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Abstract

We show that kernel-based quadrature rules for computing integrals can be seen as a special case of

random feature expansions for positive definite kernels, for a particular decomposition that always

exists for such kernels. We provide a theoretical analysis of the number of required samples for

a given approximation error, leading to both upper and lower bounds that are based solely on the

eigenvalues of the associated integral operator and match up to logarithmic terms. In particular, we

show that the upper bound may be obtained from independent and identically distributed samples

from a specific non-uniform distribution, while the lower bound if valid for any set of points.

Applying our results to kernel-based quadrature, while our results are fairly general, we recover

known upper and lower bounds for the special cases of Sobolev spaces. Moreover, our results

extend to the more general problem of full function approximations (beyond simply computing an

integral), with results in L2- and L∞-norm that match known results for special cases. Applying

our results to random features, we show an improvement of the number of random features needed

to preserve the generalization guarantees for learning with Lipshitz-continuous losses.

1. Introduction

The numerical computation of high-dimensional integrals is one of the core computational tasks

in many areas of machine learning, signal processing and more generally applied mathematics,

in particular in the context of Bayesian inference (Gelman, 2004), or the study of complex sys-

tems (Robert and Casella, 2005). In this paper, we focus on quadrature rules, that aim at ap-

proximating the integral of a certain function from only the (potentially noisy) knowledge of the

function values at as few as possible well-chosen points. Key situations that remain active areas

of research are problems where the measurable space where the function is defined on is either

high-dimensional or structured (e.g., presence of discrete structures, or graphs). For these prob-

lems, techniques based on positive definite kernels have emerged as having the potential to effi-

ciently deal with these situations, and to improve over plain Monte-Carlo integration (O’Hagan,

1991; Rasmussen and Ghahramani, 2003; Huszár and Duvenaud, 2012; Oates and Girolami, 2015).

In particular, the quadrature problem may be cast as the one of approximating a fixed element, the

mean element (Smola et al., 2007), of a Hilbert space as a linear combination of well chosen el-
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ements, the goal being to minimize the number of these factors as it corresponds to the required

number of function evaluations.

A seemingly unrelated problem on positive definite kernels have recently emerged, namely the

representation of the corresponding infinite-dimensional feature space from random sets of features.

If a certain positive definite kernel between two points may be represented as the expectation of

the product of two random one-dimensional (typically non-linear) features computed on these two

points, the full kernel (and hence its feature space) may be approximated by sufficiently many

random samples, replacing the expectation by a sample average (Neal, 1995; Rahimi and Recht,

2007; Huang et al., 2006). When using these random features, the complexity of a regular kernel

method such as the support vector machine or ridge regression goes from quadratic in the number

of observations to linear in the number of observations, with a constant proportional to the number

of random features, which thus drives the running time complexity of these methods.

In this paper, we make the following contributions:

– After describing the functional analysis framework our analysis is based on and presenting

many examples in Section 2, we show in Section 3 that these two problems are strongly related;

more precisely, optimizing weights in kernel-based quadrature rules can be seen as decompos-

ing a certain function in a special class of random features for a particular decomposition that

always exists for all positive definite kernels on a measurable space.

– We provide in Section 4 a theoretical analysis of the number of required samples for a given

approximation error, leading to both upper and lower bounds that are based solely on the eigen-

values of the associated integral operator and match up to logarithmic terms. In particular, we

show that the upper bound may be obtained as independent and identically distributed samples

from a specific non-uniform distribution, while the lower bound if valid for any set of points.

– Applying our results to kernel quadrature, while our results are fairly general, we recover known

upper and lower bounds for the special cases of Sobolev spaces (Section 4.4). Moreover, our

results extend to the more general problem of full function approximations (beyond simply

computing an integral), with results in L2- and L∞-norm that match known results for special

cases (Section 5).

– Applying our results to random feature expansions, we show in Section 4.5 an improvement of

the number of random features needed for preserving the generalization guarantees for learning

with Lipshitz-continuous losses.

2. Random Feature Expansions of Positive Definite Kernels

Throughout this paper, we consider a topological space X equipped with a Borel probability mea-

sure dρ, which we assume to have full support. This naturally defines the space of square-integrable

functions1 .

1. For simplicity and following most of the literature on kernel methods, we identify functions and their equivalence

classes for the equivalence relationship of being equal except for a zero-measure (for dρ) subset of X.

2



2.1 Reproducing kernel Hilbert spaces and integral operators

We consider a continuous positive definite kernel k : X × X → R, that is a symmetric function

such that for all finite families of points in X, the matrix of pairwise kernel evaluations is positive

semi-definite. This thus defines a reproducing kernel Hilbert space (RKHS) F of functions from X

to R, which we also assume separable. This RKHS has two important characteristic properties (see,

e.g., Berlinet and Thomas-Agnan, 2004):

(a) Membership of kernel evaluations: for any x ∈ X, the function k(·, x) : y 7→ k(y, x) is an

element of F.

(b) Reproducing property: for all f ∈ F and x ∈ X, f(x) = 〈f, k(·, x)〉F . In other words,

function evaluations are equal to dot-products with a specific element of F.

Moreover, throughout the paper, we assume that the function x 7→ k(x, x) is integrable with respect

to dρ (which is weaker than supx∈X k(x, x) < ∞). This implies that F is a subset of L2(dρ); that

is, functions in the RKHS F are all square-integrable for dρ. In general, F is strictly included in

L2(dρ), but, in this paper, we will always assume that it is dense in L2(dρ), that is, any function

in L2(dρ) may be approximated arbitrarily closely by a function in F. Finally, for simplicity of

our notation (to make sure that the sequence of eigenvalues of integral operators is infinite) we will

always assume that L2(dρ) is infinite-dimensional, which excludes finite sets for X. Note that the

last two assumptions (denseness and infinite dimensionality) can easily be relaxed.

Integral operator. Reproducing kernel Hilbert spaces are often studied through a specific integral

operator which leads to an isometry with L2(dρ) (Smale and Cucker, 2001). Let Σ : L2(dρ) →
L2(dρ) be defined as

(Σf)(x) =

∫

X

f(y)k(x, y)dρ(y).

Since
∫

X
k(x, x)dρ(x) is finite, Σ is self-adjoint, positive semi-definite and trace-class (Simon,

1979). Given that Σf is a linear combination of kernel functions k(·, y), it belongs to F. More

precisely, since we have assumed that F is dense in L2(dρ), Σ
1/2, which is the unique positive self-

adjoint square root of Σ, is a bijection from L2(dρ) to our RKHS F; that is, for any f ∈ F, there

exists a unique g ∈ L2(dρ) such that f = Σ1/2g and ‖f‖H = ‖g‖L2(dρ) (Smale and Cucker, 2001).

This justifies the notation Σ−1/2f for f ∈ F and means that Σ1/2 is an isometry from L2(dρ) to F;

in other words, for any functions f and g in F, we have:

〈f, g〉F = 〈Σ−1/2f,Σ−1/2g〉L2(dρ).

This justifies the view of F as the subspace of functions f ∈ L2(dρ) such that ‖Σ−1/2f‖2L2(dρ)
.

This relationship is even more transparent when considering a spectral decomposition of Σ.

Mercer decomposition. From extensions of Mercer’s theorem (König, 1986), there exists an or-

thonormal basis (em)m>1 of L2(dρ) and a summable non-increasing sequence of strictly positive

eigenvalues (µm)m>1 such that Σem = µmem. Note that since we have assumed that F is dense in

L2(dρ), there are no zero eigenvalues.
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Since Σ1/2 is an isometry from L2(dρ) to F, (µ
1/2
m em)m>1 is an orthonormal basis of F. Moreover,

we can use the eigendecomposition to characterize elements of F as the functions in L2(dρ) such

that

‖Σ−1/2f‖2L2(dρ)
=

∑

m>1

µ−1
m 〈f, em〉2L2(dρ)

is finite. In other words, once projected in the orthonormal basis (em)m>1, elements f of F corre-

spond to a certain decay of its decomposition coefficients (〈f, em〉L2(dρ))m>1.

Finally, by decomposing the function k(·, y) : x 7→ k(x, y), we obtain the Mercer decomposition:

k(x, y) =
∑

m>1

µmem(x)em(y).

Properties of the spectrum. The sequence of eigenvalues (µm)m>1 is an important quantity that

appears in the analysis of kernel methods (Hastie and Tibshirani, 1990; Caponnetto and De Vito,

2007; Harchaoui et al., 2008; Bach, 2013; El Alaoui and Mahoney, 2014). It depends both on the

kernel k and the chosen distribution dρ.

Some modifications of the kernel k or the distribution dρ lead to simple behaviors for the spectrum.

For example, if we have a second distribution so that dρ′

dρ is upper-bounded by a constant c, then, as

a consequence of the Courant-Fischer minimax theorem (Horn and Johnson, 2012), the eigenvalues

for dρ′ are less than than c times that the ones for dρ. Similarly, if the kernel k′ is such that ck − k′

is a positive definite kernel, then we have a similar bound between eigenvalues.

In this paper, for any strictly positive λ, we will also consider the quantity m∗(λ) equal to the

number of eigenvalues µm that are greater than or equal to λ. Since we have assume that the

sequence m is non-increasing, we have m∗(λ) = max{m > 1, µm > λ}. This is a left-continuous

non-increasing function, that tends to +∞ when λ tends to zero (since we have assumed that there

are infinitely many strictly positive eigenvalues), and characterizes the sequence (µm)m>1, as we

can recover µm as µm = sup{λ > 0, m∗(λ) > m}.

Potential confusion with covariance operator. Note that the operator Σ is a self-adjoint operator

on L2(dρ). It should not be confused with the (non-centered) covariance operator C (Baker, 1973),

which is a self-adjoint operator on a different space, namely the RKHS F, defined by 〈g,Cf〉F =
∫

X
f(x)g(x)dρ(x). Given that Σ1/2 is an isometry from L2(dρ) to F, the operator C may also be

used to define an operator on L2(dρ), which happens to be exactly Σ. Thus, the two operators have

the same eigenvalues. Moreover, we have, for any y ∈ X:

(Cf)(y) = 〈k(·, y), Cf〉F =

∫

X

k(x, y)f(x)dρ(x) = (Σf)(y),

that is, C is equal to the restriction of Σ on F.

2.2 Kernels as expectations

On top of the generic assumptions made above, we assume that there is another measurable set V

equipped with a probability measure dτ . We consider a function ϕ : V × X → R which is square-

integrable (for the measure dτ⊗dρ), and assume that the kernel k may be written as, for all x, y ∈ X:
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k(x, y) =

∫

V

ϕ(v, x)ϕ(v, y)dτ(v) = 〈ϕ(·, x), ϕ(·, y)〉L2 (dτ). (1)

In other words, the kernel between x and y is simply the expectation of ϕ(v, x)ϕ(v, y) for v fol-

lowing the probability distribution dτ . In this paper, we see x 7→ ϕ(v, x) ∈ R as a one-dimensional

random feature and ϕ(v, x)ϕ(v, y) is the dot-product associated with this random feature. We could

consider extensions where ϕ(v, x) has values in a Hilbert space (and not simply R), but this is out-

side the scope of this paper.

Square-root of integral operator. Such additional structure allows to give an explicit character-

ization of the RKHS F in terms of the features ϕ. In terms of operators, the function ϕ leads to

a specific square-root of the integral operator Σ defined in Section 2.1 (which is not the positive

self-adjoint square-root Σ1/2).

We consider the bounded linear operator T : L2(dτ) → L2(dρ) defined as

(Tg)(x) =

∫

V

g(v)ϕ(v, x)dτ(v) = 〈g, ϕ(·, x)〉L2(dτ). (2)

Given T : L2(dτ) → L2(dρ), the adjoint operator T ∗ : L2(dρ) → L2(dτ) is the unique operator

such that 〈g, T ∗f〉L2(dτ) = 〈Tg, f〉L2(dρ) for all f, g. Given the definition of T in Eq. (2), we simply

inverse the role of V and X and have:

(T ∗f)(v) =
∫

X

f(x)ϕ(v, x)dρ(x).

