

Ck
(1 + Qk +

Ck∑
j=1

(Ck − j)pk(j)) (9)

The changes in Algorithm 2 with respect to Algorithm
1 have been highlighted in red. For the function h used
to generate the array of service demands in Algorithm
2, we interpolate using splines. In spline interpolation
[7], if (xi, yi) are modeled such that x1, x2, ..., xn are a
sequence of observations with the relation yi = h(xi). The
smoothing spline estimate ĥ of the function h is defined
to be the minimizer:

n∑
i=1

(yi − ĥ(xi))2 + λ

∫ xn

x1

ĥ′′(x)2 dx (10)

where, λ ≥ 0 is a smoothing parameter, controlling the
trade-off between fidelity to the data and roughness of the
function estimate.

Algorithm 2: Exact Mean Value Analysis Algorithm
with Multi-Server Queues, Varying Service Demands
(MVASD).

Input: Set of queuing stations k ∈ K each with
number of servers Ck; Corresponding Service
demands Sk, Visit counts Vk; Number of con-
current users N ; Think time Z; Interpolation
function h;

Output: Throughput Xn with increasing concur-
rency n ∈ N ; Response time Rn with
increasing concurrency n ∈ N ;

for k ← 1 to K do
Initialize queue at each station: Qk ← 0
Initialize multi-server marginal probabilities:
pk(1)← 1
for j ← 2 to Ck do

pk(j)← 0

for n← 1 to N do
for k ← 1 to K do

Multi-server queue correction factor:
Fk ←

∑Ck

j=1 (Ck − j)pk(j)
Array of Abscessa at which service demands
have been collected: ak ← {i1, ..., iM}
Array of Service demands for each station:
bk ← {Si1

k , ...,S
iM

k }
Interpolated Service demands generated with
interval n: SSn

k ← h(ak, bk, n)
Response time at each station:
Rk ← SSn

k

Ck
(1 + Qk + Fk)

Total response times using visit counts:
Rn ←

∑K
k=1 VkRk

Throughput with Little’s Law: Xn ← n

Rn + Z
for k ← 1 to K do

Update queues at each station:
Qk ← XnVkRk

Update multi-server marginal probabilities:
pk(1)← 1− 1

Ck
(XnSSn

k +
∑Ck

j=2 pk(j))
for j ← 2 to Ck do

pk(j)← 1
j XnSSn

k pk(j − 1)

return Xn, Rn

Specifically, we make use of the interp() function in
Scilab [30] that generates a continuous and derivable piece-
wise function h(X) defined over [x1, xn]. It consists of a
set of cubic polynomials, each one qm(X) being defined on
[xm, xm+1] and connected in values and slopes to both its
neighbours. Thus, over [xm, xm+1] we have h(X) = qm(X)
and h(xi) = yi. The interp() function evaluates h(X)
and subsequent derivatives h′(X), h′′(X), h′′′(X):

yqi = h(xqi); yq1
i = h′(xqi);

yq2
i = h′′(xqi); yq3

i = h′′′(xqi)
(11)

Further, we specify that outside the sampled [x1, xn], the
extrapolation model follows:

xqi < x1 ⇒ yqi = y1
xqi > xn ⇒ yqi = yn

(12)

which pegs the boundary interpolated values to output
extrapolation. The function h captures the variance in
service demand generated with increasing concurrency.
A. Performance Modeling with MVASD

Fig. 4. Throughput and Response Time model outputs generated
by Algorithms 1 and 2 in the VINS application.

We continue the prediction model for the VINS ap-
plication as specified in Section V-C, where multi-server
MVA does not predict accurately (Fig. 2). We input
the generated array of service demands (using Table II)
into Algorithm 2. As shown in Fig. 4, when the array
of collected service demands were input to MVASD, the
outputs of spline interpolated service demand produce
predictions close to measured values. The outputs are
clearly superior to those developed with Algorithm 1
(chosen with varying concurrency MVA i), as we control
the slope of the throughput curves, using the interpolated
service demands.

