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Abstract

We consider the estimation of the stable tail dependence function. We propose a bias-

corrected estimator and we establish its asymptotic behaviour under suitable assumptions.

The finite sample performance of the proposed estimator is evaluated by means of an ex-

tensive simulation study where a comparison with alternatives from the recent literature is

provided.

Keywords: Multivariate extreme value statistics, stable tail dependence function, bias cor-

rection.
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1 Introduction and notations

Many problems involving extreme events are inherently multivariate. For instance, de Haan

and de Ronde (1998) estimate the probability that a storm will cause a sea wall near the town

of Petten (the Netherlands) to collapse because of a dangerous combination of sea level and

wave height. Other examples can be found in actuarial science, finance, environmental science

and geology, to name but a few. A fundamental question that arises when studying more than

one variable is that of extremal dependence. Similarly to classical statistics one can summarise

extremal dependency in a number of well-chosen coefficients that give a representative picture
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of the dependency structure. Here, the prime example of such a dependency measure is the

coefficient of tail dependence (Ledford and Tawn, 1997). Alternatively, a full characterization of

the extremal dependence between variables can be obtained from functions like e.g. the stable

tail dependence function, the spectral distribution function or the Pickands dependence func-

tion. We refer to Beirlant et al. (2004) and de Haan and Ferreira (2006), and the references

therein, for more details. In this paper we will focus on bias-corrected estimation of the stable

tail dependence function.

For any arbitrary dimension d, let pXp1q, ..., Xpdqq be a multivariate vector with continuous

marginal cumulative distribution functions (cdfs) F1, ..., Fd. The stable tail dependence function

is defined for each xi P R�, i � 1, ..., d, as

lim
tÑ8

tP
�

1� F1pXp1qq ¤ t�1x1 or ... or 1� FdpXpdqq ¤ t�1xd

	
� Lpx1, ..., xdq

which can be rewritten as

lim
tÑ8

t
�
1� F

�
F�1
1 p1� t�1x1q, ..., F�1

d p1� t�1xdq
�� � Lpx1, ..., xdq (1)

where F is the multivariate distribution function of the vector pXp1q, ..., Xpdqq.

Now, consider a sample of size n drawn from F and an intermediate sequence k � kn, i.e. k Ñ8
as n Ñ 8 with k{n Ñ 0. Let us denote x � px1, ..., xdq a vector of the positive quadrant Rd�
and X

pjq
k,n the k�th order statistic among n realisations of the margins Xpjq, j � 1, ..., d. The

empirical estimator of L is then given by

pLkpxq � 1

k

ņ

i�1

1l
tX

p1q
i ¥X

p1q
n�rkx1s�1,n

or ... or X
pdq
i ¥X

pdq
n�rkxds�1,n

u
.

The asymptotic behaviour of this estimator was first studied by Huang (1992); see also Drees

and Huang (1998), and de Haan and Ferreira (2006). As is common in extreme value statistics,

the empirical estimator pLkpxq is affected by bias, which often complicates its application in

practice. This bias-issue will be addressed in the present paper.

In the univariate framework there are numerous contributions to the bias-corrected estimation

of the extreme value index and tail probabilities. Typically, the bias reduction of estimators for
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tail parameters is obtained by taking the second order structure of an extreme value model ex-

plicitly into account in the estimation stage. We refer here to Beirlant et al. (1999), Feuerverger

and Hall (1999), Matthys and Beirlant (2003), and more recently, Gomes et al. (2008) and

Caeiro et al. (2009) . In the bivariate framework some attention has been paid to bias-corrected

estimation of the coefficient of tail dependence η. Goegebeur and Guillou (2013) obtained the

bias correction by a properly weighted sum of two biased estimators, whereas Beirlant et al.

(2011) fitted the extended Pareto distribution to properly transformed bivariate observations.

Recently, a robust and bias-corrected estimator for η was introduced by Dutang et al. (2014).

For what concerns the stable tail dependence function we are only aware of the estimator re-

cently proposed by Fougères et al. (2015).