This implies by Fubini’s theorem that

(TT ∗f)(y) =

∫

V

(
∫

X

f(x)ϕ(v, y)dρ(x)

)

ϕ(v, x)dτ(v)

=

∫

X

f(x)

(
∫

V

ϕ(v, y)ϕ(v, x)dτ(v)

)

dρ(x) =

∫

X

f(x)k(x, y)dρ(x) = (Σf)(y),

that is we have an expression of the integral operator Σ as Σ = TT ∗. Thus, the decomposition of the

kernel k as an expectation corresponds to a particular square root T of the integral operator—there

are many possible choices for such square roots, and thus many possible expansions like Eq. (1).

It turns out that the positive self-adjoint square root Σ1/2 will correspond to the equivalence with

quadrature rules (see Section 3.2).

Decomposition of functions in F. Since Σ = TT ∗ and Σ1/2 is an isometry between L2(dρ)
and F, we can naturally expressed any elements of F through the operator T and thus the features ϕ.

As a linear operator, T defines a bijection from the orthogonal of its null space (Ker T )⊥ ⊂ L2(dτ)
to its image Im(T ) ⊂ L2(dρ), and this allows to define uniquely T−1f ∈ (Ker T )⊥ for any

f ∈ Im(T ), and a dot-product on Im(T ) as

〈f, h〉Im(T ) = 〈T−1f, T−1g〉L2(dτ).
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As shown by Bach (2014, App. A), Im(T ) turns out to be equal to our RKHS2. Thus, the norm

‖f‖2
F

for f ∈ F is equal to the squared L2-norm of T−1f ∈ (Ker T )⊥, which is itself equal to the

minimum of ‖g‖2L2(dτ)
over all g such that Tg = f . The resulting g may also be defined through

pseudo-inverses.

In other words, a function f ∈ L2(dρ) is in F if and only if it may be written as

∀x ∈ X, f(x) =

∫

V

g(v)ϕ(v, x)dτ(v) = 〈g, ϕ(·, x)〉L2(dτ),

for a certain function g : V → R such that ‖g‖2L2(dτ)
is finite, with a norm ‖f‖2

F
equal to the

minimum (which is always attained) of ‖g‖2L2(dτ)
, over all possible decompositions of f .

Singular value decomposition. The operator T is an Hilbert-Schmidt operator, to which the sin-

gular value decopomposition can be applied (Kato, 1995). That is, there exists an orthonormal basis

(fm)m>1 of (Ker T )⊥ ⊂ L2(dτ), together with the orthonormal basis (em)m>1 of L2(dρ) which

we have from the eigenvalue decomposition of Σ = TT ∗, such that Tfm = µ
1/2
m em. Moreover, we

have:

ϕ(v, x) =
∑

m>1

µ1/2m em(x)fm(v), (3)

with a convergence in L2(dτ ⊗ dρ). This extends the Mercer decomposition of the kernel k(x, y).

Integral operator as an expectation. Given the expansion of the kernel k in Eq. (1), we may

express the integral operator Σ as follows, explicitly as an expectation:

Σf =

∫

X

f(y)k(·, y)dρ(y) =
∫

X

∫

V

f(y)ϕ(v, ·)ϕ(v, y)dρ(y)dτ(v)

=

∫

V

ϕ(v, ·)〈ϕ(v, ·), f〉L2 (dρ)dτ(v) =

(
∫

V

ϕ(v, ·) ⊗L2(dρ) ϕ(v, ·)dτ(v)
)

f, (4)

where a ⊗L2(dρ) b is the operator L2(dρ) → L2(dρ) so that (a ⊗L2(dρ) b)f = 〈b, f〉L2(dρ)a. This

will be useful to define empirical versions, where the integral over dτ will be replaced by a finite

average.

2.3 Examples

In this section, we provide examples of kernels and usual decompositions. We first start by decom-

positions that always exist, then focus on specific kernels based on Fourier components.

Mercer decompositions. The Mercer decomposition provides an expansion for all kernels, as

follows:

k(x, y) =
∑

m>1

µm
tr Σ

[

(

tr Σ)1/2em(x)
]

·
[

(

tr Σ)1/2em(x)
]

,

2. The proof goes as follows: (a) for any y ∈ X, k(·, y) can be expressed as
∫
V
ϕ(v, y)ϕ(v, ·)dτ (v) = Tϕ(·, y) and

thus belongs to Im(T ); (b) for any f ∈ Im(T ), and y ∈ X, we have 〈f, k(·, y)〉Im(T ) = 〈T−1f, ϕ(·, y)〉L2(dτ) =
(TT−1f)(y) = f(y), that is, the reproducing property is satisfied. These two properties are characteristic of F.
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which can be transformed in to an expectation with V = N
∗. In Section 3.2, we provide another

generic decomposition with V = X. Note that this decomposition is typically impossible to compute

(except for special cases below, i.e., special pairs of kernels k and distributions dρ).

Periodic kernels on [0, 1]. We consider X = [0, 1] and translation-invariant kernels k(x, y) of

the form k(x, y) = t(x − y), where t is a square-integrable 1-periodic function. These kernels are

positive definite if and only if the Fourier series of t is non-negative (Wahba, 1990). An orthonormal

basis of L2([0, 1]) is composed of the constant function c0 : x 7→ 1 and the functions cm : x 7→√
2 cos 2πmx and sm : x 7→

√
2 sin 2πmx. A kernel may thus be expressed as

k(x, y) = ν0c0(x) +
∑

m>0

νm
[

cm(x)cm(y) + sm(x)sm(y)
]

= ν0 + 2
∑

m>0

νm cos 2πm(x− y).

This can be put trivially as an expectation with V = Z and leads to the usual Fourier features

(Rahimi and Recht, 2007). This is also exactly a Mercer decomposition for k and the uniform

distribution on [0, 1], with eigenvalues ν0 and νm, m > 0 (each of these with multiplicity 2). The

associated RKHS norm for a function f is then equal to

‖f‖2F = ν−1
0

(

∫ 1

0
f(x)dx

)2
+2

∑

m>0

ν−1
m

[

(

∫ 1

0
f(x) cos 2πmxdx

)2
+
(

∫ 1

0
f(x) sin 2πmxdx

)2
]

.

A particularly interesting example is obtained through derivatives of f . If f is differentiable and

has a derivative f ′ ∈ L2([0, 1]), then, on the Fourier series coefficients of f , taking the derivative

corresponds to multiplying the two m-th coefficients by 2πm and swapping them. Sobolev spaces

for periodic functions on [0, 1] (i.e., such that f(0) = f(1)) are defined through integrability of

derivatives (Adams and Fournier, 2003). In the Hilbert space set-up, a function f belongs to the

Sobolev space of order s if one can define a s-th order square-integrable derivative in L2 (for the

Lebesgue measure, which happens to be equal to dρ), that is, f (s) ∈ L2([0, 1]). The Sobolev squared

norm is then defined as any positive linear combination of the quadratic forms
∫ 1
0 f

(t)(x)2dx, t ∈
{0, . . . , s}, with non-zero coefficients for t = 0 and t = s (all of these norms are then equivalent).

If only using t = 0 and t = s with non-zero coefficients, we need ν−1
0 = 1 and ν−1

m = 1 +m2s.

An equivalent (i.e, with upper and lower bounded ratios) sequence is obtained by replacing νm =
(1 +m2s)−1 by νm = m−2s, leading to a closed-form formula:

k(x, y) = 1 +
(−1)s−1(2π)2s

(2s)!
B2s({x− y}),

where {x−y} denotes the fractional part of x−y, andB2s is the 2s-th Bernoulli polynomial (Wahba,

1990). The RKHS F is then the Sobolev space of order s on [0, 1], with a norm equivalent to any of

the family of Sobolev norms; it will be used as a running example throughout this paper.

Extensions to [0, 1]d. In order to extend to d > 1, we may consider several extensions as described

by Oates and Girolami (2015), and compute the resulting eigenvalues of the integral operators. For

simplicity, we consider the Sobolev space on [0, 1], with ν0 = 1 and ν−1
m = m2s form > 0. The first

possibility to extend to [0, 1]d is to take a kernel which is simply the pointwise product of individual

kernels on [0, 1]. That is, if k(x, y) is the kernel on [0, 1], define K(X,Y ) =
∏d

j=1 k(xj , yj)

between X and Y in [0, 1]d. As shown in Appendix A, this leads to eigenvalue decays bounded by
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(logm)2s(d−1)m−2s, and thus up to logarithmic terms at the same speed m−2s as d = 1. While

this sounds attractive in terms of generalization performance, it corresponds to a space a function

which is not a Sobolev space in d dimensions. That is the associated squared norm on f would be

equivalent to a linear combination of squared L2-norm of partial derivatives

∫

[0,1]d

( ∂t1+···+tdf

∂xt11 · · · ∂xtdd

)2
dx

for all t1, . . . , td in {0, . . . , s}. This corresponds to functions which have square-integrable partial

derivatives with all individual orders less than s. All values of s > 1 are allowed and lead to an

RKHS.

This is thus to be contrasted with the usual multi-dimensional Sobolev space which is composed

of functions which have square-integrable partial derivatives with all orders (t1, . . . , td) with sum

t1 + · · · + td less than s. Only s > d/2 is then allowed to get an RKHS. The Sobolev norm is then

of the form
∑

t1+···+td6s

∫

[0,1]d

( ∂t1+···+tdf

∂xt11 · · · ∂xtdd

)2
dx.

In the expansion on the d-th order tensor product of the Fourier basis, the norm above is equivalent

to putting a weight on the element (m1, . . . ,md) asymptotically equivalent to
(
∑d

j=1mj

)2s
, which

thus represent the inverse of the eigenvalues of the corresponding kernel for the uniform distribution

dρ (this is simply an explicit Mercer decomposition). Thus, the number of eigenvalues which are

greater than λ grows as the number of (m1, . . . ,md) such that their sum is less than λ−1/(2s), which

itself is less than a constant times λ−d/(2s) (see a proof in Appendix A). This leads to an eigenvalue

decay of m−2s/d, which is much worse because of the term in 1/d in the exponent.

Translation invariant kernels on R
d. We consider X = R

d and translation-invariant kernels

k(x, y) of the form k(x, y) = t(x − y), where t is an integrable function from R
d to R. It is

known that these kernels are positive definite if and only if the Fourier transform of t is always a

non-negative real number. More precisely, if t̂(ω) =
∫

Rd t(x)e
−iω⊤xdx ∈ R+, then

k(x, y) =
1

(2π)d

∫

Rd

t̂(ω)eiω
⊤(x−y)dω =

1

(2π)d

∫

Rd

t̂(ω)
[

cosω⊤x cosω⊤y+sinω⊤x sinω⊤y
]

dω.

Following Rahimi and Recht (2007), by sampling ω from a density proportional to t̂(ω) ∈ R+ and

b uniformly in [0, 1] (and independently of ω), then by defining V = R
d × [0, 1] and ϕ(ω, b, x) =√

2 cos(ω⊤x+ 2πb), we obtain the kernel k.

For these kernels, the decay of eigenvalues has been well-studied by Widom (1963), who relates

the decay of eigenvalues to the tails of the distribution dρ and the decay of the Fourier transform

of t. For example, for the Gaussian kernel where k(x, y) = exp(−α‖x − y‖22), on sub-Gaussian

distributions, the decay of eigenvalues is geometric, and for kernels leading to Sobolev spaces of

order s, such as the Matern kernel (Furrer and Nychka, 2007), the decay is of the form m−2s/d. See

also examples by Birman and Solomyak (1977); Harchaoui et al. (2008).

Finally, note that in terms of computation, there are extensions to avoid linear complexity in d (Le et al.,

2013).
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Kernels on hyperspheres. If X ⊂ R
d+1 is the d-dimensional hypersphere {x ∈ R

d+1, ‖x‖22 =
1}, then specific kernels may be used, of the form k(x, y) = t(x⊤y), where t has to have a posi-

tive Legendre expansion (Smola et al., 2001). Alternatively, kernels based on neural networks with

random weights are directly in the form of random features (Cho and Saul, 2009; Bach, 2014):

for example, the kernel k(x, y) = E(v⊤x)s+(v
⊤x)s+ for v uniformly distributed in the hyper-

sphere corresponds to sampling weights in a one-hidden layer neural network with rectified linear

units (Cho and Saul, 2009). It turns out that these kernels have a known decay for their spectrum.

