A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators

Christophe Le Potier 1, *
* Corresponding author
1 SFME - Service Fluide numériques, Modélisation et Etudes
DM2S - Département de Modélisation des Systèmes et Structures : DEN/DM2S/SFME
Abstract : We introduce a new finite volume method for highly anisotropic diffusion operators on triangular cells. The main idea is to calculate the gradient using a nonlinear scheme. For parabolic problems, the resulting global matrix is a strictly diagonally dominant M-Matrix without geometrical constraints on the mesh and restrictive conditions on the anisotropy ratio. We verify the accuracy of the method by comparing our computed solutions with analytical solutions. The efficiency of the algorithm is demonstrated by comparing it with numerical schemes which do not satisfy discrete minimum and maximum principles.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01116968
Contributor : Christophe Le Potier <>
Submitted on : Monday, February 16, 2015 - 10:16:28 AM
Last modification on : Thursday, February 7, 2019 - 4:47:01 PM
Document(s) archivé(s) le : Thursday, May 28, 2015 - 3:20:38 PM

File

vfpmmdfinal.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01116968, version 1

Collections

Citation

Christophe Le Potier. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2009, pp.1-20. ⟨hal-01116968⟩

Share

Metrics

Record views

359

Files downloads

235