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Abstract

It is well known that the solution of the Laplace equation in a non convex
polygonal domain of R? has a singular behaviour near non convex corners.
Consequently we investigate three refined finite volume methods (cell-center,
conforming finite volume-element and non conforming finite volume-element)
to approximate the solution of such a problem and restore optimal orders
of convergence as for smooth solutions. Numerical tests are presented and
confirm the theoretical rates of convergence.
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1 Introduction

Let Q be an open subset of R? with a polygonal boundary I' consisting in a finite
union of linear segments I';, j = 1, ..., N. Without loss of generality we may assume
that the corner I'y N 'y is situated at the origin O and that I'y C (Oz). We further
assume that the interior angle at the other corners is < 7. Let us denote by w the
interior opening between I'y and 'y (see Figure 1).

(Oy)

ADE
v

Figure 1: The domain €2

We consider the standard elliptic problem: For f € L*(Q) let u € H}(f2) be the
variational solution of
{ —Au = f inQ,

(1) U =0 onl.

It is well known that in the case w € |m, 27] (i.e. 2 is non convex), the solution
of (1) presents a corner singularity at O [18]. More precisely, if we introduce the
weighted Sobolev space

H2(Q) = (e B'(9) | |ofsn= / Do dr < +o00),
la]=2" 9

where r := r(z) = d(z,0),z € Q and § > 0, then the solution u € H}(Q) of (1)
belongs to H*#(Q), for 1 — X < < 3, while u ¢ H?(Q2) in the non convex case (for
more details see for instance [18]). Moreover we have the estimate

(2) lul280 S If

0,92
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where a < b means here and below that there exists a positive constant C' indepen-
dent of a and b (and of the meshsize of the triangulation) such that a < C'b.

In the case of a non convex domain €2, different refined finite element methods
have been considered to compensate the effect of the singularities (see [28, 26, 18, 14,
3]). To our knowledge this point of view is mainly not considered for finite volume
methods (see [21]), while they are widely used in the approximation of practical
problems from Physics and Mechanics [7, 25, 16]. Our goal is then to discretize
the problem (1) by some refined finite volume methods. The first one is the so-
called “cell-center” method based on a mechanical approach (see [16, 21, 17, 27]).
We secondly consider two finite volume-element methods (called also box methods),
methods which are combinations of the finite element methods and of the finite
volume methods (see [4, 19, 6, 8, 9]). In both cases we establish optimal rates of
convergence if the meshes are appropriately refined near nonconvex corners of the
domain. Our method actually combines the standard error analysis of finite volume
schemes approximating smooth solutions with the error analysis for finite element
methods for nonsmooth solutions.

In the whole paper the spaces H*(2), with any nonnegative integer s, are the
standard Sobolev spaces in  with norm || - ||s; o and semi-norm | - |; . The space
H}(Q) is defined, as usual, by H}(Q) := {v € HY(Q)/v =0on T'}. L?(Q), p > 1,
are the usual Lebesgue spaces with norm || - ||op o (as usual we drop the index p
for p = 2). In the sequel the symbol |- | will denote either the Euclidean norm in
R™ (n = 1 or 2), or the Euclidean matrix norm, or the length of a line segment or
finally the area of a plane region.

The schedule of the paper is as follows: In section 2 we describe the so-called “cell-
center” method and show that appropriate refinement conditions on the admissible
meshes lead to optimal order of convergence as in the smooth case. Section 3 is
devoted to the analysis of the conforming finite volume-element method. In that
case we prove optimal order of convergence in the H'-norm using a trace theorem
in weighted Sobolev spaces and appropriate refinement conditions on the primal
meshes. Under some additional conditions on f and on the dual meshes, we further
obtain a double order of convergence in the L?- norm using a duality argument. The
same strategy is adopted in section 4 for the nonconforming finite volume-element
method. We finish the paper by some numerical tests which confirm that the use of
refined meshes improves significantly the order of convergence.



2 The “cell-center” method

We start with the notion of admissible mesh (in the sense of ”cell-center” finite
volume method), this definition is motivated by the consistancy of our discretization
scheme.

Definition 2.1 An admissible mesh of Q, denoted by T is a given triplet (V,P,E)
where

a. V is a finite set of convex open polygons of 2, called control volumes,

b. P denotes a set of points of 2 such that each control volume contains exactly
one and only one point of P,

c. € represents the set of edges of the control volumes,
with the following properties:
1. UKGVK = Q

2. For all control volumes K and L, K N L is either empty, either a point, or a
full edge of K and L.

3. Let xg, v, € P, withezg € K, x e Land K, L €¢ V. f KNL=:10 €E&,
then the segment [xx x| is orthogonal to o (see Figure 2).