As shown by Smola et al. (2001); Bach (2014), the equivalent of Fourier series (which corresponds

to d = 1) is then the basis of spherical harmonics, which is organized by integer frequencies

k > 1; instead of having 2 basis vectors (sine and cosine) per frequency, there are O(kd−1) of

them. As shown by Bach (2014, page 44), we have an explicit expansion of k(x, y) in terms of

spherical harmonics, leading to a sequence of eigenvalues equal to k−d−2s−1 on the entire subspace

associated with frequency k. Thus, by taking multiplicity into account, after
∑k

j=1 j
d−1 ≈ kd

(up to constants) eigenvalues, we have an eigenvalue of k−d−2s−1; this leads to an eigenvalue

decay (where all eigenvalues are ordered in decreasing order and we consider the m-th one) as

(m1/d)−d−2s−1 = m−1−1/d−2s/d.

2.4 Approximation from randomly sampled features

Given the formulation of k as an expectation in Eq. (1), it is natural to consider sampling n elements

v1, . . . , vn ∈ V from the distribution dτ and define the kernel approximation

k̂(x, y) =
1

n

n
∑

i=1

ϕ(vi, x)ϕ(vi, y), (5)

which defines a finite-dimensional RKHS F̂.

From the strong law of large numbers—which can be applied because we have the finite expectation

E|ϕ(v, x)ϕ(v, y)| 6
(

E|ϕ(v, x)|2E|ϕ(v, y)|2
)1/2

, when n tends to infinity, k̂(x, y) tends to k(x, y)
almost surely, and thus we get as tight as desired approximations of the kernel k, for a given pair

(x, y) ∈ X×X. Rahimi and Recht (2007) show that for translation-invariant kernels on a Euclidean

space, then the convergence is uniform over a compact subset of X, with the traditional rate of

convergence of

√

logn
n .

In this paper, we rather consider approximations of functions in F by functions in F̂, the RKHS

associated with k̂. A key difficulty is that in general F̂ is not even included in F, and therefore,

we cannot use the norm in F to characterize approximations. In this paper, we choose the L2-norm

associated with the probability measure dρ on X to characterize the approximation. Given f ∈ F

with norm ‖f‖F less than one, we look for a function f̂ ∈ F̂ of the smallest possible norm and so

that ‖f − f̂‖L2(dρ) is as small as possible.

Note that the measure dτ is associated to the kernel k and the random features ϕ, while the mea-

sure dρ is associated to the way we want to measure errors (and leads to a specific defintion of the

integral operator Σ).
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Computation of error. Given the definition of the Hilbert space F in terms of ϕ in Section 2.2,

given g ∈ L2(dτ) with ‖g‖L2(dτ) 6 1 and f(x) =
∫

V
g(v)ϕ(v, x)dτ(v), we aim at finding an

element of F̂ close to f . We can also represent F̂ through a similar decomposition, now with a finite

number of features, i.e., through α ∈ R
n such that f̂ =

∑n
i=1 αiϕ(vi, ·) with norm3 ‖f̂‖2

F̂
6 n‖α‖22

as small as possible and so that the following approximation error is also small:

‖f̂ − f‖L2(dρ) =

∥

∥

∥

∥

n
∑

i=1

αiϕ(vi, ·)−
∫

V

g(v)ϕ(v, ·)dτ(v)
∥

∥

∥

∥

L2(dρ)

. (6)

Note that with αi =
1
ng(vi) and vi sampled from dτ (independently), then, we have E(‖α‖22) =

∑n
i=1 Eα

2
i = 1

nEg(v)
2 6

1
n and an expected error E(‖f − f̂‖2L2(dρ)

) = 1
nE‖g(v)ϕ(v, ·)‖2L2 (dρ)

6

1
n supv∈V ‖ϕ(v, ·)‖2L2(dρ)

; our goal is to obtain an error rate with a better scaling in n, by (a) choos-

ing a better distribution than dτ for the points v1, . . . , vn and (b) by finding the best possible weights

α ∈ R
n (that should of course depend on the function g).

Goals. We thus aim at sampling n points v1, . . . , vn ∈ V from a distribution with density q with

respect to dτ . Then the kernel approximation using importance weights is equal to

k̂(x, y) =
1

n

n
∑

i=1

1

q(vi)
ϕ(vi, x)ϕ(vi, y)

(so that the law of large numbers leads to an approximation converging to k), and we thus aim at

minimizing

∥

∥

∥

∑n
i=1

βi

q(vi)1/2
ϕ(vi, ·)−

∫

V
g(v)ϕ(v, ·)dτ(v)

∥

∥

∥

L2(dρ)
, with n‖β‖22 (which represents the

norm of the approximation in F̂ because of our importance weights are taken into account) as small

as possible.

3. Quadrature in RKHSs

Given a square-integrable (with respect to dρ) function g : X → R, the quadrature problem aims at

approximating, for all h ∈ F, integrals

∫

X

h(x)g(x)dρ(x)

by linear combinations
n
∑

i=1

αih(xi)

of evaluations h(x1), . . . , h(xn) of the function h at well-chosen points x1, . . . , xn ∈ X. Of course,

coefficients α ∈ R
n are allowed to depend on g (they will in linear fashion in the next section), but

not on h, as the so-called quadrature rule has to be applied to all functions in F.

3. Note the factor n because our finite-dimensional kernel in Eq. (5) is an average of kernels and not a sum.
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3.1 Approximation of the mean element

Following Smola et al. (2007), the error may be expressed using the reproducing property as:

n
∑

i=1

αih(xi)−
∫

X

h(x)g(x)dρ(x) =

〈

h,

n
∑

i=1

αik(·, xi)−
∫

X

k(·, x)g(x)dρ(x)
〉

F

,

and by Cauchy-Schwarz inequality its supremum over ‖h‖F 6 1 is equal to

∥

∥

∥

∥

n
∑

i=1

αik(·, xi)−
∫

X

k(·, x)g(x)dρ(x)
∥

∥

∥

∥

F

. (7)

The goal of quadrature rules formulated in a RKHS is thus to find points x1, . . . , xn ∈ X and

weights α ∈ R
n so that the quantity in Eq. (7) is as small as possible (Smola et al., 2007). For

g = 1, the function
∫

X
k(·, x)dρ(x) is usually referred to as the mean element of the distribution dρ.

The standard Monte-Carlo solution is to consider x1, . . . , xn sampled i.i.d. from dρ and the weights

αi = g(xi)/n, which leads to a decrease of the error in 1/
√
n, with E‖α‖22 6

1
n and an expected

squared error which is equal to 1
nE‖g(v)k(:, x)‖2F 6

1
n‖g‖2L2(dρ)

supx∈X k(x, x) (Smola et al.,

2007). Note that when g = 1, Eq. (7) corresponds to a particular metric between the distribution dρ
and its corresponding empirical distribution (Sriperumbudur et al., 2010).

In this paper, we explore sampling points xi from a probability distribution on X with density q with

respect to dρ. Note that when g is a constant function, it is sometimes required that the coefficients α
are non-negative and sum to a fixed constant (so that constant functions are exactly integrated). We

will not pursue this here as our theoretical results do not accommodate such constraints (see, e.g.,

Chen et al., 2010; Bach et al., 2012, and references therein).

Tolerance to noisy function values. In practice, independent (but not necessarily identically dis-

tributed) noise εi may be present with variance σ2(xi). Then, the worst (with respect to ‖h‖F 6 1)

expected (with respect to the noise) squared error is

inf
‖h‖F61

E

∣

∣

∣

∣

n
∑

i=1

αi(h(xi) + εi)−
∫

X

h(x)g(x)dρ(x)

∣

∣

∣

∣

2

=

∥

∥

∥

∥

n
∑

i=1

αik(·, xi)−
∫

X

k(·, x)g(x)dρ(x)
∥

∥

∥

∥

2

F

+
n
∑

i=1

α2
i σ

2(xi),

and thus in order to be robust to noise, having a small weighted ℓ2-norm for the coefficients α ∈ R
n

is important.

3.2 Reformulation as random features

For any x ∈ X, the function k(·, x) is in F, and since we have assumed that Σ1/2 is an isometry

from L2(dρ) to F, there exists a unique element, which we denote ψ(·, x), of L2(dρ) such that

Σ1/2ψ(·, x) = k(·, x). Given the Mercer decomposition k(·, x) =
∑

m>1 µmem(x)em, we have
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the expansion ψ(·, x) =
∑

m>1 µ
1/2
m em(x)em (with convergence in the L2-norm for the measure

dρ ⊗ dρ; note that we do not assume that µ
1/2
m is summable), and thus we may consider ψ as a

symmetric function. Note that ψ may not be easy to compute in many practical cases (except for

some periodic kernels on [0, 1]).

We thus have for (x, y) ∈ X× X:

k(x, y) = 〈k(·, x), k(·, y)〉F = 〈Σ1/2ψ(·, x),Σ1/2ψ(·, y)〉F = 〈ψ(·, x), ψ(·, y)〉L2 (dρ)

because of the isometry property of Σ1/2,

=

∫

X

ψ(v, x)ψ(v, y)dρ(v). (8)

That is, the kernel k may always be written as an expectation. Moreover, we have the quadrature

error in Eq. (7) equal to (again using the isometry Σ1/2 from L2(dρ) to F):

∥

∥

∥

∥

n
∑

i=1

αik(·, xi)−
∫

X

k(·, x)g(x)dρ(x)
∥

∥

∥

∥

F

=

∥

∥

∥

∥

n
∑

i=1

αiΣ
1/2ψ(xi, ·)−

∫

X

Σ1/2ψ(x, ·)g(x)dρ(x)
∥

∥

∥

∥

F

=

∥

∥

∥

∥

n
∑

i=1

αiψ(xi, ·) −
∫

X

ψ(x, ·)g(x)dρ(x)
∥

∥

∥

∥

L2(dρ)

,

which is exactly an instance of the approximation result in Eq. (6) with V = X and ϕ = ψ, that is

the random feature is indexed by the same set X as the kernel. Thus, the quadrature problem, that

is finding points xi and weights (αi) to get the best possible error over all functions of the unit ball

of F, is a subcase of the random feature problem for a specific expansion. Note that this random

decomposition in terms of ψ is always possible (although not in closed form in general).

Interpretation through square-roots of intergral operators. As shown in Section 2.2, random

feature expansions correspond to square-roots of the integral operator Σ : L2(dρ) → L2(dρ) as

Σ = TT ∗. Among the many possible square roots, the quadrature case corresponds exactly to

the positive self-adjoint square root T = Σ1/2. In this situation, the basis (fm)m>1 of the singu-

lar value decomposition of T = Σ1/2 is equal to (em)m>1, recovering the expansion ψ(x, y) =
∑

m>1 µ
1/2
m em(x)em(y) which we have seen above.

Translation-invariant kernels on [0, 1]d or X = R
d. In this important situation, we have two

different expansions: the one based on Fourier features, where the random variable indexing the

one-dimensional feature is a frequency, while for the one based on the square root ψ, the random

variable is a spatial variable in X. As we show in Section 4, our results are independent of the cho-

sen expansions and thus apply to both. However, (a) when the goal is to do quadrature, we need to

use ψ, and (b) in general, the decomposition based on Fourier features can be easily computed once

samples are obtained, while for most kernels, ψ(x, y) does not have any closed-form simple expres-

sion. In Section 6, we provide a simple example with X = [0, 1] where the two decompositions are

considered.

Goals. In order to be able to make the parallel with random feature approximations, we consider

importance-weighted coefficients βi = αiq(xi)
1/2, and we thus aim at minimizing the approxima-
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tion error
∥

∥

∥

n
∑

i=1

βiq(xi)
−1/2k(·, xi)−

∫

X

k(·, x)g(x)dρ(x)
∥

∥

∥

F

.

We consider potential independent noise with variance σ2(xi) 6 τ2q(xi) for all xi, so that the

tolerance to noise is characterized by the ℓ2-norm ‖β‖2.

3.3 Relationship with column sampling

The problem of quadrature is related to the problem of column sampling. Given n observations

x1, . . . , xn ∈ X, the goal of column-sampling methods is to approximate the n × n matrix of

pairwise kernel evalulations, the so-called kernel matrix, from a subset of its columns. It has ap-

peared under many names: Nyström method (Williams and Seeger, 2001), sparse greedy approxi-

mations (Smola and Schölkopf, 2000), incomplete Cholesky decomposition (Fine and Scheinberg,

2001), Gram-Schmidt orthonormalization (Shawe-Taylor and Cristianini, 2004) or CUR matrix de-

compositions (Mahoney and Drineas, 2009).

