P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

E. Frackowiak and Q. Abbas, Carbon/carbon supercapacitors, Journal of Energy Chemistry, vol.22, issue.2, pp.226-240, 2013.
DOI : 10.1016/S2095-4956(13)60028-5

M. Armand and J. Tarascon, Building better batteries, Nature, vol.128, issue.7179, pp.652-657, 2008.
DOI : 10.1038/451652a

URL : https://hal.archives-ouvertes.fr/hal-00258391

L. Chen, X. Zhang, H. Liang, M. Kong, Q. Guan et al., Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors, ACS Nano, vol.6, issue.8, pp.7092-7102, 2012.
DOI : 10.1021/nn302147s

Z. Wu, Y. Sun, Y. Tan, S. Yang, X. Feng et al., Three-Dimensional Graphene-Based Macro-and Meso- Porous Frameworks for High Performance Electrochemical Capacitive Energy Storage, J. Am. Chem. Soc, vol.134, pp.2012-19532

Z. Wu, K. Parvez, X. Feng, and K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nature Communications, vol.24, 2013.
DOI : 10.1038/ncomms3487

X. Yang, C. Cheng, Y. Wang, L. Qiu, and D. Li, Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science, vol.341, issue.6145, pp.534-537, 2013.
DOI : 10.1126/science.1239089

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.1760-1763, 2006.
DOI : 10.1126/science.1132195

R. Nero, E. Kierzek, K. Machnikowski, J. Béguin, and F. , Relationship between the Nanoporous Texture of Activated Carbons and their Capacitance Properties in Different Electrolytes, Carbon, vol.44, pp.2498-2507, 2006.

C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, vol.130, issue.9, pp.2730-2731, 2008.
DOI : 10.1021/ja7106178

P. Wu, J. S. Huang, V. Meunier, B. G. Sumpter, and R. Qiao, Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores, ACS Nano, vol.5, issue.11, pp.9044-9051, 2011.
DOI : 10.1021/nn203260w

Y. Shim and H. J. Kim, Nanoporous Carbon Supercapacitors in an Ionic Liquid: A Computer Simulation Study, ACS Nano, vol.4, issue.4, pp.2345-2355, 2010.
DOI : 10.1021/nn901916m

S. Kondrat and A. A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes, Journal of Physics: Condensed Matter, vol.23, issue.2, p.22201, 2011.
DOI : 10.1088/0953-8984/23/2/022201

S. Kondrat, C. R. Perez, V. Presser, Y. Gogotsi, and A. A. Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors, Energy & Environmental Science, vol.144, issue.4
DOI : 10.1039/c2ee03092f

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nature Materials, vol.84, issue.4, pp.306-310, 2012.
DOI : 10.1038/nmat3260

URL : https://hal.archives-ouvertes.fr/hal-00853251

P. Wu, J. Huang, V. Meunier, B. G. Sumpter, and R. Qiao, Voltage Dependent Charge Storage Modes and Capacity in Sub-Nanometer Pores, J. Phys. Chem. Lett, vol.2012, issue.3, pp.1732-1737

L. Xing, J. Vatamanu, O. Borodin, and D. Bedrov, On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores, The Journal of Physical Chemistry Letters, vol.4, issue.1, pp.132-140, 2013.
DOI : 10.1021/jz301782f

G. Feng, S. Li, V. Presser, and P. Cummings, Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids, The Journal of Physical Chemistry Letters, vol.4, issue.19, pp.3367-3376, 2013.
DOI : 10.1021/jz4014163

O. Lanning and P. A. Madden, Screening at a Charged Surface by a Molten Salt, The Journal of Physical Chemistry B, vol.108, issue.30, pp.11069-11072, 2004.
DOI : 10.1021/jp048102p

J. Vatamanu, O. Borodin, and . Smith, -propylpyrrolidinium Bis(fluorosulfonyl)imide at Graphite Electrodes, The Journal of Physical Chemistry B, vol.115, issue.12, pp.3073-3084, 2011.
DOI : 10.1021/jp2001207

S. Kondrat and A. A. Kornyshev, Charging Dynamics and Optimization of Nanoporous Supercapacitors, The Journal of Physical Chemistry C, vol.117, issue.24, pp.12399-12406, 2013.
DOI : 10.1021/jp400558y