For the sequel, in order to study the behaviour of pLkpxq or a function of it, we need to assume

some conditions mentioned below and well-known in the extreme value framework:

First order condition: The limit in (1) exists and the convergence is uniform on r0, T sd for

T ¡ 0;

Second order condition: There exist a positive function α such that αptq Ñ 0 as t Ñ 8
and a non null function M such that for all x with positive coordinates

lim
tÑ8

1

αptq
 
t
�
1� F

�
F�1
1 p1� t�1x1q, ..., F�1

d p1� t�1xdq
��� Lpxq( �Mpxq, (2)

uniformly on r0, T sd for T ¡ 0;

Third order condition: There exist a positive function β such that βptq Ñ 0 as tÑ8 and a

non null function N such that for all x with positive coordinates

lim
tÑ8

1

βptq

#
t
�
1� F

�
F�1
1 p1� t�1x1q, ..., F�1

d p1� t�1xdq
��� Lpxq

αptq �Mpxq
+
� Npxq, (3)

uniformly on r0, T sd for T ¡ 0. This requires that N is not a multiple of M .
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Note that these assumptions imply that the functions α and β are both regularly varying with

indices ρ and ρ1 respectively which are non positive. In the sequel we assume that both indices

are negative. Remark also that the functions L, M and N have an homogeneity property, that is

Lpaxq � aLpxq, Mpaxq � a1�ρMpxq and Npaxq � a1�ρ�ρ
1
Npxq for a positive scale parameter a.

The remainder of the paper is organised as follows. In the next section we introduce our

estimators for Lpxq, as well as for the second order quantities ρ and α, and study their asymptotic

properties. The finite sample performance of the proposed bias-corrected estimator and of some

estimators from the recent literature are evaluated by a simulation experiment in Section 3. The

proofs of all results are given in the Appendix.

2 Estimators and asymptotic properties

Consider now the rescaled version

pLk,apxq :� a�1pLkpaxq
for a positive scale parameter a. Our first aim is to look at the behaviour of

rLkpxq :� 1

k

ķ

j�1

KpajqpLk,aj pxq
where aj :� j

k�1 , j � 1, ..., k, and K is a function defined on p0, 1q which is positive and such

that
³1
0Kpuqdu � 1. This function is called a kernel function in the sequel. Let ej be a d�vector

with zeros, except for position j where it is one.

Theorem 1: Let X1, ...,Xn be independent multivariate random vectors in Rd with common

joint cdf F and continuous marginal cdfs Fj, j � 1, ..., d. Assume that the third order condition

(3) holds with negative indices ρ and ρ1 and that the first order partial derivatives of L, say δjL,

exist and that δjL is continuous on the set of points tx P Rd� : xj ¡ 0u. Suppose further that

the function M is continuously differentiable and N continuous. Let K be a kernel such that³1
0Kpuqu�1{2du   8. Assuming that the intermediate sequence k satisfies

?
kαpn{kq Ñ 8 and
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?
kαpn{kqβpn{kq Ñ 0 as nÑ8, we have

?
k

#rLkpxq � 1

k

ķ

j�1

KpajqLpxq � α
�n
k

	
Mpxq1

k

ķ

j�1

Kpajqa�ρj
+

dÝÑ
�» 1

0
Kpuqu� 1

2du



ZLpxq (4)

in Dpr0, T sdq for every T ¡ 0 where

ZLpxq :�WLpxq �
ḑ

j�1

WLpxjejqδjLpxq

with WL a continuous centered Gaussian process with covariance structure

ErWLpxqWLpyqs � µtRpxq XRpyqu

where

Rpxq � tu P Rd� : there exists j such that 0 ¤ uj ¤ xju

and µ is the measure defined as

µ tRpxqu :� Lpxq.

Theorem 1 is a direct application of Proposition 2 in Fougères et al. (2015) combining with the

homogeneity properties of L and M mentioned above and the equality in distribution between

the processes ZLpuxq and
?
uZLpxq. From our Theorem 1, we can easily deduce the following

corollary which gives the asymptotic behaviour of an uncorrected estimator,
rLkpxq

1
k

°k
j�1Kpajq

, for L.