While column sampling has typically been analyzed for a fixed kernel matrix, it has a natural ex-

tension which is related to quadrature problems: selecting n points x1, . . . , xn from X such that the

projection of any element of the RKHS F onto the subspace spanned by k(·, xi), i = 1, . . . , n is as

small as possible. Natural functions from F are k(·, x), x ∈ X, and thus the goal is to minimize, for

such x ∈ X,

inf
α∈Rn

∥

∥

∥

n
∑

i=1

αik(·, xi)− k(·, x)
∥

∥

∥

2

F

In the usual sampling approach, several points are considered for testing the projection error, and it

is thus natural to consider the criterion averaged through the measure dρ, that is:

∫

X

inf
α∈Rn

∥

∥

∥

n
∑

i=1

αik(·, xi)− k(·, x)
∥

∥

∥

2

F

dρ(x).

In fact, when dρ is supported on a finite set, this formulation is equivalent to minimizing the nuclear

norm between the kernel matrix and its low-rank approximation. There are thus several differences

and similarities between recent work on column sampling (Bach, 2013; El Alaoui and Mahoney,

2014) and the present paper on quadrature rules and random features:

– Different error measures: The column sampling approach corresponds to a function g in

Eq. (7) which is a Dirac function at the point x, and is thus not in L2(dρ). Thus the two

frameworks are not equivalent.

– Approximation vs. prediction: The works by Bach (2013); El Alaoui and Mahoney (2014)

aim at understanding when column sampling leads to no loss in predictive performance within

a supervised learning framework, while the present paper looks at approximation properties,

mostly regardless of any supervised learning problem, except in Section 4.5 for random features

(but not for quadrature).

– Lower bounds: In Section 4.3, we provide explicit lower bounds of approximations, which are

not available for column sampling.
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– Similar sampling issues: In the two frameworks, points x1, . . . , xn ∈ X are sampled i.i.d. with

a certain distribution q, and the best choice depends on the appropriate notion of leverage

scores (Mahoney, 2011), while the standard uniform distribution leads to an inferior approxima-

tion result. Moreover, the proof techniques are similar and based on concentration inequalities

for operators, here in Hilbert spaces rather in finite dimensions.

3.4 Related work on quadrature

Many methods have been designed for the computation of integrals of a function given evaluations

at certain well-chosen points, in most cases when g is constant equal to one. We review some of

these below.

Uni-dimensional integrals. When the underlying set X is a compact interval of the real line,

several methods exists, such as the trapezoidal or Simpson’s rules, which are based on interpolation

between the sample points, and for which the error decays as O(1/n2) and O(1/n4) for functions

with uniformly bounded second or fourth derivatives (Cruz-Uribe and Neugebauer, 2002).

Gaussian quadrature is another class of methods for one-dimensional integrals: it is based on a basis

of orthogonal polynomials for L2(dρ) where dρ is a probability measure supported in an interval,

and their zeros (Hildebrand, 1987, Chap. 8). This leads to quadrature rules which are exact for

polynomials of degree 2n− 1 but error bounds for non-polynomials rely on high-order derivatives,

although the empirical performance on functions of a Sobolev space in our experiments is as good

as optimal quadrature schemes (see Section 6); depending on the orthogonal polynomials, we get

various quadrature rules, such as Gauss-Legendre quadrature for the Lebesgue measure on [0, 1].

Quasi Monte-carlo methods employ a sequence of points with low discrepancy with uniform weights

(Morokoff and Caflisch, 1994), leading to approximation errors of O(1/n) for univariate functions

with bounded variation, but typically with no adaptation to smoother functions.

Higher-dimensional integrals. All of the methods above may be generalized for products of

intervals [0, 1]d, typically with d small. For larger problems, Bayes-Hermite quadrature (O’Hagan,

1991) is essentially equivalent to the quadrature rules we study in this paper.

Some of the quadrature rules are constrained to have positive weights with unit sum (so that the

positivity properties of integrals are preserved and constants are exactly inegrated). The quadrature

rules we present do not satisfy these constraints. If these constraints are required, kernel herd-

ing (Chen et al., 2010; Bach et al., 2012) provides a novel way to select a sequence of points based

on the conditional gradient algorithm, but with currently no convergence guarantees improving over

O(1/
√
n) for infinite-dimensional spaces.

Theoretical results. The best possible error for a quadrature rule with n points has been well-

studied in several settings; see Novak (1988) for a comprehensive review. For example, for X =
[0, 1] and the space of Sobolev functions, which are RKHSs with eigenvalues of their integral op-

erator decreasing as m−2s, Novak (1988, Prop. 2 and 3, page 38) shows that the best possible

quadrature rule for the uniform distribution and g = 1 leads to an error rate of n−s, as well as for

any squared-integrable function g. The proof of these results (both upper and lower bounds) relies
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on detailed properties of Sobolev spaces. In this paper, we recover these results using only the de-

cay of eigenvalues of the associated integral operator Σ, thus allowing straightforward extensions to

many situations, like Sobolev spaces on manifolds such as hyperspheres (Hesse, 2006), where we

also recover existing results (up to logarithmic terms).

Moreover, Novak (1988, page 17) shows that adaptive quadrature rules where points are selected

sequentially with the knowledge of the function values at previous points cannot improve the worst-

case guarantees. Our results do not recover this lower bound result for adaptivity.

Finally, Langberg and Schulman (2010) consider multiplicative errors in computing integrals and

mainly focuses on different function spaces, such as ones used in clustering functionals. Although

sampling quadrature points from a well-chosen density is common in the two approaches, the anal-

ysis tools are different. It would be interesting to see if some of these tools can be transferred to our

RKHS setting.

From quadrature to function approximation and optimization. The problem of quadrature,

uniformly over all functions g ∈ L2(dρ) that define the integral, is in fact equivalent to the full

approximation of a function h given values at n points, where the approximation error is character-

ized in L2-norm. Indeed, given the observations h(xi), i = 1, . . . , n, we build
∑n

i=1 αih(xi) as an

approximation of
∫

X
g(x)h(x)dρ(x). It turns out that the coefficients αi are linear in g, that is, there

exists ai ∈ L2(dρ) such that αi = 〈ai, g〉L2(dρ). This implies that
∑n

i=1 h(xi)〈ai, g〉L2(dρ) is an

approximation of 〈h, g〉L2(dρ). Thus, the worst case error with respect to g in the unit ball of L2(dρ)
is
∥

∥

∑n
i=1 h(xi)ai − h

∥

∥

L2(dρ)
, that is, we have an approximation result of h through observations

of its values at certain points.

Novak (1988) considers the approximation problem in L∞-norm and shows that for Sobolev spaces,

going from L2- to L∞-norms incurs a loss of performance of
√
n. We recover partially these results

in Section 5 from a more general perspective. When optimizing the points at which the function

is evaluated (adaptively or not), the approximation problem is often referred to as experimental

design (Cochran and Cox, 1957; Chaloner and Verdinelli, 1995).

Finally, a third problem is of interest (and outside of the scope of this paper), namely the problem

of finding the minimum of a function given (potentially noisy) function evaluations. For noiseless

problems, Novak (1988, page 26) shows that the approximation and optimization problems have

the same worst-case guarantees (with no influence of adaptivity); this optimization problem has

also been studied in the bandit setting (Srinivas et al., 2012) and in the framework of “Bayesian

optimization” (see, e.g. Bull, 2011).

4. Theoretical Analysis

In this section, we provide approximation bounds for the random feature problem outlined in Sec-

tion 2.4 (and thus the quadrature problem in Section 3). In Section 4.1, we provide generic upper

bounds, which depend on the eigenvalues of the integral operator Σ and present matching lower

bounds (up to logarithmic terms) in Section 4.3. The upper-bound depends on specific distribu-

tions of samples that we discuss in Section 4.2. We then consider consequences of these results on

quadrature (Section 4.4) and random feature expansions (Section 4.5).
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4.1 Upper bound

The following proposition (see proof in Appendix B.1) determines the minimal number of samples

required for a given approximation accuracy:

Proposition 1 (Approximation of the unit ball of F) For λ > 0 and a distribution with positive

density q with respect to dτ , we consider

dmax(q, λ) = sup
v∈V

1

q(v)
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ). (9)

Let v1, . . . , vn be sampled i.i.d. from the density q, then for any δ ∈ (0, 1), if

n > 5dmax(q, λ) log
16dmax(q, λ)

δ
,

with probability greater than 1− δ, we have 1
n

∑n
i=1 q(vi)

−1‖ϕ(vi, ·)‖2L2(dρ)
6

2 tr Σ
δ and

sup
‖f‖F61

inf
‖β‖226 4

n

∥

∥

∥

∥

f −
n
∑

i=1

βiq(vi)
−1/2ϕ(vi, ·)

∥

∥

∥

∥

2

L2(dρ)

6 4λ.

We can interpret the proposition above as follows: given any squared error 4λ > 0 and a distribution

with density q, the number n of samples from q needed so that the unit ball of F is approximated by

the ball of radius 2 of F̂ is, up to logarithmic terms, at most a constant times dmax(q, λ), defined in

Eq. (9). The result above is a statement for a fixed q and λ and this number of samples n depends

on these.

We could also invert the relationship between λ and n, that is, answer the following question: given

a fixed number n of samples, what is the approximation error λ? This requires inverting the function

λ 7→ dmax(q, λ). This will be done in Section 4.2 for a specific distribution q where the expression

simplifies, together with specific examples from Section 2.3.

Finally, note that we also have a bound on 1
n

∑n
i=1 q(vi)

−1‖ϕ(vi, ·)‖2L2(dρ)
, which shows that our

random functions are not too large on average (this constraint will be needed in the lower bound as

well in Section 4.3).

Sketch of proof. The proof technique relies on computing an explicit candidate β ∈ R
n obtained

from minimizing a regularized least-squares formulation

inf
β∈Rn

∥

∥

∥

n
∑

i=1

βiq(vi)
−1/2ϕ(vi, ·) − f

∥

∥

∥

2

L2(dρ)
+ nλ‖β‖22.

It turns out that the final bound on the squared error is exactly proportional to the regularization

parameter λ. As shown in Appendix B.1, this leads to an approximation f̂ which is a linear function

of f , as f̂ = (Σ̂ + λI)−1Σ̂f , where Σ̂ is a properly defined empirical integral operator and λ > 0
is the regularization parameter. Then, Bernstein concentration inequalities for operators (Minsker,

2011) can be used in a way similar to the work of Bach (2013); El Alaoui and Mahoney (2014) on

column sampling, to provide a bound on all desired quantities.
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Result in expectation. In Section 4.5, we will need a result in expectation. As shown at the end

of Appendix B.1, as soons as, λ 6 (tr Σ)/4 and n > 5dmax(λ) log
2(tr Σ)dmax(λ)

λ
, then

E

(

sup
‖f‖F61

inf
‖β‖226 4

n

∥

∥

∥

∥

f −
n
∑

i=1

βiq(vi)
−1/2ϕ(vi, ·)

∥

∥

∥

∥

2

L2(dρ)

)

6 8λ.

4.2 Optimized distribution

We may now consider a specific distribution that depends on the kernel and on λ, namely

q∗λ(v) =
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

∫

V
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)dτ(v)

=
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

tr Σ(Σ + λI)−1
, (10)

for which dmax(q
∗
λ, λ) = d(λ) = tr Σ(Σ + λI)−1. With this distribution, we thus need to have

n > 5d(λ) log 16d(λ)
δ with d(λ) = tr Σ(Σ + λI)−1 is the degrees of freedom, a traditional quantity

in the analysis of least-squares regression (Hastie and Tibshirani, 1990; Caponnetto and De Vito,

2007), which is always smaller than dmax(1, λ) and can be upper-bounded explicitly for many

examples, as we now explain. The computation of dmax(1, λ) in the operator setting (for which

we may use q = 1), a quantity often referred to as the maximal leverage score (Mahoney, 2011),

remains an open problem.

The quantity d(λ) only depends on the integral operator Σ, that is, for all possible choices of square

roots, i.e., all possible choices of feature expansions, the number of samples that our results guar-

antee is the same. This being said, some expansions may be more computationally practical than

others, and when using the distribution with q(v) = 1, the bounds will be different.

