Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods

Abstract : We build a bridge between the hybrid high-order (HHO) and the hybridizable discontinuous Galerkin (HDG) methods in the setting of a model diffusion problem. First, we briefly recall the construction of HHO methods and derive some new variants. Then, by casting the HHO method in mixed form, we identify the numerical flux so that the HHO method can be compared to HDG methods. In turn, the incorporation of the HHO method into the HDG framework brings up new, efficient choices of the local spaces and a new, delicate construction of the numerical flux ensuring optimal orders of convergence on meshes made of general shape-regular polyhedral elements. Numerical experiments comparing two of these methods are shown.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, Polyhedral discretization for PDE, 50 (3), pp.635-650. 〈10.1051/m2an/2015051 〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01115318
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : samedi 4 juillet 2015 - 20:19:37
Dernière modification le : jeudi 13 décembre 2018 - 14:53:52
Document(s) archivé(s) le : mardi 25 avril 2017 - 23:24:20

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Bernardo Cockburn, Daniele Di Pietro, Alexandre Ern. Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, Polyhedral discretization for PDE, 50 (3), pp.635-650. 〈10.1051/m2an/2015051 〉. 〈hal-01115318v2〉

Partager

Métriques

Consultations de la notice

662

Téléchargements de fichiers

762