Corollary 1: Under the assumptions of Theorem 1, we have

?
k

# rLkpxq
1
k

°k
j�1Kpajq

� Lpxq � α
�n
k

	
Mpxq

1
k

°k
j�1Kpajqa�ρj

1
k

°k
j�1Kpajq

+
dÝÑ

�» 1

0
Kpuqu� 1

2du



ZLpxq

in Dpr0, T sdq for every T ¡ 0.

Now the idea is to remove from
rLkpxq

1
k

°k
j�1Kpajq

the bias term by estimating the function α
�
n
k

�
Mpxq

as well as the second order rate parameter ρ. These quantities will be estimated externally with
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the same intermediate sequence k � kn, which is such that k � opkq. This idea was originally

proposed in the univariate framework by Gomes and co-authors (see Caeiro et al., 2009) and

has the advantage that the variance of the reduced bias estimator is the same as that of the

uncorrected estimator.

First we have to define an estimator for ρ. Similarly to Fougères et al. (2015), we propose the

following estimator:

rρkpx�q :�
�

1� 1

log r
log

����∆k,aprx�q
∆k,apx�q

����
^ 0 (5)

at a fixed d�vector x�, where r P p0, 1q and

∆k,apxq :� a�1rLkpaxq � rLkpxq.
Proposition 1. For any fixed d�vector x�, under the assumptions of Theorem 1, we have

?
kα

�n
k

	
prρkpx�q � ρq dÝÑ 1� rρ�

1
2

log r

ZLpx�q
Mpx�q

³1
0Kpuqu�

1
2du³1

0Kpuqu�ρdu
a�1{2 � 1

a�ρ � 1
.

Secondly we study the estimation of qαkpxq :� αpn{kqMpxq. To this aim consider the following

regression model, inspired from Proposition 2 of Fougères et al. (2015):

pLk,aj pxq � Lpxq � qαkpxqa�ρj � εj , j � 1, . . . , k, (6)

where ε1, . . . , εk are random error terms. Straightforward application of least squares estimation

to (6), where ρ is fixed at rρkpx�q given in (5), leads to

rαkpxq :�
°k
j�1

°k
`�1

�
a
�rρkpx�q
j � a

�rρkpx�q
`

	 pLk,aj pxq°k
j�1

°k
`�1 a

�rρkpx�q
j

�
a
�rρkpx�q
j � a

�rρkpx�q
`

	 . (7)

The aim of the next proposition is to establish the asymptotic behaviour of this estimator.

Proposition 2. For any fixed d�vector x�, under the assumptions of Theorem 1, we have

?
k
�rαkpxq � α

�n
k

	
Mpxq

	
dÝÑ 1� rρ�

1
2

log r

Mpxq
Mpx�q

³1
0Kpuqu�

1
2du³1

0Kpuqu�ρdu
a�1{2 � 1

a�ρ � 1

ρ2 � ρ� 1

ρp1� ρqp1� 2ρqZLpx
�q

�2p1� ρq
ρ

ZLpxq
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in Dpr0, T sdq for every T ¡ 0.

We have now all the ingredients to study the behaviour of our bias-corrected estimator for L,

namely

Lk,kpxq :�
rLkpxq � �

k
k

	rρkpx�q rαkpxq 1k °k
j�1Kpajqa

�rρkpx�q
j

1
k

°k
j�1Kpajq

.

This leads to our Theorem 2.

Theorem 2: Under the assumptions of Theorem 1, satisfied for two intermediate sequences k

and k̄ such that k � opk̄q we have

?
k
�
Lk,kpxq � Lpxq

	
dÝÑ

�» 1

0
Kpuqu� 1

2du



ZLpxq (8)

in Dpr0, T sdq for every T ¡ 0.

Note that the limiting process is independent of the value of ρ, and that the bias-corrected

estimator has the same asymptotic variance as the uncorrected estimator of Corollary 1.

