Skip to Main content Skip to Navigation
Journal articles

Recognizing Lexical and Semantic Change patterns in Evolving Life Science Ontologies to Inform Mapping Adaptation

Abstract : Background. Mappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking. Methods. This research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation. Results. The summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings are adapted. We found that the de- tected correlations cover ~ 66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms. Conclusions. The experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-01115566
Contributor : Chantal Reynaud <>
Submitted on : Wednesday, February 11, 2015 - 12:16:24 PM
Last modification on : Thursday, July 8, 2021 - 3:50:07 AM

Identifiers

Citation

J.C. dos Reis, Dinh Duy, Marcos da Silveira, Cédric Pruski, Chantal Reynaud-Delaître. Recognizing Lexical and Semantic Change patterns in Evolving Life Science Ontologies to Inform Mapping Adaptation. Artificial Intelligence in Medicine, Elsevier, 2015, 63 (3), pp.153-170. ⟨10.1016/j.artmed.2014.11.002⟩. ⟨hal-01115566⟩

Share

Metrics

Record views

252