In order to re-test the performance of the algorithms,
the JPetStore application [29], consisting of 14 pages was
used. For this, 16 - core CPU machines, 1 GB initial data
in the data server, datapool 125,000 users and think time
of 1 second were employed. Table III shows the utilization
percentages observed with increasing concurrency. Due to
the large size of entries (2,000,000) generated for the load
test, we notice saturation of CPU and disk with ≈ 140
users (shown in red).

In Fig. 5, we compare performance of exact MVA single-
server [6] using normalized service demands for multi-
server CPUs (dividing the service demand by the number

Users Load Server Application Server Database Server
CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx CPU Disk Net-Tx Net-Rx

1 0.07 0.003 0.0014 0.0076 0.07 0.0045 0.051 0.058 6.0 4.0 0.0054 0.0516
14 0.27 0.0036 0.0114 0.067 0.62 0.0064 0.684 0.77 41.5 16.0 0.0677 0.686
28 0.68 0.003 0.025 0.18 1.05 0.004 1.22 1.38 69.5 31.0 0.12 1.214
70 1.24 0.0032 0.021 0.115 1.596 0.0052 1.83 1.99 79.0 75.0 0.172 1.83
140 0.58 0.004 0.037 0.21 2.12 0.005 2.466 2.75 89.25 95.0 0.251 2.64
168 0.352 0.0024 0.0343 0.23 1.55 0.0028 1.895 2.01 89.0 96.0 0.172 1.857
210 0.476 0.0032 0.036 0.2 1.63 0.0075 2.128 2.31 86.25 96.0 0.201 2.147

TABLE III
Utilization % observed during Load Testing in the JPetStore application.

of CPU cores). This is a version of exact MVA (eq. 6) that
uses normalized service demands rather than the probabil-
ities introduced in Algorithm 1. The interpolation of these
service demands used in Algorithm 2 is maintained, hence
referred to as MVASD: Single Server (multi-server queues
normalized as a single server). We notice deterioration in
predicted performance with both throughout and response
time deviations greater than those produced by Algorithm
2. This is specially crucial when the bottleneck in the
performance is due to CPU utilization, as it is in the case
of this example. This demonstrates the need for accurate
multi-server MVA models (as proposed in [8]), that can
have significant impact on performance prediction.

Fig. 5 demonstrates the outputs of Algorithms 1 and
MVASD (2) on the JPetStore application. As expected,
MVASD performs well and is even able to pick up the
deviation in throughput between 140 and 168 users. The
exact multi-server MVA does not offer this level of pre-
cision even with inputs of service demands collected at
higher concurrency. Depending on the concurrency level
at which service demands are collected, Algorithm 1 varies
in efficacy of outputs.

As utilization data is an important factor in determining
the hardware bottleneck among available resources, we
analyze the predicted outputs for the database server
performance with measured utilization in Fig. 6. As ex-
pected from Table III, we see the CPU and disk utilization
reach saturation levels at > 140 users. We notice that the
predicted utilization curves from MVASD follow measured
values closely, as a consequence of the spline interpolation
of service demands.

B. Prediction Accuracy
Table IV and V display the mean deviations seen for

throughput (pages/second) and Response Time (cycle
time R + Z) generated by various models. The mean %
deviation after considering M measured observations is
defined as:

%Deviation =
∑M

m=0
|Predicted(m)−Measured(m)|

Measured(m) × 100
M

(13)
The lowest deviations are seen by the MVASD out-

puts; with Algorithm 1, there are considerable deviations
seen when service demand collected at varying concur-
rency i is input into MVA i. This shows the importance

Fig. 5. Throughput and Response Time model outputs generated
by Algorithms 1 and 2 in the JPetStore application.