A problem of interest could be now to minimize the variance in our Theorem 2. To this

aim, we illustrate in Corollary 2 that if we take a power kernel, that is a kernel of the form

Kptq � pτ � 1q tτ1lttPp0,1qu with τ ¡ �1{2, the variance of our bias-corrected estimator Lk,kpxq
is decreasing as τ increases, and it can reach the variance of the empirical estimator pLkpxq, i.e.

the variance of ZLpxq (see Proposition 2 in Fougères et al., 2015).

Corollary 2: Under the assumptions of Theorem 2, for the power kernel Kptq � pτ�1q tτ1lttPp0,1qu

with τ ¡ �1{2, we have

?
k
�
Lk,kpxq � Lpxq

	
dÝÑ 2

1� τ

1� 2τ
ZLpxq

in Dpr0, T sdq for every T ¡ 0.

3 Simulation experiment

In order to evaluate the finite sample behaviour of our estimator Lk,kpxq, we perform a simulation

study and we compare our estimator with the empirical one, pLkpxq, and two bias-corrected
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estimators recently proposed by Fougères et al. (2015), defined as follows

9Lk,a,kpxq :� pLk,apxq � p∆
k,pa

�pρ
k
px�q

�1q
�1{pρ

k
px�qpxq

rLk,a,kpxq :�
pLkpxqp∆k,apaxq � pLkpaxqp∆k,apxqp∆k,apaxq � ap∆k,apxq

where p∆k,apxq is defined similarly as ∆k,apxq but based on the empirical estimator, that is

p∆k,apxq :� a�1pLkpaxq � pLkpxq
and pρkpx�q similarly as rρkpx�q but based on p∆k,apxq:

pρkpx�q :�
�

1� 1

log r
log

����� p∆k,aprx�qp∆k,apx�q

�����
�
^ 0. (9)

For simplicity, we focus on R2 and using the homogeneity property, we consider only the esti-

mation of Lpt, 1� tq for t P p0, 1q, corresponding to Pickands dependence function, and the same

distributions as in Fougères et al. (2015), namely


 the Cauchy distribution, for which Lpx, yq � px2 � y2q1{2;

 the Student(ν) distribution, for which

Lpx, yq � y Fν�1

�
py{xq1{ν � θ?

1� θ2

?
ν � 1

�
� xFν�1

�
px{yq1{ν � θ?

1� θ2

?
ν � 1

�

where Fν�1 is the cdf of the univariate Student distribution with ν � 1 degrees of freedom and

θ is the Pearson correlation coefficient. We set θ � 0.5 and ν � 2;


 the bivariate Pareto of type II model, for which Lpx, yq � x � y � px�p � y�pq�1{p. We set

p � 3 and we called this model BPII(3);


 the Symmetric logistic model, for which Lpx, yq � px1{s � y1{sqs. We set s � 1{3;


 the Archimax model with the logistic generator Lpx, yq � px2 � y2q1{2 and with the mixed

generator Lpx, yq � px2 � y2 � xyq{px� yq.

For each distribution, we simulate 1000 samples of size 1000. As recommended by Fougères et

al. (2015), we use the values a � r � 0.4, k � 990, and we take x� � x. Since any stable

tail dependence function satisfies maxpt, 1 � tq ¤ Lpt, 1 � tq ¤ 1, all the estimators have been
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corrected so that they satisfy these bounds.

First, in Figure 1 we give the boxplots of pρkp0.5, 0.5q and rρkp0.5, 0.5q for a power kernel with

τ � 0, 5 and 10 in case of a Studentp2q distribution. It is clear from these boxplots that the esti-

mators for ρ perform reasonably well with respect to the median, but with some volatility, except

in case τ � 0 where it is reduced. However, as we will see in the other figures, these uncertainties

seem to have fortunately no impact on the performance of our estimators for L. Note also that

our estimator rρkpx�q is at least as competitive as the one proposed by Fougères et al. (2015),

whatever the value of τ ¥ 0. Moreover, to avoid problems in the computation of 9Lk,a,kpxq due to

the fact that pρkpx�q can be too close to 0, we set pρkpx�q � �1 if pρkpx�q P r�0.1, 0s and its defini-

tion given in (9) otherwise. Similarly, for consistency, this modification has been used for rρkpx�q.
Next, we examine the performance of the estimators for Lpxq at specific points in R2