4. If o € &, if there exists K € V such that o C 02 N 0K and if we denote
by Dg , the half-line with origin vk and perpendicular to o, then Dk ,No =:

{y-} #0.
Finally we define the mesh size of T, denoted by h, as

h := max diam(K).
KeVy

2.1 The numerical scheme

Let us fix an admissible mesh 7 and denote by {ux } ke the unknowns of the problem
(ugx being the approximation of u(zg), for K € V).

We are now ready to formulate the approximation of problem (1) in the ”cell-
center” sense. Integrating (1) on a control volume K and using the divergence
formula, we arrive at

(3) - Z /UVu-nK,gds:/Kf(x)dx,‘v’KEV,

c€fK



Figure 2: Example of common edge o

where £k is the set of edges of K and ng, is the unit outward normal vector to K
along o.

The expressions Vu - nk , are now approximated using finite differences and the
principle of conservation of flux (see [16]). These successive approximations lead to
the following system:

(4) =3 Fe, :/ F(w) da, VK €V,
c€fK K

where

d(xr,rr)

|0|% if o C K Mo

z'K7y0')

Fg o=

)

{ EEPETIET . A

We recall that this system is well defined as proved for instance in [16]:

Proposition 2.2 Let 7 be an admissible mesh of Q. Then the system (4) admits a
unique solution (ug)gey-

2.2 The error estimate

In order to get an optimal error estimate between the exact solution and its approx-
imation, as for finite element methods [28], we require some refinement conditions
on the meshes.



Definition 2.3 An admissible mesh 7 of € is called a [-refined admissible mesh,
with B € [0,1) if there exists £ > 0 such that for all K €V :

(H]) hK < f d(ZUK,O'), Voe gK,
(H2) hi <€ h™F ,if O € 0K |
(H3) hi <& hinfeer r(2)° , if O € OK .

Combining the arguments of [16] and those of [28] we can prove the following
error estimate:

Theorem 2.4 Let 7 be a [-refined admissible mesh of @ with 1 — % < f < %, let
(ur) ey be the solution of (4) and uw € HE(Q) N H*P(Q) be the solution of (1). Let

us introduce the function e, : Q — R : x — e, (x), where

e (x) = ex =u(rg) —ug ifre KK eV,
S0 else.

Then t holds:
(5)

Proof: Remark first that from Lemma 8.4.1.2 of [18] the space H*#(Q) is conti-
nously embedded into C°(Q) if 3 < 1. This allows to give a meaning to u(zx) for
our solution u of (1).

For any K € V,0 € £k let us set

S hlu

2,8,

vk ={(1 —t)xg +to/x € 0,t € [0, 1]},

and define
VKo U VLo if o= fmz’
Vy =
VK,O’ lfU == aK N aQ
u(zr) — u(rk) /VU niodsifo=KNL,
dy o]
RK,U =
—u(xK) 1
Vu - nggds it o = 0K N 0Q,
d, ol J,
d(wx, o) if o = KNI,
d, =

d(z,09) if o = 9K N O,
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The key step is to show that for all K € V,0 € £ we have

(6) |RK,0'| rS

1 |U/|2,ﬂ7y0.-

(lolds)>

Indeed if we assume that (6) holds then the estimate (5) follows in a quite
standard way: Introduce the mesh depending norm [16]:

i
ol := 3 - 1Dal?,

g

o€e€
where D,v := v —vg ifo € ENQ, and D,v:= —vg ifoe ENT.
Let us now show that
(7) lexllz S hlulzp.0-

Indeed the arguments of Theorem 3.3 of [16] yield

lec2 <> > lol 1Ruol lexl.

KeVoely

Consequently by Cauchy-Schwarz’s inequality we obtain

1
3
le-[2< [le- |- (Z|0|daR§> )

ocl

where for all K € V,0 € €k, R, := |Rk |- The estimate (6) in the above one shows
(7).