Fig. 6. Utilization of the Database Server for the JPetStore appli-
cation predicted via MVASD Algorithm 2.

of studying the underlying service demand as a func-
tion of concurrency and incorporating this into MVA.
As varying service demands are pathologically seen in
multi-tiered systems, it is a critical aspect that is often
overlooked in performance modeling. Similarly, we ob-

serve that MVASD:Single-Server models under perform
in prediction; thus, incorporating a multi-server model
that closely follows multi-core CPU performance is also
necessary for accurate analysis.

Metric Model Deviation (%)
Throughput MVASD 2.298

(Pages/second) MVA 203 24.62
MVA 1001 2.885
MVA 1204 2.81

Response Time MVASD 8.61
(Cycle Time) MVA 203 100.83

R + Z MVA 1001 6.046
MVA 1204 10.73

TABLE IV
Mean Deviation in Modeling the VINS application.

Metric Model Deviation (%)
Throughput MVASD: Single-Server 10.42

(Pages/second) MVASD 0.558
MVA 28 18.94
MVA 70 5.44
MVA 140 7.79
MVA 210 4.03

Response Time MVASD: Single-Server 7.283
(Cycle Time) MVASD 1.2

R + Z MVA 28 21.12
MVA 70 6.76
MVA 140 8.59
MVA 210 2.37

TABLE V
Mean Deviation in Modeling the JPetStore application.

VII. Modeling Service Demands with Splines

Fig. 7. Spline Interpolated Service Demands for the Database Server
in the VINS application.

In order to implement MVASD, the collected service de-
mands were interpolated with splines. Fig. 7 demonstrates
the interpolated service demands produced via spline in-
terpolation in Scilab on the VINS Database Server service
demands. We notice that the polynomial splines gener-
ated overlap with the measured points and interpolates
values that are not sampled. In general, the trend of the
curves show that service demand decreases with increase
in workload. Possible explanations that suggest making
up for increased contention of hardware resources with

increased workload: caching of resources at CPU|Disk to
improve efficient processing, batch processing at CPU|Disk
and superior branch prediction at CPU.

We also examined the effect of service demand vs.
throughput rather than against concurrency. Typically,
service demand has been modeled as a function of con-
currency and think time. However, generating splines
with respect to increasing throughput can lead to more
tractable models when using open systems, where through-
put can be easier measured. It was noted that the general
trend of service demands was similar to Fig. 7; however,
the predicted outputs for throughput and response times
(JPetStore) showed higher deviation: 6.68% for through-
put and 6.9% for response time. Accurately quantifying
the service demand as a function of concurrency, think
time and throughput is a useful input for most prediction
models.

In Fig. 8, we analyze the variation in interpolated service
demands in Scilab generated for the Database Server in
JPetStore. As seen, with just 3 samples (concurrency 1,
14, 28), the deviation in generated interpolation is more
than for 5 samples (concurrency 1, 14, 28, 70, 140) and
7 samples (concurrency 1, 14, 28, 70, 140, 168, 210).
Essentially, this demonstrates that higher the spread of
collected service demands, better the interpolation and
consequently closer the predicted outputs. As the service
demand evolves with concurrency – finding a general
representation of this with a few samples is a challenge
and will be explored in future work.

Although both VINS and JPetStore applications were
deployed on the same hardware specifications, from Fig.
7 and Fig. 8, we notice considerable changes in Database
service demand splines. This shows that a general profiling
of the underlying hardware does not help in estimating
service demand variations. Application specific perfor-
mance modeling through utilization of CPU|Disk|Network
resources and throughput and varying concurrency, is
necessary for accurate performance profiling.

Fig. 8. Splines generated for the Database Server with various
Samples for the JPetStore application.