�. In Figure

2 and 3 we show the sample mean (left) and the empirical mean squared error (MSE, right) of

Lk,kpxq with τ � 0 (dashed line), τ � 5 (full line) and τ � 10 (dotted line) as a function of k,

for x � p0.5, 0.5q and x � p0.2, 0.8q, respectively, on three of the above mentioned distributions

for brevity. As is clear from these figures, in general the estimators have for all values of τ a

nice stable behaviour close to the true value of Lpxq. This can be expected since our estimators

are bias-corrected. In terms of MSE the best performance is at both x positions obtained for

τ � 5, and therefore in subsequent comparisons of estimators we will focus on this choice for our

estimator. It is noteworthy to observe that the MSE has a very low curvature, so the MSE-values

are very close to the minimum of the MSE for a very wide range of values for k. In Figures 4

and 5 we compare the performance of Lk,kpxq (full line) with the two estimators proposed by

Fougères et al. (2015), 9Lk,a,kpxq (dotted line) and rLk,a,kpxq (dashed line), and the empirical one,pLkpxq (dash-dotted line), for x � p0.5, 0.5q and x � p0.2, 0.8q, respectively. From the plots of the

sample means we can clearly see the bias-correcting effect of Lk,kpxq and rLk,a,kpxq: compared to

the empirical estimator these estimators have a stable sample path that is close to the true value

of Lpxq and this for a wide range of values of k. The estimator 9Lk,a,kpxq has some bias-correcting

effect, though the gain relative to the empirical estimator is quite distribution dependent. Unlike
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rLk,a,kpxq, the estimator Lk,kpxq has a very smooth sample path, which can be expected as we

take essentially a weighted sum of the empirical estimator calculated over different values of x.

In terms of MSE, Lk,kpxq has a better performance than 9Lk,a,kpxq and rLk,a,kpxq. Compared

to the empirical estimator, one can see that it has an MSE value that is at least as good as

that of the minimum MSE for pLkpxq, but it has this low MSE over a very wide range of k-values.

Finally, we compare the different estimators for L not at a single point but for the whole function,

using the absolute bias and MSE, computed over N � 1000 replications as follows:

Abiaspkq :� 1

10

10̧

t�1

����� 1

N

Ņ

i�1

pLpiqk pxtq � Lpxtq
�����

MSEpkq :� 1

10N

10̧

t�1

Ņ

i�1

�pLpiqk pxtq � Lpxtq
	2

where txt :� �
t
10 , 1� t

10

�
; t � 1, ..., 10u and pLpiqk is the estimate based on the i�th sample. We

naturally replace pLpiqk by L
piq

k,k
, 9L

piq

k,a,k
and rLpiq

k,a,k
. In Figure 6 we show the Abiaspkq of the esti-

mators under consideration as a function of k for the six distributions mentioned above. Figure

7 displays MSEpkq. These global performance measures lead us to the same conclusions as the

aforementioned study at specific points. Because of the bias-correction, the estimators Lk,k andrLk,a,k keep the bias low for a wide range of k-values. Overall, the estimator Lk,k has a more

smooth sample path than 9Lk,a,k and rLk,a,k, and therefore it also outperforms the estimators of

Fougères et al. (2015) in terms of minimal MSE. Also here, the MSE of our estimator is close

to or better than the minimal MSE value of the empirical estimator, and this for a wide range

of k-values.

4 Appendix: Proofs

4.1 Proof of Proposition 1

The key elements in the proof are the homogeneity of the functions L and M together with the

equality in distribution between the processes ZLpaxq and
?
aZLpxq. Thus from our Theorem
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Figure 1: Boxplots of pρkp0.5, 0.5q and rρkp0.5, 0.5q for a power kernel with τ � 0, 5 and 10 in case

of a Studentp2q distribution.

