A Higher Frobenius–Schur Indicator Formula for Group-Theoretical Fusion Categories

Abstract : Group-theoretical fusion categories are defined by data concerning finite groups and their cohomology: A finite group G endowed with a three-cocycle ω, and a subgroup H ⊂ G endowed with a two-cochain whose coboundary is the restriction of ω. The objects of the category are G-graded vector spaces with suitably twisted H-actions; the associativity of tensor products is controlled by ω. Simple objects are parametrized in terms of projective representations of finite groups, namely of the stabilizers in H of right H-cosets in G, with respect to two-cocycles defined by the initial data. We derive and study general formulas that express the higher Frobenius-Schur indicators of simple objects in a group-theoretical fusion category in terms of the group-theoretical and cohomological data defining the category and describing its simples.
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

Contributeur : Peter Schauenburg <>
Soumis le : mercredi 11 février 2015 - 10:38:37
Dernière modification le : vendredi 8 juin 2018 - 14:50:07
Document(s) archivé(s) le : samedi 12 septembre 2015 - 10:52:29


Fichiers produits par l'(les) auteur(s)




Peter Schauenburg. A Higher Frobenius–Schur Indicator Formula for Group-Theoretical Fusion Categories. Communications in Mathematical Physics, Springer Verlag, 2015, 340 (2), pp.833-849. 〈http://link.springer.com/article/10.1007/s00220-015-2437-2〉. 〈10.1007/s00220-015-2437-2〉. 〈hal-01115411〉



Consultations de la notice


Téléchargements de fichiers