Expression in terms of singular value decomposition. Given the singular value decomposition

of ϕ in Eq. (3), we have, for any v ∈ V, ϕ(v, ·) =
∑

m>1 µ
1/2
m fm(v)em and thus

q∗λ(v) ∝ 〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ) =
∑

m>1

µm
µm + λ

fm(v)2,

which provides an explicit expression for the density q∗λ.

For a given squared error value λ, the optimized distribution q∗λ, while leading to the degrees of

freedom that will happen to be optimal in terms of approximation, has two main drawbacks:

– Dependence on λ: this implies that if we want a reduced error (i.e., a smaller λ), then the

samples obtained from a higher λ, may not be reused to provably obtain the desired bound; in

other words, the sampling is not anytime. For specific examples, e.g., quadrature with periodic

kernels on [0, 1] with the uniform distribution, then q = 1 happens to be optimal for all λ, and

thus, we may reuse samples for different values of the error.

– Hard to compute in practice: the optimal distribution depends on a leverage score 〈ϕ(v, ·), (Σ+
λI)−1ϕ(v, ·)〉L2(dρ), which may be hard to use for several reasons; first, it requires access to the

infinite-dimensional operator Σ, which may be difficult; moreover, even if it possible to invert

Σ + λI , the set V might be particularly large and impractical to sample from. At the end of

Section 4.1, we propose a simple algorithm based on sampling.
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Eigenvalues and degrees of freedom. In order to relate more directly to the eigenvalues of Σ, we

notice that we may lower bound the degrees of freedom by a constant times the number m∗(λ) of

eigenvalues greater than λ:

d(λ) = trΣ(Σ + λI)−1 =
∑

m>1

µm
µm + λ

>
∑

µm>λ

µm
µm + λ

>
1

2
max({m, µm > λ}) = m∗(λ),

as defined in Section 2.1.

Moreover, we have the upper-bound:

d(λ) =
∑

µm>λ

µm
µm + λ

+
∑

µm<λ

µm
µm + λ

6 max({m, µm > λ}) + 1

λ

∑

µm<λ

µm.

We now make the assumption that there exists a γ > 0 independent of j such that

∀j > 1,
∞
∑

m=j

µm 6 γjµj . (11)

This assumption essentially states that the eigenvalues decay sufficiently homogeneously and is

satisfied by µm ∝ m−2α with γ = (2α − 1)−1, µm ∝ rm with γ = (1 − r)−1 and similar bounds

also hold for all examples in Section 2.3. It allows us to relate the degrees of freedom directly to

eigenvalue decays.

Indeed, this implies that 1
λ

∑

µm<λ µm 6 γmax({m, µm > λ}) = m∗(λ) for all λ 6 µ1 (the

largest eigenvalue) and thus
1

2
m∗(λ) 6 d 6

[

1 + γ
]

m∗(λ).

We can now restate the approximation result of Prop. 1 from Section 4.1 with the optimized distri-

bution (see proof in Appendix B.2):

Proposition 2 (Approximation of the unit ball of F for optimized distribution) For λ > 0 and

the distribution with density q∗λ defined in Eq. (10) with respect to dτ , with degrees of freedom d(λ).

Let v1, . . . , vn be sampled i.i.d. from the density q, defining the kernel (and its associated RKHS F̂)

k̂(x, y) = 1
n

∑n
i=1

1
q(vi)

ϕ(vi, x)ϕ(vi, y). Then, for any δ ∈ (0, 1), with probability 1− δ, we have:

sup
‖f‖F61

inf
‖f̂‖

F̂
62

∥

∥f − f̂
∥

∥

2

L2(dρ)
6 4λ,

under any of the following conditions:

(a) if n > 5 d(λ) log
[

16d(λ)/δ
]

,

(b) if Eq. (11) is satisfied, and, by choosing m 6
n

5(1+γ) log 16n
5δ

, and λ = µm.

The statement (a) above, is a simple corollary of Prop. 1, and goes from level of error λ to minimum

number n of samples. The statement (b) goes in the other direction, that is, from the number of

samples n to the achieved approximation error. It depends on the eigenvalues µm of the integral
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operator taken at m = O(n/ log(n)). For example, for polynomial decays of eigenvalues of the

form µm = O(m−2s), we get (non squared) errors proportional to (log n)sn−s for n samples,

while for geometric decays, we get geometric errors as a function of the number n of samples.

Note however that for the statement (b) to hold, we need to sample the points v1, . . . , vn from

the distribution q∗µm
, that is, for different numbers of samples n, the distribution is unfortunately

different (except in special cases). It would be interesting to study the properties of independent

but not identically distributed samples v1, . . . , vn and the possibility of achieving the same rate

adaptively.

Corollary for Sobolev spaces. For the sake of concreteness, we consider the special case of X =
R
d and translation-invariant kernels. We assume that the distribution dρ is sub-Gaussian. Then for

Sobolev spaces of order s, the eigenvalue decay is proportional to m−2s/d. Thus, if we can sample

from the optimized distribution, after n random features, we obtain an approximation of the unit ball

of F with error n−s/d, independently of the chosen expansion, the spatial one used for quadrature

or the spectral one used in random Fourier features. For kernels in R
d, these distributions are not

readily computed in closed form and need to computed through a dedicated algorithm such as the

one we present below.

The same approximation results holds for translation-invariant kernels on [0, 1]d; but when dρ is the

uniform distribution, as shown in Section 4.4, the optimized distribution for the quadrature case is

still the uniform distribution, for all values of λ, and can thus be computed.

Algorithm to estimate the optimized distribution. We now consider a simple algorithm for

estimating the optimized distribution q∗λ. It is based on using a large number N of points v1, . . . , vN
from dτ , and replacing dτ by a potentially weighted empirical distribution dτ̂ associated with these

N points. Therefore, we may use any set of points and weights, which leads to a distribution close

to dτ . In full generality, only random samples from dτ are readily available (with weights 1/N ),

but for special cases, such as V = [0, 1] or V = N
∗, we may use deterministic representations. See

examples in Section 6.

We thus assume that we haveN pairs (vi, ηi) ∈ V×R+, i = 1, . . . , N , such that
∑n

i=1 ηi = 1. Since

dτ̂ has a finite support with at mostN elements, we may identify L2(dτ̂ ) and R
N (with its canonical

dot-product), and the operator T goes now from R
N to L2(dρ), with Tg =

∑N
i=1 η

1/2
i giϕ(vi, ·) ∈

L2(dρ), with Tδi = η
1/2
i ϕ(vi, ·) ∈ L2(dρ), for δi the i-th element of the canonical basis of RN .

Then, we have:

〈ϕ(vi, ·), (Σ + λI)−1ϕ(vi, ·)〉L2(dρ) = η−1
i 〈Tδi, (TT ∗ + λI)−1Tδi〉L2(dρ)

= η−1
i 〈Tδi, T (T ∗T + λI)−1δi〉L2(dρ)

= η−1
i

(

T ∗T (T ∗T + λI)−1
)

ii
.

This implies that the density of the optimized distribution with respect to the uniform measure on

{v1, . . . , vN} is proportional to
(

T ∗T (T ∗T + λI)−1
)

ii
. We can then sample any number n of

points from resampling from {v1, . . . , vN} from the density above. The computational complexity

is O(N3). A detailed analysis of the approximation properties of this algorithm is outside the scope

of this paper.
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We have (T ∗T )ij = η
1/2
i η

1/2
j

∫

X
ϕ(vi, x)ϕ(vj , x)dρ(x). In some cases, it can be computed in closed

form—such as for quadrature where this is equal to η
1/2
i η

1/2
j k(vi, vj). In some others, it requires

i.i.d. samples x1, . . . , xM from dρ, and the estimate: η
1/2
i η

1/2
j M−1

∑M
k=1 ϕ(vi, xk)ϕ(vj , xk).

4.3 Lower bound

In this section, we aim at providing lower-bounds on the number of samples required for a given

accuracy. We have the following result (see proof in Appendix B.3):

Proposition 3 (Lower approximation bound) For δ ∈ (0, 1), if we have a family ψ1, . . . , ψn ∈
L2(dρ) such that

1

n

n
∑

i=1

‖ψi‖2L2(dρ)
6 2 tr Σ/δ, and sup

‖f‖F61
inf

‖β‖226 4
n

∥

∥

∥

∥

f −
n
∑

i=1

βiψi

∥

∥

∥

∥

2

L2(dρ)

6 4λ,

then n >
max{m, µm > 144λ}

4 log 10 tr Σ
λδ

.

We can make the following observations:

– The proof technique not surprisingly borrows tools from minimax estimation over ellipsoids,

namely the Varshamov-Gilbert’s lemma.

– We obtain matching upper and lower bounds up to logarithmic terms, using only the decay

of eigenvalues (µm)m>1 of the integral operator Σ (of course, if sampling from the optimized

distribution q∗λ is possible). Indeed in that case, as shown in Prop. 2, we have shown that we

need at most 10 d(λ) log
[

2d(λ)
]

, where d(λ) is the degrees of freedom, which is upper and

lower bounded by a constant times m∗(λ) = max{m, µm > λ}.

– In order to obtain such a bound, we need to constrain both ‖β‖2 and the norms of the vectors ψi,

which correspond to bounded features for the random feature interpretation and tolerance to

noise for the quadrature interpretation. We choose our scaling to match the constraints we have

in Prop. 1, for which the parameter δ ends up entering the lower bound logarithmically.

4.4 Quadrature

We may specialize the results above to the quadrature case, namely give a formulation where the

features ϕ do not appear (or equivalently using ψ defined in Section 3.2). This is a special case

where V = X and ϕ = ψ. In terms of operators T in Section 2.2, this corresponds to T = Σ1/2.

Optimized distribution. Following Section 4.1, we have an expression for the optimized distri-

bution, both in terms of operators, as follows,

q∗λ(x) ∝ 〈ψ(x, ·), (Σ + λI)−1ψ(x, ·)〉L2(dρ) = 〈Σ−1/2k(x, ·), (Σ + λI)−1Σ−1/2k(x, ·)〉L2(dρ),

and in terms of eigenvalues and eigenvectors of k, that is,

q(x) ∝ 〈k(·, x),Σ−1/2(Σ + λI)−1Σ−1/2k(·, x)〉L2(dρ) =
∑

m>1

µm
µm + λ

em(x)2. (12)
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While this is uniform in some special cases (uniform distribution on [0, 1] and Sobolev kernels, as

shown below), this is typically hard to compute and sample from. An algorithm for approximating

it was presented at the end of Section 4.1.

A weakness of our result is that in general our optimized distribution q∗λ(x) depends on λ and thus

on the number of samples. In some cases with symmetries (i.e., uniform distribution on [0, 1] or

the hypersphere), q∗λ happens to be constant for all λ. Note also that we have observed empirically

that in some cases, q∗λ converges to a certain distribution when λ tends to zero (see an example in

Section 6).

Sobolev spaces. For Sobolev spaces with order s in [0, 1]d or Rd (for which we assume d < 2s),
the decay of eigenvalues is of the form m−2s/d and thus the error after n samples is n−s/d (up to

logarithmic terms), which recovers the upper and lower bounds of Novak (1988, pages 37 and 38)

(also up to logarithmic terms).

For the special case of Sobolev spaces on [0, 1]d with dρ the uniform distribution, the optimized

distribution in Eq. (12) is also the uniform distribution. Indeed, the eigenfunctions of the integral

operator Σ are d-th order tensor products of the uni-dimensional Fourier basis (the constant and

all pairs of sine/cosine at a given frequency), with the same eigenvalue for the 2d possibilities of

sines/cosines for a given multi-dimensional frequency (m1, . . . ,md). Therefore, when summing

all squared values of the eigenfunctions corresponding to (m1, . . . ,md), we end up with the sum
∑

a∈{0,1}d
∏d

i=1 cos
2ai(2πmixi) sin

2(1−ai)(2πmixi), which ends up being constant equal to one

(and thus independent of x) because cos2ai(2πmixi) + sin2ai(2πmixi) = 1.

Finally, we may consider Sobolev spaces on the hypersphere, with the kernels presented in Sec-

tion 2.3. As shown by Bach (2014, Appendix D.3), the kernel k(x, y) = E(v⊤y)s+(v
⊤y)s+ for v

uniform on the hypersphere, leads to a Sobolev space of order t = s + d+1
2 , while the decay of

eigenvalue of the integral operator was shown to be m−1−1/d−2s/d in Section 2.3. It is thus equal to

m−2t/d, and we recover the result from Hesse (2006).