1, we deduce that

∆k,apx�q � α
�n
k

	
Mpx�q1

k

ķ

j�1

Kpajqa�ρj ra�ρ � 1s � ZLpx�q?
k

» 1

0
Kpuqu� 1

2dura� 1
2 � 1s � oP

�
1?
k



.

A similar expression can be obtained for ∆k,aprx�q from which we can easily justify the expression

of our estimator rρkpx�q given in (5), and deduce that

rρkpx�q � ρ� 1� rρ�
1
2

log r

1?
k

ZLpx�q
α
�
n
k

�
Mpx�q

³1
0Kpuqu�

1
2du

1
k

°k
j�1Kpajqa�ρj

a�
1
2 � 1

a�ρ � 1
� oP

�
1?

kα
�
n
k

�� ,

from which we can easily deduce our Proposition 1.

4.2 Proof of Proposition 2

To prove the proposition, we use the Skorohod construction, meaning that we have to look at

the difference

D :�
�����?k �rαkpxq � α

�n
k

	
Mpxq

	
� 1� rρ�

1
2

log r

Mpxq
Mpx�q

³1
0Kpuqu�

1
2du³1

0Kpuqu�ρdu
a�1{2 � 1

a�ρ � 1

ρ2 � ρ� 1

ρp1� ρqp1� 2ρqZLpx
�q

�2p1� ρq
ρ

ZLpxq
����
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Figure 2: Mean (left) and MSE (right) of our estimator Lk,kp0.5, 0.5q for different values of τ :

τ � 0 (dashed line), τ � 5 (full line), τ � 10 (dotted line). Three distributions have been

considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).
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Figure 3: Mean (left) and MSE (right) of our estimator Lk,kp0.2, 0.8q for different values of τ :

τ � 0 (dashed line), τ � 5 (full line), τ � 10 (dotted line). Three distributions have been

considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).
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Figure 4: Mean (left) and MSE (right) of our estimator Lk,k at x � p0.5, 0.5q with τ � 5

(full line) compared to the estimators of Fougères et al. (2015): 9Lk,a,k (dotted line) and rLk,a,k
(dashed line) and the empirical estimator pLk (dash-dotted line). Three distributions have been

considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).
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Figure 5: Mean (left) and MSE (right) of our estimator Lk,k at x � p0.2, 0.8q with τ � 5

(full line) compared to the estimators of Fougères et al. (2015): 9Lk,a,k (dotted line) and rLk,a,k
(dashed line) and the empirical estimator pLk (dash-dotted line). Three distributions have been

considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).
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Figure 6: Absolute bias of our estimator Lk,k with τ � 5 (full line) compared to the estimators of

Fougères et al. (2015): 9Lk,a,k (dotted line) and rLk,a,k (dashed line) and the empirical estimatorpLk (dash-dotted line). Six distributions have been considered: First line: Student(2) (left),

Cauchy (right); Second line: BPII(3) (left), Symmetric logistic (right); Third line: Archimax

mixed (left), Archimax logistic (right).
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Figure 7: MSE of our estimator Lk,k with τ � 5 (full line) compared to the estimators of

Fougères et al. (2015): 9Lk,a,k (dotted line) and rLk,a,k (dashed line) and the empirical estimatorpLk (dash-dotted line). Six distributions have been considered: First line: Student(2) (left),

Cauchy (right); Second line: BPII(3) (left), Symmetric logistic (right); Third line: Archimax

mixed (left), Archimax logistic (right).
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and to show that it tends almost surely uniformly to 0 as n Ñ 8. According to Proposition 2

in Fougères et al. (2015) and using (7), we have

D ¤
������?kα

�n
k

	
Mpxq

°k
j�1

°k
`�1ra�ρj � a

�rρkpx�q
j sra�rρkpx�qj � a

�rρkpx�q
` s°k

j�1

°k
`�1 a

�rρkpx�q
j ra�rρkpx�qj � a

�rρkpx�q
` s

�1� rρ�
1
2

log r

Mpxq
Mpx�q

³1
0Kpuqu�

1
2du³1

0Kpuqu�ρdu
a�1{2 � 1

a�ρ � 1

ρ2 � ρ� 1

ρp1� ρqp1� 2ρqZLpx
�q
�����

�
������
�� °k
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`�1 a

� 1
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j ra�rρkpx�qj � a
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` s°k
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�rρkpx�q
j ra�rρkpx�qj � a

�rρkpx�q
` s

� 2p1� ρq
ρ

�
ZLpxq
������� op1q.