VIII. Conclusions
Mean Value Analysis (MVA), while successful for ex-

trapolation of throughput and response time values in
closed queuing networks, suffers under varying service de-
mands. As this problem is pathological in multi-tiered sys-
tems, where utilization of CPU|Disk|Network varies with
increasing concurrency, improvements in traditional MVA
techniques are needed. In this paper, we have analyzed the
use of an alternative version of the MVA algorithm that
can accept an array of service demands. By employing the
classic service demand and Little’s laws, inputs needed to
estimate throughput and response time under higher con-
current loads are generated. Utilizing spline interpolation
of service demands, we generate an array of values that
provide superior estimates, and refer to this technique as
MVASD. Modeling vehicle insurance and e-commerce web
applications, MVASD yields accurate performance models
within 3% and 9% deviation for throughput and response
time, respectively. This prediction technique can handle
multi-server, multi-tier queues along with service demands
collected over varied horizons of concurrency. Further, we
have analyzed spline interpolated service demands as a
function of throughput, which can be applied to open
systems.

Our future work includes the analysis of minimum num-
ber of service demand points traded-off against accuracy,
for performance prediction. Service demand interpolation
can also be implemented with other performance models
such as Layered Queuing Networks to test for improved
prediction results.

Acknowledgment
The authors would like to thank Dr. Rajesh Manshara-
mani for the invaluable discussions and feedback for im-
provements of this paper. Additional thanks to Mr. Rupin-
der Virk for help in setting up the experimental test-beds.

References
[1] Ed Payne, Matt Smith and Tom Cohen, “Report: Healthcare

website failed test ahead of rollout”, CNN, October 23, 2013.
[2] Loadrunner, Hewlett-Packard, http://www8.hp.com/in/en/

software-solutions/loadrunner-load-testing/, 2014.
[3] Rational Performance Tester, IBM, http://www-03.ibm.com/

software/products/en/performance, 2014.
[4] Subhasri Duttagupta and Rajesh Mansharamani , “Extrapo-

lation tool for load testing results,” Intl. Symp. on Perfor-
mance Evaluation of Computer & Telecommunication Systems
(SPECTS), 2011.

[5] Performance Predictor, TeamQuest, http://www.teamquest.
com/, 2014.

[6] Edward D. Lazowska, John Zahorjan, G. Scott Graham and Ken-
neth C. Sevcik, “Quantitative System Performance: Computer
System Analysis Using Queuing Network Models,” Prentice-Hall,
1984.

[7] Carl de Boor, “A Practical Guide to Splines,” Springer Applied
Mathematical Sciences, vol. 27, 2001.

[8] M. Reiser and S. S. Lavenberg, “Mean-Value Analysis of Closed
Multichain Queuing Networks,” Journal of ACM, vol. 27, no. 2,
pp. 313–322, 1980.

[9] Daniel A. Menasce, “Load Testing of Web Sites,” IEEE Internet
Computing, pp. 70-74, 2002.

[10] P. Aston and C. Fitzgerald, The Grinder, http://grinder.
sourceforge.net/, 2013.

[11] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer and A.
Tantawi, “An Analytical Model for Multi-tier Internet Services
and Its Applications,” Proc. of ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer
Systems, 2005.

[12] N. Roy, A. Gokhale and L. Dowdy, “Impediments to Analytical
Modeling of Multi-Tiered Web Applications,” IEEE Intl. Symp.
on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS), pp. 441–443, 2010.

[13] X. Liu, J. Heo and L. Sha, “Sha Modeling 3-tiered Web applica-
tions,” IEEE Intl. Symp. on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2005.

[14] S. Kounev and A. Buchmann, “Performance Modeling and
Evaluation of Large-Scale J2EE Applications,” 29th Intl. Conf.
of the Computer Measurement Group (CMG), Dallas, TX, 2003.

[15] D. Draheim, John Grundy, J. Hosking, C. Lutteroth and G.
Weber, “Realistic load testing of Web applications,” Proc. of 10th
Intl. Conf. on Software Maintenance and Reengineering, 2006.

[16] J. Luthi, S. Majumdar and G. Haring, “Mean Value Analysis
for Computer Systems with Variabilities in Workloads”, Proc.
of IEEE Intl. Symp. Computer Performance and Dependability
Symposium, 1996.