Quadrature rule. We assume that points x1, . . . , xn are sampled from the distribution with den-

sity q with respect to dρ. The quadrature rule for a function h ∈ F is
∑n

i=1
βih(xi)

q(xi)1/2
. To compute β,

we need to minimize with respect to β the error:

∥

∥

∥

∥

n
∑

i=1

βi

q(xi)1/2
k(·, xi)−

∫

X

k(·, x)g(x)dρ(x)
∥

∥

∥

∥

2

F

+ nλ‖β‖22,

which is the regularized worst case squared error in the estimation of the integral of h over h ∈ F.

The best error is obtained for λ = 0, but our guarantees are valid for λ > 0, with an explicit control

over the norm ‖β‖22, which is important for robustness to noise.

Given the values of
∫

X
k(xi, x)g(x)dρ(x) = zi, for i = 1, . . . , n, which can be computed in closed

form for several triplet (k, g, dρ) (see, e.g., Smola et al., 2007; Oates and Girolami, 2015), then the

problem above is equivalent to minimizing with respect to β:

n
∑

i=1

n
∑

j=1

βiβj

q(xi)1/2q(xj)1/2
k(xi, xj)−

n
∑

i=1

βi

q(xi)1/2
zi + nλ‖β‖22,
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which leads to a n × n linear system with running time complexity O(n3). Note that when adding

points sequentially (in particular for kernels for which the distribution q∗λ is independent of λ, such

as Sobolev spaces on [0, 1]), one may update the solution so that after n steps, the overall complexity

is O(n3).

Approximation of functions in F. With the quadrature weights β estimated above and the quadra-

ture rule
∑n

i=1
βih(xi)

q(xi)1/2
for the estimation of

∫

X
g(x)f(x)dρ(x), we may derive an expression which

is explicitly linear in g. Following the proof of Prop. 1 in Appendix B.1, we have, when specialized

to the quadrature case:

Σ̂ =
1

n

n
∑

i=1

1

q(vi)
ψ(xi, ·)⊗L2(dρ) ψ(xi, ·) = Σ−1/2

(

1

n

n
∑

i=1

1

q(vi)
k(xi, ·)⊗L2(dρ) k(xi, ·)

)

Σ−1/2,

Moreover, we have βi = 1
nq(xi)1/2

〈k(·, xi),Σ−1/2(Σ̂ + λI)−1Σ1/2g〉L2(dρ) from Eq. (15) in Ap-

pendix B.1, and the quadrature rule becomes:

n
∑

i=1

βih(xi)

q(xi)1/2
=

n
∑

i=1

βi

q(xi)1/2
〈h,Σ−1k(·, xi)〉L2(dρ)

=

〈

h,
1

n

n
∑

i=1

Σ−1 1

q(xi)

[

k(xi, ·)⊗L2(dρ) k(xi, ·)
]

Σ−1/2(Σ̂ + λI)−1Σ1/2g

〉

L2(dρ)

=
〈

h,Σ−1/2Σ̂(Σ̂ + λI)−1Σ1/2g
〉

L2(dρ)
=

〈

g,Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h
〉

L2(dρ)
,

which can be put in the form 〈ĥ, g〉L2(dρ) with the approximation ĥ = Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h
of the function h ∈ F. Having a bound for all functions g such that ‖g‖L2(dρ) 6 1 is equivalent to

having a bound on ‖h − ĥ‖L2(dρ). In Section 5, we consider extensions, where we consider other

norms than the L2-norm for characterizing the approximation error ĥ − h. Moreover, we consider

cases where h belongs to a strict subspace of F (with improved results).

4.5 Learning with random features

We consider supervised learning with m i.i.d. samples from a distribution on inputs/outputs (x, y),
and a uniformly G-Lipschitz-continuous loss function ℓ(y, ·), which includes logistic regression and

the support vector machine. We consider the empirical risk L̂(f) = 1
m

∑m
i=1 ℓ(yi, f(xi)) and the

expected risk L(f) = Eℓ(y, f(x)), with x having the marginal distribution dρ that we consider in

earlier sections. We assume that Ek(x, x) = trΣ = R2. We have the usual generalization bound

for the minimizer f̂ of L̂(f) with respect to ‖f‖F 6 F , based on Rademacher complexity (see, e.g.,

Shalev-Shwartz and Ben-David, 2014):

E
[

L(f̂)
]

6 inf
‖f‖F6F

L(f) + 2E
[

sup
‖f‖F6F

|L(f)− L̂(f)|
]

6 inf
‖f‖F6F

L(f) +
4FGR√

m
. (13)

We now consider learning by sampling n features from the optimized distribution from Section 4.2,

leading to a function parameterized by β ∈ R
n, that is ĝβ =

∑n
i=1 βiq(vi)

−1/2ϕ(vi, ·) ∈ L2(dρ).
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Applying results from Section 4.1, we assume that λ 6 R2/4 and n > 5d(λ) log 2(tr Σ)d(λ)
λ , where

d(λ) is equal to the degrees of freedom associated with the kernel k and distribution dρ. Thus, the

expected squared error for approximating the unit-ball of F by the ball of radius 2 of the approxi-

mation F̂ obtained from the approximated kernel is less than 8λ.

If we consider the estimator β̂ obtained by minimizing the empirical risk of ĝβ subject to ‖β‖2 6

2F/
√
n. We have the following decomposition of the error for any γ ∈ R

n such that ‖γ‖2 6

2F/
√
n and f ∈ F such that ‖f‖F 6 F :

L(ĝβ̂) = L(ĝβ̂)− L̂(ĝβ̂) + L̂(ĝβ̂)− L̂(ĝγ) + L̂(ĝγ)− L(ĝγ) + L(ĝγ)− L(f) + L(f)

6 2
[

sup
‖β′‖F62F/

√
n

|L(ĝβ′)− L(ĝβ′)|
]

+
[

L(ĝγ)− L(f)
]

+ L(f)

6 2
[

sup
‖β′‖F62F/

√
n

|L(ĝβ′)− L(ĝβ′)|
]

+ sup
‖f ′‖F6F

inf
‖γ‖262F/

√
n

[

L(ĝγ)− L(f ′)
]

+ inf
‖f‖F6F

L(f).

We now take expectation with respect to the data and the random features. Following standard

results for Rademacher complexities of ℓ2-balls (Bartlett and Mendelson, 2003, Lemma 22), the

first term is less than

4FG

m
√
n
E
(

m
∑

i=1

n
∑

j=1

ϕ(vi, xj)
2

q(vi)

)1/2
6

4FG

m
√
n
(nm tr Σ)1/2 =

4FGR√
m

.

Because of the G-Lipschitz-continuity of the loss, we have L(ĝγ) − L(f ′) 6 G‖ĝγ) − f ′‖L2(dρ),

and thus the second term is less than
√
8λGF 6 3GF

√
λ. Overall, we obtain

E
[

L(ĝβ̂)
]

6 inf
‖f‖F6F

L(f) + 3GF
√
λ+

4FGR√
m

.

If we consider λ = R2/m in order to lose only a constant factor compared to Eq. (13), we have the

constraint n > 5d(R2/m) log
[

2md(R2/m)
]

.

We may now look at several situations. In the worst case, where the decay of eigenvalue is not fast,

i.e., very close to 1/i, then we may only use the bound d(λ) = tr Σ(Σ+λI)−1 6 λ−1 tr Σ = R2/λ,

and thus a sufficient condition n > 10m log 2m, and we obtain the same result as Rahimi and Recht

(2009).

However, when we have eigenvalue decays as R2i−2s, we get (up to constants), following the

same computation as Section 4.2, d(λ) 6 (R2/λ)1/(2s), and thus n > m1/(2s) logm, which is a

significant improvement (regardless of the value of F ). Moreover, if the decay is geometric as ri,
then we get d(λ) 6 log(R2/λ), and thus n > (logm)2, which is even more significant.

5. Quadrature-related Extensions

In Section 4.4, we have built an approximation ĥ = Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h of a function h ∈ F,

which is based on n function evaluations h(x1), . . . , h(xn). We have presented in Section 4.4 a

convergence rate for the L2-norm ‖ĥ−h‖L2(dρ) for functions h with less than unit F-norm ‖h‖F 6

1. Up to logarithmic terms, if using the optimal distribution for sampling x1, . . . , xn, then we get a

squared error of µn where µn is the n-th largest eigenvalue of the integral operator Σ.
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Robustness to noise. We have seen that if the noise in the function evaluations h(xi) has a vari-

ance less than q(xi)τ
2, then the error ‖h − ĥ‖2L2(dρ)

has an additional term τ2‖β‖22 6
4τ2

n . Hence,

the amount of noise has to be less than nµn in order to incur no loss in performance (a bound which

decreases with n).

Adaptivity to smoother functions. We assume that the function h happens to be smoother than

what is sufficient to be an element of the RKHS F, that is, if ‖Σ−sh‖L2(dρ) 6 1, where s > 1/2.

The case s = 1/2 corresponds to being in the RKHS. In the proof of Prop. 1 in Appendix B.1, we

have seen that with high-probability we have:

(Σ̂ + λI)−1
4 4(Σ + λI)−1. (14)

We now see that we can bound the error ‖ĥ− h‖L2(dρ) as follows:

‖ĥ− h‖L2(dρ) = ‖Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h− h‖L2(dρ)

= λ
∥

∥Σ1/2(Σ̂ + λI)−1Σ−1/2+sΣ−sh
∥

∥

L2(dρ)

6 λ
∥

∥Σ1/2(Σ̂ + λI)−1/2
∥

∥

op

∥

∥(Σ̂ + λI)−1/2Σ−1/2+s
∥

∥

op
‖Σ−sh‖L2(dρ).

We may now bound each term. The first one
∥

∥Σ1/2(Σ̂ + λI)−1/2
∥

∥

op
is less than 2, because of

Eq. (14). The second one
∥

∥(Σ̂+λI)−1/2Σ−1/2+s
∥

∥

op
is equal to

∥

∥(Σ̂+λI)s−1(Σ̂+λI)1/2−sΣ−1/2+s
∥

∥

op
,

and thus less than
∥

∥(Σ̂ + λI)s−1‖op ·
∥

∥(Σ̂ + λI)1/2−sΣ−1/2+s
∥

∥

op
6 2λs−1. Overall we obtain

‖ĥ− h‖L2(dρ) 6 4λs.

The norm h 7→ ‖Σ−sh‖L2(dρ) is an RKHS norm with kernel
∑

m>0 µ
2s
mem(x)em(y), with corre-

sponding eigenvalues equal to (µm)2s. From Prop. 2 and 3, the optimal number of quadrature points

to reach a squared error less than ε is proportional to the number max({m, µ2sm > ε}), while using

the quadrature points from s = 1/2, leads to a number max({m, µm > ε1/(2s)}), which is equal.

Thus if the RKHS used to compute the quadrature weights is a bit too large (but not too large, see

experiments in Section 6), then we still get the optimal rate. Note that this robustness is only shown

for the regularized estimation of the quadrature coefficients (in our simulations, the non-regularized

ones also exhibit the same behavior).

Approximation with stronger norms. We may consider characterizing the difference ĥ−h with

different norms than ‖ · ‖L2(dρ), in particular norms ‖Σ−r(ĥ − h)‖L2(dρ), with r ∈ [0, 1/2]. For

r = 0, this is our results in L2-norm, while for r = 1/2, this is the RKHS norms. We have, using

the same manipulations than above:

‖Σ−r(ĥ− h)‖L2(dρ) = λ
∥

∥Σ1/2−r(Σ̂ + λI)−1Σ−1/2h
∥

∥

L2(dρ)

6 λ1/2−r
∥

∥Σ1/2−r(Σ̂ + λI)r−1/2
∥

∥

op
‖Σ−1/2h‖L2(dρ) 6 2λ1/2−r.