The main idea now is to replace everywhere the terms with rρkpx�q by the same terms with ρ

and to study the difference by the mean value theorem. For instance, if we look at the term

1

k2

ķ

j�1

ķ

`�1

a
�rρkpx�q
j ra�rρkpx�qj � a

�rρkpx�q
` s

appearing several times as a denominator in the bound of D, we can rewrite it as follows:

1

k2

ķ

j�1

ķ

`�1

a�ρj ra�ρj � a�ρ` s

� 1

k2

ķ

j�1
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�
a
�rρkpx�q
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�
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�
1?
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�
1

k
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a
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j ln aj

�
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�
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k

ķ

j�1

a
�qρkpx�q
j

��
1

k

ķ

j�1

a
�qρkpx�q
j ln aj

�

by the mean value theorem where qρkpx�q is an intermediate value between rρkpx�q and ρ. Using

the same approach for each term combining with Proposition 1 leads to Proposition 2.
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4.3 Proof of Theorem 2

According to our Theorem 1, we clearly have the following decomposition

?
k
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Lk,kpxq � Lpxq
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by applying our Proposition 2 and again the mean value theorem. Under the assumptions of

our Theorem 2, we have
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Recall now that the function α is regularly varying with index ρ   0, that is αptq � tρ`αptq
where `α is slowly varying at infinity. Thus
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by the mean value theorem. Theorem 2 now follows under the assumptions since

lim
tÑ8

1

βptq
�
`αptcq
`αptq � 1



� Op1q (10)

when tÑ8 and c � cptq Ñ 8. To be convinced by (10), remark that for all x, y ¡ 0 and t ¡ 0

we have with β1ptq � αptqβptq and Ltpx1q � t
�
1� F

�
F�1
1 p1� t�1xq, ..., F�1

d p1� t�1xq��, and

using the fact that Ltpx1q � xLt{xp1q, that
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Taking limits for tÑ8 we obtain that
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*
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Since the limit for tÑ8 of β1pt{xq{β1ptq exists, from (11) the limit for tÑ8 of 1
βptq

�
αpt{xq
αptq � x�ρ

	
exists such that, combining with Theorem B.2.1 in de Haan and Ferreira (2006):

lim
tÑ8

1

βptq
�
αpt{xq
αptq � x�ρ



� x�ρ lim

tÑ8

1

βptq
�
`αpt{xq
`αptq � 1



� x�ρψp1{xq,

with ψpxq � a xρ
1
�1
ρ1 and a ¡ 0 (in case a   0 one can redefine `α as �`α and the result will

follow with a ¡ 0). Note that the positive constant a can in fact be incorporated in the function

β, so from now on we take without loss of generality a � 1. We have thus, with rβ :� β`α,

lim
tÑ8

`αptxq � `αptqrβptq � ψpxq.

Now write, for some function rβ� where rβ� � rβ,�����`αptxq � `αptqrβptq
����� ¤

rβ�ptqrβptq
�
|ψpxq| �

�����`αptxq � `αptqrβ�ptq � ψpxq
�����
�
.

By Theorem B.2.18 in de Haan and Ferreira (2006) (see also Drees, 1998) we have for any ε ¡ 0

there is a t0 such that for t, tx ¡ t0,�����`αptxq � `αptqrβptq
����� ¤ p1� κqr|ψpxq| � εxρ

1�δs.

where 0   δ   �ρ1 and κ ¡ 0. Since both functions in the right-hand side are bounded for

x P rx0,8q, x0 ¡ 0, result (10) follows.
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