S. K. Reed, P. A. Madden, and A. Papadopoulos, Electrochemical charge transfer at a metallic electrode: A simulation study, The Journal of Chemical Physics, vol.128, issue.12, 2008.
DOI : 10.1063/1.2844801

J. Vatamanu, O. Borodin, and . Smith, Molecular Insights into the Potential and Temperature Dependences of the Differential Capacitance of a Room-Temperature Ionic Liquid at Graphite Electrodes, Journal of the American Chemical Society, vol.132, issue.42, pp.14825-14833, 2010.
DOI : 10.1021/ja104273r

C. Merlet, B. Rotenberg, P. A. Madden, and M. Salanne, Computer simulations of ionic liquids at electrochemical interfaces, Physical Chemistry Chemical Physics, vol.128, issue.38, pp.15781-15792, 2013.
DOI : 10.1039/c3cp52088a

URL : https://hal.archives-ouvertes.fr/hal-00862346

C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, P. Simon et al., Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?, The Journal of Physical Chemistry Letters, vol.4, issue.2, pp.264-268, 2013.
DOI : 10.1021/jz3019226

URL : https://hal.archives-ouvertes.fr/hal-00854038

J. C. Palmer, A. Llobet, S. Yeon, J. E. Fisher, Y. Shi et al., Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, issue.4, pp.1116-1123, 2010.
DOI : 10.1016/j.carbon.2009.11.033

Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer et al., Nanoporous carbide-derived carbon with tunable pore size, Nature Materials, vol.2, issue.9, pp.591-594, 2003.
DOI : 10.1038/nmat957

S. Kondrat, N. Georgi, M. V. Fedorov, and A. A. Kornyshev, A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations, Physical Chemistry Chemical Physics, vol.32, issue.23, pp.11359-11366, 2011.
DOI : 10.1021/jp052999o

C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Imidazolium Ionic Liquid Interfaces with Vapor and Graphite: Interfacial Tension and Capacitance from Coarse-Grained Molecular Simulations, The Journal of Physical Chemistry C, vol.115, issue.33, pp.16613-16618, 2011.
DOI : 10.1021/jp205461g

URL : https://hal.archives-ouvertes.fr/hal-00854030

B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

H. Wang, T. K. Koster, N. M. Trease, J. Segalini, P. L. Taberna et al., Real-Time NMR Studies of Electrochemical Double-Layer Capacitors, Journal of the American Chemical Society, vol.133, issue.48, pp.19270-19273, 2011.
DOI : 10.1021/ja2072115

URL : https://hal.archives-ouvertes.fr/hal-01151679

M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-pi~-nero, M. R. Ammar et al., Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR, Nature Materials, vol.48, issue.4, pp.351-358, 2013.
DOI : 10.1038/nmat3567

URL : https://hal.archives-ouvertes.fr/hal-00794669

P. Taberna, P. Simon, and J. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors, Journal of The Electrochemical Society, vol.150, issue.3, pp.292-300, 2003.
DOI : 10.1149/1.1543948

URL : https://hal.archives-ouvertes.fr/hal-00420564

S. Kondrat, P. Wu, R. Qiao, and A. Kornyshev, Accelerating Charging Dynamics in Sub-Nanometer Pores, p.7529, 2013.

D. Roy and M. Maroncelli, An Improved Four-Site Ionic Liquid Model, The Journal of Physical Chemistry B, vol.114, issue.39, pp.12629-12631, 2010.
DOI : 10.1021/jp108179n

C. Merlet, M. Salanne, and B. Rotenberg, New Coarse-Grained Models of Imidazolium Ionic Liquids for Bulk and Interfacial Molecular Simulations, The Journal of Physical Chemistry C, vol.116, issue.14, pp.7687-7693, 2012.
DOI : 10.1021/jp3008877

URL : https://hal.archives-ouvertes.fr/hal-00854033

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, The Journal of Chemical Physics, vol.126, issue.8, p.84704, 2007.
DOI : 10.1063/1.2464084

T. R. Gingrich and M. Wilson, On the Ewald summation of Gaussian charges for the simulation of metallic surfaces, Chemical Physics Letters, vol.500, issue.1-3, pp.178-183, 2010.
DOI : 10.1016/j.cplett.2010.10.010

J. I. Siepmann and M. Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, The Journal of Chemical Physics, vol.102, issue.1, pp.511-524, 1995.
DOI : 10.1063/1.469429

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1984.
DOI : 10.1063/1.447334