When r = 1/2, we get a result in the RKHS norm, but with no decay to zero; the RKHS norm ‖ ·‖F
would allow a control inL∞-norm, but as noticed by Steinwart et al. (2009); Mendelson and Neeman

(2010), such a control may be obtained in practice with r much smaller. For example, when the
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eigenfunctions em are uniformly bounded in L∞-norm by a constant C (as is the case for periodic

kernels in [0, 1] with the uniform distribution), then, for any x ∈ X, we have for t > 1,

f(x)2 =

∞
∑

m=1

(m+ 1)t〈f, em〉2L2(dρ)
em(x)2(m+ 1)−t

6

∞
∑

m=0

(m+ 1)t〈f, em〉2L2(dρ)

C2

t− 1
.

If for simplicity, we assume that µm = (m+1)−2s (like for Sobolev spaces), we have ‖Σ−rf‖2L2(dρ)
=

∑∞
m=1 µ

−2r
m 〈f, em〉2L2(dρ)

=
∑∞

m=1(m+ 1)t〈f, em〉2L2(dρ)
with r = t/4s. If λ 6 O(n−2s) (as sug-

gested by Prop. 1), then we obtain a squared L∞-error less than 1
t−1λ

1−2r = O
(

1
t−1n

−2s(1−t/2s)
)

=

O
(

nt

t−1n
−2s

)

. With t = 1+ 1
logn , we getO

(n logn
n−2s

)

, and thus a degradation compared to the squared

L2-loss of n (plus additional logarithmic terms), which corresponds to the (non-improvable) result

of Novak (1988, page 36).

6. Simulations

In this section, we consider simple illustrative quadrature experiments4 with X = [0, 1] and kernels

k(x, y) = 1 +
∑∞

m=1
1

m2s cos 2πm(x− y), with various values of s and distributions dρ which are

Beta random variable with the two parameters equal to a = b, hence symmetric around 1/2.

Uniform distribution. For b = 1, we have the uniform distribution on [0, 1] for which the co-

sine/sine basis is orthonormal, and the optimized distribution q∗λ is also uniform. Moreover, we

have
∫ 1
0 k(x, y)dρ(x) = 1. We report results comparing different Sobolev spaces for testing func-

tions to integrate (parameterized by s) and learning quadrature weights (parameterized by t) in

Figure 1, where we compute errors averaged over 1000 draws. We did not use regularization to

compute quadrature weights α. We can make the following observations:

– The exponents in the convergence rates for s = t (matching RKHSs for learning quadrature

weights and testing functions) are close to 2s as expected.

– When the functions to integrate are less smooth than the ones used for learning quadrature

weights (that is t > s), then the quadrature performance does not necessarily decay with the

number of samples.

– On the contrary, when s > t, then we have convergence and the rate is potentially worse than

the optimal one (attained for s = t), and equal when t > s/2, as shown in Section 5.

In Figure 2, we compare several quadrature rules on [0, 1], namely Simpson’s rule with uniformly

spread points, Gauss-Legendre quadrature and the Sobol sequence with uniform weights. For s = 1,

as expected, all squared errors decay as n−2 with a worse constant for our kernel-based rule, while

for s = 2 (smoother test functions), the Sobol sequence is not adaptive, while all others are adaptive

and get convergence rates around n−4.

4. Matlab code for all 5 figures may be downloaded from http://www.di.ens.fr/˜fbach/quadrature.html.
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Figure 1: Quadrature for functions in a Sobolev space with parameter s (four possible values) for

the uniform distribution on [0, 1], with quadrature rules obtained from different Sobolev

spaces with parameters t (same four possible values). We compute affine fits in log-log-

space (in dotted) to estimate convergence rates of the form C/nu and report the value of

u. Best seen in color.
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Figure 2: Quadrature for functions in a Sobolev space with parameters s = 1 (left) and s = 2
(right), for the uniform distribution on [0, 1], with various quadrature rules. We compute

affine fits in log-log-space (in dotted) to estimate convergence rates of the form C/nu and

report the value of u. Best seen in color.

Non-uniform distribution. We consider the case a = b = 1/2, which is the distribution dρ
with density π−1x−1/2(1 − x)−1/2 with respect to the Lebesgue measure, and with cumulative

distribution function F (x) = π−1 arccos(1 − 2x). We may use an approximation of dτ with N
unweighted points F−1(k/N) =

(

1 − cos kπ
N

)

/2, for k ∈ {1, . . . , N} and the algorithms from the

end of Section 4.2. We consider the Sobolev kernel with s = 1.

In Figure 3, we plot all densities q∗λ as a function of λ. When λ is large, we unsuprisingly obtain the

uniform density, while, more surprisingly, when λ tends to zero, the density tends to a density, which

happens here to be proportional to x1/4(1 − x)1/4 (leading to a Beta distribution with parameters

a = b = .25).

We may also consider the same kernel but with the Fourier expansion on N. This is done by repre-

senting dτ ∝ δ0 +
∑

k∈Z∗
1
k2
δk by truncating to all |k| 6 K , with K = 50, which is a weighted

representation. We plot in Figure 4 the optimal density over the set of integers, both with respect to

the input density (which decays as 1/n2) and the counting measure. When λ is large, we recover

the input density, while when λ tends to zero, q∗λ tends to be uniform (and thus, does not converge

to a finite measure).

7. Conclusion

In this paper, we have shown that kernel-based quadrature rules are a special case of random feature

expansions for positive definite kernels, and derived upper and lower bounds on approximations,

that match up to logarithmic terms. For quadrature, this leads to widely applicable results while

for random features this allows a significantly improved guarantee within a supervised learning

framework.
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Figure 3: Optimal log-densities q∗λ(x) (with respect to the input distribution) for several values of

λ, for the expansion used for quadrature. Best seen in color.
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Figure 4: Optimal densities q∗λ(k) for several values of λ, for Fourier feature expansions. Left: with

respect to the input distribution (which itself has distribution proportional to 1/k2 with

respect to the counting measure); right: with respect to the counting measure. Best seen

in color.
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The present work could be extended in a variety of ways, for example towards bandit optimization

rather than quadrature (Srinivas et al., 2012), the use of quasi-random sampling within our frame-

work in the spirit of Yang et al. (2014); Oates and Girolami (2015), a similar analysis for kernel

herding (Chen et al., 2010; Bach et al., 2012), an extension to fast rates for non-parametric least-

squares regression (Hsu et al., 2014) but with an improved computational complexity, and a study

of the consequences of our improved approximation result for online learning and stochastic ap-

proximation, in the spirit of Dai et al. (2014); Dieuleveut and Bach (2014).
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Appendix A. Kernels on product spaces

In this appendix, we consider sets X which are products of several simple sets X1, . . . ,Xd, with

known kernels k1, . . . , kd, each with RKHS F1, . . . ,Fd. We also assume that we have d measures

dρ1, . . . , dρd, leading to sequences of eigenvalues (µjmj)mj>1 and eigenfunctions (ejmj )mj>1.

Our aim is to define a kernel k on X = X1 × · · · × Xd with the product measure dρ = dρ1 · · · dρd.

For illustration purposes, we consider decays of the form µm ∝ m−2s for the d kernels, that will

be useful for Sobolev spaces. We also consider the case where µm ∝ exp(−ρm). For some

combinations, eigenvalue decay is the most natural, in others, the number of eigenvalues m∗(λ)
greater than a given λ > 0 is more natural.

A.1 Sum of kernels: k(x, y) =
∑d

j=1 kj(xj , yj)

In this situation, the RKHS for k is isomorphic to F1 × · · · × Fd, composed of functions g such

that there exists f1, . . . , fd in F1, . . . ,Fd such that g(x) =
∑d

j=1 fj(xj), that is we obtain separable

functions, which are sometimes used in the context of generalized additive models (Hastie and Tibshirani,

1990). The corresponding integral operator is then block-diagonal with j-th block equal to the in-

tegral operator for kj and dρj . This implies that that its eigenvalues are the concatenation of all

sequences (µjmj )mj>0. Thus the function m∗(λ) is the sum of functions m∗
1(λ) + · · ·+m∗

d(λ).

In terms of norms of functions, we have a norm equal to ‖g‖2
F
=

∑d
j=1 ‖fj‖2Fj

.

In the particular case where µjmj ∝ m−2s
j for all j, or equivalently, a number of eigenvalues of

kj greater than λ proportional to λ−1/(2s), we have a number of eigenvalues of k greater than λ
equivalent to dλ−1/(2s), that is a decay for the eigenvalues proportional to (m/d)−2s. Similarly,

when the decay is exponential as exp(−ρm), we get a decay of exp(−ρm/d).

A.2 Product of kernels: k(x, y) =
∏d

j=1 kj(xj , yj)

In this situation, the RKHS for K is exactly the tensor product of F1, . . . ,Fd, i.e., the span of all

functions
∏d

j=1 fj(xj), for f1, . . . , fd in F1, . . . ,Fd (Berlinet and Thomas-Agnan, 2004). More-

over, the integral operator for k is a tensor product of the d integral operator for k1, . . . , kd. This

implies that its eigenvalues are µ1m1 ×· · ·×µdmd
, m1, . . . ,md > 0. In terms of norms of functions

defined on X1 × · · · × Xd, this thus corresponds to

∑

m1,...,md>0

( d
∏

j=1

µjmj

)−1〈

f,

d
∏

j=1

ejmj (xj)

〉2

L2(dρ⊗d)

.

Special cases. In the particular case where µjmj ∝ m−2s
j for all j, we have a number of eigenval-

ues of k greater than λ equivalent to the number of multi-indices such that m1 × · · · ×md is less

than λ−1/(2s). By counting first the index m1, this can be upper-bounded by the sum of λ−1/(2s)

m2···md

over all indices m2, . . . ,md less than λ−1/(2s), which is less than λ−1/(2s)
(
∑λ−1/(2s)

m=1
1
m

)d−1
=

O
(

λ−1/(2s)
(

s log 1
λ

)d−1
)

. This results in a decay of eigenvalues bounded by (logm)2s(d−1)m−2s

(this can be obtained by inverting approximately the function of λ).
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When the decay is exponential as exp(−ρλ), then we get that m∗(λ) is the number of multi-indices

(m1, . . . ,md) such that their sum is less than c =
log 1

λ
ρ ; when c is large, this is equivalent to cd

times the volume of the d-dimensional simplex, and thus less than cd

d! =
( log 1

λ
ρ

)d 1
d! . This leads to a

decay of eigenvalues as exp(−ρd!1/dm1/d) or, by using Stirling formula, less than exp(−ρdm1/d).

Appendix B. Proofs

B.1 Proof of Prop. 1

As shown in Section 2.2, any f ∈ F with F-norm less than one may be represented as f =
∫

V
g(v)ϕ(v, ·)dτ(v), for a certain g ∈ L2(dτ) with L2(dτ)-norm less than one. We do not solve the

problem in β exactly, but use a properly chosen Lagrange multiplier λ and consider the following

minimization problem:

∥

∥

∥

∥

n
∑

i=1

βiq(vi)
−1/2ϕ(vi, ·) −

∫

X

ϕ(v, ·)g(v)dτ(v)
∥

∥

∥

∥

2

L2(dρ)

+ nλ‖β‖22.

We consider the operator Φ : Rn → L2(dρ) such that

Φβ =
n
∑

i=1

βiq(vi)
−1/2ϕ(vi, ·).

We then need to minimize the familiar least-squares problem:

∥

∥f −Φβ
∥

∥

2

L2(dρ)
+ nλ‖β‖22,

with solution from the usual normal equations and the matrix inversion lemma for operators (Ogawa,

1988):

β = (Φ∗Φ+ nλI)−1Φ∗f =
1

n
Φ∗(

1

n
ΦΦ∗ + λI)−1f. (15)

We consider the empirical integral operator Σ̂ : L2(dρ) → L2(dρ), defined as

Σ̂ =
1

n
ΦΦ∗ =

1

n

n
∑

i=1

1

q(vi)
ϕ(vi, ·)⊗L2(dρ) ϕ(vi, ·),

that is, for a, b ∈ L2(dρ), 〈a, Σ̂b〉L2(dρ) =

n
∑

i=1

〈a, ϕ(vi, ·)〉L2(dρ)〈b, ϕ(vi, ·)〉L2(dρ)

q(vi)
. By construc-

tion, and following the end of Section 2.2, we have EΣ̂ = Σ.