[17] M. Bertoli, G. Casale and G. Serazzi, “JMT: performance
engineering tools for system modeling,” ACM SIGMETRICS
Performance Evaluation Review, vol. 36, no. 4, 2009.

[18] P. Schweitzer, “Approximate analysis of multiclass closed net-
works of queues,” Proc. of Intl. Conf. on Stochastic Control and
Optimization, 1979.

[19] Rajan Suri, Sushanta Sahu and Mary Vernon, “Approxi-
mate Mean Value Analysis for Closed Queuing Networks with
Multiple-Server Stations,” Proc. of the Industrial Engineering
Research Conference, 2007.

[20] Yuki Nakamizo, Hiroshi Koide, Kazumi Yoshinaga, Dirceu
Cavendish and Yuji Oie, “MVA Modeling of Multi-core Server
Distributed Systems,” 3rd Intl. Conf. on Intelligent Networking
and Collaborative Systems, 2011.

[21] Daniel A. Menasce, “Computing Missing Service Demand Pa-
rameters for Performance Models,” Proc. of the Computer Mea-
surement Group (CMG) Conf., Las Vegas, NV, 2008.

[22] John Dilley, Rich Friedrich, Tai Jin and Jerome A. Rolia, “Mea-
surement Tools and Modeling Techniques for Evaluating Web
Server Performance,” Proc. of the 9th Intl. Conf. on Computer
Performance Evaluation: Modeling Techniques and Tools, 1997.

[23] N. Roy, A. Dubey, A. Gokhale and L. Dowdy, “A Capacity Plan-
ning Process for Performance Assurance of Component-based
Distributed Systems,” Proc. of 2nd ACM/SPEC International
Conference on Performance Engineering, 2011.

[24] Yasir Shoaib and Olivia Das, “Web Application Performance
Modeling Using Layered Queuing Networks”, Fifth Intl. Wksp. on
the Practical Application of Stochastic Modeling (PASM), 2011.

[25] C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar,
“The Stochastic Rendezvous Network Model for Performance
of Synchronous Client-Server-Like Distributed Software”, IEEE
Transactions on Computers, vol. 44, no. 1, pp. 20–34, 1995.

[26] Daniel A. Menasce, “Simple analytic modeling of software con-
tention,” ACM SIGMETRICS Performance Evaluation Review,
vol. 29, no. 4, pp. 24–30, 2002.

[27] Peter J. Denning and Jeffrey P. Buzen, “The Operational Anal-
ysis of Queuing Network Models,” ACM Computing Surveys, vol.
10, no. 3, 1978.

[28] John D. C. Little, “A Proof for the Queuing Formula: L = λW ,”
Operations Research, vol. 9, no. 3, pp. 383-387, 1961.

[29] JPetStore, iBATIS, http://sourceforge.net/projects/
ibatisjpetstore/, 2013.

[30] Scilab, Scilab Enterprises, http://www.scilab.org/, 2014.

http://www8.hp.com/in/en/software-solutions/ loadrunner-load-testing/
http://www8.hp.com/in/en/software-solutions/ loadrunner-load-testing/
http://www-03.ibm.com/software/products/ en/performance
http://www-03.ibm.com/software/products/ en/performance
http://www.teamquest.com/
http://www.teamquest.com/
http://grinder.sourceforge.net/
http://grinder.sourceforge.net/
http://sourceforge.net/projects/ibatisjpetstore/
http://sourceforge.net/projects/ibatisjpetstore/
http://www.scilab.org/

	Introduction
	Related Work
	Operational Analysis
	Performance Testing
	The Grinder Load Tests
	Monitoring Utilization
	Vehicle Insurance Application (VINS)
	e-Commerce Application (JPetStore)

	Mean Value Analysis
	Single-Server Exact MVA
	Multi-Server Exact MVA
	Performance Modeling with Multi-Server MVA

	MVASD: Multi-Server MVA with Varying Service Demands
	Performance Modeling with MVASD
	Prediction Accuracy

	Modeling Service Demands with Splines
	Conclusions
	References