The requested estimate (5) then follows from (7) and the so-called discrete
Poincaré’s inequality (which is valid for a non convex domain €, see Lemma 3.1
of [16]):

(8) lerllo < diam (Q)[[ec |-

It then remains to establish the estimate (6): First we remark that it suffices to
show (6) for u € C*(Q), since it is proved in Theorem 3.2.2 of [29] that C*(1) is
dense in W2(Q, %), where the space W2(Q,r?) is defined by

W2(Q,7%) == {v e D'(Q) : "D € L*(Q),V|a| < 2},
equipped with its natural norm and since we have the obvious embedding
H>P(Q) — W3 (Q,r7).

7



We now distinguish the following cases:

o= KNL with some K,L €V (i.e. ¢ is an interior edge).

Using a local coordinate system, without loss of generality we may assume that
o = {a} x o', where ¢’ is a segment of the y-axis, and that 1y := (a — a, )T, 2y 1=
(a+~,b)T with b € o' and a, vy > 0 (see Figure 3).

Figure 3: Tllustration of the first case

Using a Taylor expansion of v with an integral remainder, for any = € o, we may
write

uw(zy) —u(x) = Vu(r) - (xy —x) + /0 (zar — ) H(u)(tz + (1 — t)apr) (2 — 2)tdt,

for M = K or L, where H(u) is the Hessian matrix of u. Subtracting the above
identities, remarking that x;, — rx = nk ,d,, and integrating on o, we arrive at

(9) RK,o’ S BK,O’ + BL,0'7

where we have set

Broi= —
K,O’ T |0'|dg.

/ / H(u) (o + (1= D) [ — ot



Using cartesian coordinates z in the above definition (as dz := dzdy = tadtdr)
and remarking that |z — x| < hg, for all x € o, we deduce that

h2
10 B, < — %~ H dz.
(10) 6 S i | OGN

Applying Cauchy-Schwarz’s inequality we arrive at

h2
11 By, < —X 284 e .
( ) Ko > |0’|ng4 (/VK,G r Z |U|2,57 K,

The estimation of the above integral requires to distinguish the case when O €
0K or not.
If O ¢ 0K, then the assumption (H3) allows to write

€2h2
/ rdz < —2/ inf r(2)%r(2) % dz.
VK,o' h VK

K - reK

N

As vk, C K we get

2h2 2h2
/ r2dz < th / r 2828, < th VK |-
VK,o K VK,o K
Since |vk .| = % we deduce that
2 h?
(12) / s < C(E)alol
VK,o K

for some positive constant C'(§) (depending only on &).
If O € 0K, then a direct calculation yields

(13) / r28dz < Cy(€, B)|o]ah,

where Cy(&, ) := W. Since the assumption (H2) yields h[}ﬁ < 51_5%, this
estimate in the above one shows that (12) still holds in this second case.
Inserting the estimate (12) in (11) we have obtained

h

(14) Bio S ——
(Iold,)?

|u|2,ﬁ,1/}(,0-7
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since d, = d(rg,rp) > a > %hK, due to the assumption (H1).

Since a similar estimate holds for By, ,, the estimates (9) and (14) lead to (6).
o = 0K N oS for some K € V. As in the first case we may assume
that o := {a} x o/, for some segment o’ of the y-axis and rx = (a — 2a,b)”, for
some b € o’ and @ > 0 (see Figure 4). We further introduce 6 = {3y + 32/z € o}
and set

1 1
1, = —/Vu.n[(,gds,[& = T/Vu.n;(,&ds.
ol Jo ] J5

Figure 4:
Setting R 1= —u2(a:K) — Iz we remark that
o
(15) Rk, < Rgs+ |1, — I5|.

So it remains to estimate the two above terms. For the first one we argue as in the
first case replacing o by 6. This allows to obtain

Rics S ( H@ @+ [ |H(u>(z>|dz) ,

10



where we have set v} := {(1 — t)zx + t&/i € 5,t € [0,1]}, and v2 := {(1 — t)y, +
ti/3 € 6.t € [0,1]}.

Furthermore using a Taylor expansion of order 1 of Vu-ng,(.) on o, and making
a change of variables, we have

ko

16 I, —I;| <
(16) o~ Lol S

/ H )2

where E, := {(1 — t)zx + tz/z € 0,t € [5,1]}.
At this stage using similar arguments as in the first case one easily shows that
(since v} UvZ C vk, and E, C vk,,)

h

Ris < — " u
K, (|0|d0)%| 2,8,VK,o)
h
L —I;) < —|u .
=Tl 5 oo

In conclusion, these estimates into (15) show that (6) still holds in this second
case. u

Remark 2.5 Under some restrictive hypotheses on the mesh 7, (5) may be proved
combining the results from [5] and [15]. Indeed, the results from [5] show that the
system (4) may be obtained using a mixed formulation of (1). On the other hand,
for non convex domains, optimal error estimates for the mixed approximation of (1)
on refined meshes are obtained in [15]. Our results are also in accordance with those
from [21], obtained for particular meshes 7.