The value of ‖f − Φβ‖2L2(dρ)
is equal to

‖f − Φβ‖2L2(dρ)
= ‖f − Σ̂(Σ̂ + λI)−1f‖2L2(dρ)

= ‖λ(Σ̂ + λI)−1f‖2L2(dρ)

= λ2
〈

f, (Σ̂ + λI)−2f
〉

L2(dρ)
6 λ

〈

f, (Σ̂ + λI)−1f
〉

L2(dρ)
, (16)
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because (Σ̂ + λI)−2 4 λ−1(Σ̂ + λI)−1 (with the classical partial order between self-adjoint oper-

ators).

Finally, we have, with β = 1
nΦ

∗(Σ̂ + λI)−1f :

n‖β‖22 =
〈

(Σ̂ + λI)−1f, Σ̂(Σ̂ + λI)−1f
〉

L2(dρ)
6

〈

f, (Σ̂ + λI)−1f
〉

L2(dρ)
, (17)

using (Σ̂ + λI)−2Σ̂ 4 (Σ̂ + λI)−1.

By construction, we have E(Σ̂) = Σ. Moreover, we have, by Cauchy-Schwarz inequality:

〈a, (f ⊗L2(dρ) f)a〉L2(dρ) =

(
∫

X

a(x)f(x)dρ(x)

)2

=

(
∫

X

∫

V

a(x)g(v)ϕ(v, x)dτ(v)dρ(x)

)2

6

(
∫

V

g(v)2dτ(v)

)
∫

V

(
∫

X

a(x)ϕ(v, x)dρ(x)

)2

dτ(v)

= ‖g‖2L2(dρ)
〈a,Σa〉L2(dρ) 6 〈a,Σa〉L2(dρ).

Thus f ⊗L2(dρ) f 4 Σ, and we may thus define 〈f,Σ−1f〉L2(dρ), which is less than one.

Overall we aim to study 〈f, (Σ̂+λI)−1f〉L2(dρ), for 〈f,Σ−1f〉L2(dρ) 6 1, to control both the norm

‖β‖22 in Eq. (17) and the approximation error ‖f − Φβ‖2L2(dρ)
in Eq. (16). We have, following a

similar argument than the one of Bach (2013); El Alaoui and Mahoney (2014) for column sampling,

i.e., by a formulation using Σ− Σ̂ in terms of operators in an appropriate way:

〈f, (Σ̂ + λI)−1f〉L2(dρ)

= 〈f, (Σ + λI + Σ̂− Σ)−1f〉L2(dρ)

=
〈

(Σ + λI)−1/2f,
[

I + (Σ + λI)−1/2(Σ̂− Σ)(Σ + λI)−1/2
]−1

(Σ + λI)−1/2f
〉

L2(dρ)
.

Thus, if (Σ + λI)−1/2(Σ̂− Σ)(Σ + λI)−1/2 < −tI , with t ∈ (0, 1), we have

〈f, (Σ̂ + λI)−1f〉L2(dρ) 6 〈(Σ + λI)−1/2f, (1− t)−1(Σ + λI)−1/2f〉L2(dρ)

= (1− t)−1〈f, (Σ + λI)−1f〉L2(dρ)

6 (1− t)−1〈f,Σ−1f〉L2(dρ) 6 (1− t)−1.

Moreover, we have shown (Σ̂ + λI)−1 4
1

1−t(Σ + λI)−1.

Thus, the performance depends on having (Σ + λI)−1/2(Σ − Σ̂)(Σ + λI)−1/2 4 tI .

We consider the self-adjoint operators Xi, for i = 1, . . . , n, which are independent and identically

distributed:

Xi =
1

n
(Σ + λI)−1Σ− 1

n

1

q(vi)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

⊗L2(dρ)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

,

so that our goal is to provide an upperbound on the probability that ‖∑n
i=1Xi‖op > t, where ‖·‖op

is the operator norm (largest singular values). We use the notation

d = trΣ(Σ + λI)−1 =

∫

V

〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

q(v)
q(v)dτ(v) 6 dmax.
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We have

EXi = 0, by construction of Xi,

Xi 4
1

n
(Σ + λI)−1Σ 4

1

n
tr
[

(Σ + λI)−1Σ
]

I 4
dmax

n
I,

Xi < − 1

n

1

q(vi)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

⊗L2(dρ)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

< − 1

n

1

q(vi)

∥

∥(Σ + λI)−1/2ϕ(vi, ·)
∥

∥

2

L2(dρ)
I < −dmax

n
I,

‖Xi‖op 6
dmax

n
as a consequence of the two previous inequalities,

E(X2
i ) = E

[

1

n

1

q(vi)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

⊗L2(dρ)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

]2

−
[ 1

n
(Σ + λI)−1Σ

]2

4 E

[

1

n

1

q(vi)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

⊗L2(dρ)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

]2

= E
〈ϕ(vi, ·), (Σ + λI)−1ϕ(vi, ·)〉L2(dρ)

n2q(vi)2
[

(Σ + λI)−1/2ϕ(vi, ·)
]

⊗L2(dρ)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

4
dmax

n2
E

(

[ 1

q(vi)
(Σ + λI)−1/2ϕ(vi, ·)

]

⊗L2(dρ)

[

(Σ + λI)−1/2ϕ(vi, ·)
]

)

=
dmax

n2
Σ(Σ + λI)−1,

n
∑

i=1

E(X2
i ) 4

dmax

n
(Σ + λI)−1Σ,

with a maximal eigenvalue less than
dmax

n
and a trace less than

dmax

n
tr Σ(Σ + λI)−1 =

d dmax

n
.

Following Hsu et al. (2014), we use a matrix Bernstein inequality which is independent of the un-

derlying dimension (which is here infinite). We consider the bound of Minsker (2011, Theorem

2.1), which improves on the earlier result of Hsu et al. (2012, Theorem 4), that is:

P

(∥

∥

∥

∥

n
∑

i=1

Xi

∥

∥

∥

∥

op

> t

)

6 2d

(

1 +
6

t2 log2(1 + nt/dmax)

)

exp

(

− t2/2

dmax/n(1 + t/3)

)

We now consider t = 3
4 , δ ∈ (0, 1), and n > Bdmax log

Cdmax

δ
, with appropriate constants

B,C > 0. This implies that

exp

(

− t2/2

dmax/n(1 + t/3)

)

6 exp

(

−(3/4)2/2

5/4
B log

Cdmax

δ

)

6
( δ

Cdmax

)

(3/4)2B/2
5/4 6

( δ

Cd

)

(3/4)2B/2
5/4 ,

and, if dmax > D, using n > Bdmax logCD,

1 +
6

t2 log2(1 + nt/dmax)
6 1 +

6 · 16/9
log2

(

1 + (3B/4) log(CD)
) ,

while if dmax 6 D and n > 1,

1 +
6

t2 log2(1 + nt/dmax)
6 1 +

6 · 16/9
log2

(

1 + (3/4D)
) .
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In order to get a bound, we need
(3/4)2B/2

5/4 > 1, and we can take B = 5. If we take C = 8, then in

order to have 1 + 6
t2 log2(1+nt/dmax)

6 4, we can take D = 3/8. Thus the probability is less than δ.

Finally, in order to get the extra bound on 1
n

∑n
i=1 q(vi)

−1‖ϕ(vi, ·)‖2L2(dρ)
, we consider E tr Σ̂ =

trΣ =
∫

X
k(x, x)dρ(x), and thus, by Markov’s inequality, with probability 1− δ,

1

n

n
∑

i=1

q(vi)
−1‖ϕ(vi, ·)‖2L2(dρ)

= tr Σ̂ 6
1

δ
tr Σ. (18)

By taking δ/2 instead of δ in the control of ‖∑n
i=1Xi‖op > t and in the Markov inequality above,

we have a control over ‖β‖22, tr Σ̂ and the approximation error, which leads to the desired result in

Prop 1. This will be useful for the lower bound of Prop. 3.

We can make the following extra observations regarding the proof:

– It may be possible to derive a similar result with a thresholding of eigenvalues in the spirit

of Zwald et al. (2004), but this would require Bernstein-type concentration inequalities for

the projections on principal subspaces.

– We have seen that with high-probability, we have (Σ̂ + λI)−1 4 4(Σ + λI)−1. Note that

A 4 B does not imply in A2 4 B2 (Bhatia, 2009, page 9) and that in general we do not have

(Σ̂ + λI)−2 4 C(Σ + λI)−2 for any constant C (which would allow an improvement in the

error by replacing λ by λ2, and violate the lower bound of Prop. 3).

– We may also obtain a result in expectation, by using δ = 4λ/ tr Σ (which is assumed to

be less than 1), leading to a squared error with expectation less than 8λ as soon as n >

5dmax(λ) log
2(tr Σ)dmax(λ)

λ . Indeed, we can use the bound 4λ with probability 1 − δ and

‖f‖2L2(dρ)
6 tr Σ with probability δ, leading to a bound of 4λ(1 − δ) + δ tr Σ 6 8λ. We use

this result in Section 4.5.

B.2 Proof of Prop. 2

We start from the bound above, with the constraint n > 5d(λ) log 16d(λ)
δ . Statement (a) is a simple

reformulation of Prop. 1. For statement (b), if we assume m 6 n
5(1+γ) log 16n

5δ

, and λ = µm, then we

have d(λ) 6 (1 + γ)m, which implies n > 5d(λ) log 16d(λ)
δ , and (b) is a consequence of (a).

B.3 Proof of Prop. 3

We first use the Varshamov-Gilbert’s lemma (see, e.g., Massart, 2003, Lemma 4.7). That is, for any

integer s, there exists a family (θj)j∈J of at least |J | > es/8 distinct elements of {0, 1}s, such that

for j 6= j′ ∈ J , ‖θj − θj′‖22 > s
4 .

For each θ ∈ {0, 1}s, we define an element of F with norm less than one, as f(θ) =
√
µs√
s

∑s
i=1 θiei ∈

F, where (ei, µi), i = 1, . . . , s are the eigenvector/eigenvalue pairs associated with the s largest
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eigenvalues of Σ. We have, since µi > µs for i ∈ {1, . . . , s} and ‖θ‖22 6 1:

‖f(θ)‖2F =
µs
s

s
∑

i=1

θ2i µ
−1
i 6

µs
s

s
∑

i=1

θ2i µ
−1
s 6

1

s

s
∑

i=1

θ2i 6 1.

Moreover, for any j 6= j′ ∈ J , we have ‖f(θj)− f(θj′)‖2L2(dρ)
= µs

s ‖θj − θj′‖22 > µs

4 .

We now assume that s is selected so that
√
4λ 6

√

µs

4 /3. By applying the existence results to all

functions fj , j ∈ J , then there exists a family (βj)j∈J of elements of Rn, with squared ℓ2-norm

less than 4
n , and for which, for all j,

∥

∥

∥
fj −

n
∑

i=1

(βj)iψi

∥

∥

∥

L2(dρ)
6

√
4λ.

This leads to, for any j 6= j′ ∈ J ,

∥

∥

∥

n
∑

i=1

(βj − βj′)iψi

∥

∥

∥

L2(dρ)
>

∥

∥fj − fj′
∥

∥

L2(dρ)
−
∥

∥

∥

n
∑

i=1

(βj)iψi − fj

∥

∥

∥

L2(dρ)
−
∥

∥

∥

n
∑

i=1

(βj′)iψi − fj′
∥

∥

∥

L2(dρ)

>
√

µs/4− 2

√

µs
4
/3 =

√

µs
4
/3.

Moreover, we have the bound

∥

∥

∥

∥

n
∑

i=1

(βj − βj′)iψi

∥

∥

∥

∥

2

L2(dρ)

6

( n
∑

i=1

(βj − βj′)
2
i

) n
∑

i=1

‖ψi‖2L2(dρ)
6 ‖βj − βj′‖22 · n(2δ−1 tr Σ).

Combining the last two inequalities, we get ‖βj−βj′‖2 >
√

δµs

72n tr Σ = ∆. Thus, es/8 is less than the

∆-packing number of the ball of radius r = 2/
√
n, which is itself less than (r/∆)n(2+∆/r)n (see,

e.g., Massart, 2003, Lemma 4.14). Since ∆/r =
√

δµs

4·72 trΣ 6
1

12
√
2
, we have

s

8
6 n

(

1

2
log

4 · 72 tr Σ
δµs

+ log(2 +
1

12
√
2
)

)

.

This implies n >
s

4 log tr Σ
δµs

+29
. Given that we have to choose µs > 144λ for the result to hold, this

implies the desired result, since 4 log(1440) > 29.
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