Remark 2.6 Our method may be adapted to the study of singularly perturbated
reaction diffusion problems for which the use of anisotropic meshes (i.e. which do
not satisfy the assumption (H1)) is appropriate. Such meshes were used in [2, 3] for
the discretization of the above mentioned problem using standard FEM (see also
[24] for the use of a finite volume method).

3 The conforming finite volume-element method

As usual this method uses a triangulation of 2 which is the primal mesh, this one
allowing to build a set of boxes, called the dual mesh (these boxes playing the rule of
the control volumes for the ”cell-center” finite volume method, see Definition 2.1).
We then approximate the solution u of (1) in a conforming finite element space

11



based on the primal mesh but using a discretization of an integral formulation of
the problem on the boxes of the dual mesh. Note that the principle of conservation
of flux on the primal mesh is implicitely satisfied.

The primal mesh is a regular triangulation of €2 in Ciarlet’s sense [11] (see below).
We now call E,(K), resp. Z,(K), the set of edges, resp. vertices, of K € Tj; and
then set By := Ugep, Bn(K), Zn := Uger, Zn(K). We further set Zj* := Z, N Q
as the set of interior vertices of the triangulation. The dual mesh is now build as
follows: consider zx an arbitrary interior point of K € Tj, and for e € E,(K), we
set m, the midpoint of e. For K € T}, and z € Z,(K), we clearly have z := e N[,
with e,l € Ej,(K); with these notation we set b, x := Conv|zk, z, me, m;]. The box
associated with z € Zj, is then defined by b, := Uger, ez, (k) b2.ic (see Figure 5)
and the set of boxes, or control volumes, is B, :={b, : z € Z,}.

z bz

2K

9N

Figure 5: Example of boxes b,

We further define
X} :={ve Hy(Q)/v|x € P\(K),VK € T},}.

For z € Z{", we introduce Y, as the standard hat function related to z, i.e., x, € X}
and satisfies x,(z) = 1 and x.(2') = 0, for all 2’ € Z,,\ {z}, while ¥, is the character-
istic function of the box b,. Finally for v € X} that may be written v := Z v(2) Xz,
2ezin
we may associate the unique piecewise constant function v := Z v(2)X, and con-
zeZin
versely.



3.1 The discretization

Integrating (1) on a box b, and using the divergence formula, we have

ou

17 -
(17) . .

ds = / f(z)dx,¥z € Z,
b

where n, is the unit outward normal vector along db,. The approximation of (1) in
the conforming finite volume-element method sense is to find ugc € X} satisfying

Oupc

(18) - ds = /b f(z)dz,Vz € Z]".

ob, anz

Proposition 3.1 ([4]) Consider a regular triangulation Ty, of Q and a correspond-
ing set of bores By, built above. Then the system (18) admits a unique solution
Upc G;Xg.

Remark 3.2 Setting
a:XpxX)—R: (v,w)H/Vv-dex,
Q

by Lemma 3 of [4] we know that (18) is equivalent to

a(“BC:X})::(faxz)Qavz 65227'

This means that the system (18) is reduced to the system AU = F, where U :=
(UBC,z)zez;'Lna F = (fb fdx)zez;f and ugc = Zzezin Upc,,Xz- 10 comparison with
the linear system AU = F obtained by the discretization of (1) using the standard
FEM based on X}, only the right-hand side has changed.

3.2 The error estimates

As before the singular behaviour of the solution u of (1) near O requires refinement of
the meshes near this point O, we then introduce the following hypotheses (compare
with (H1) to (H3)): There exists £ > 0 independent of h such that

(H1) VK € T},,1 < Z—II: < &, which means that 7}, is a regular mesh in Ciarlet’s sense
[11],

(H2) ¥V K € Ty, hg < £ hT7,if O € K,

(H3) V K € Ty, hie < € h infoex r?(2), if O € K.

13



Remark 3.3 The condition (H1’) will allow to obtain appropriate trace inequalities;
it is also equivalent to the minimal angle condition [11]. The conditions (H2’) and
(H3’) are refinement conditions. Meshes fulfilling the conditions (H1’) to (H3’) are

easily built and are used to restore optimal order of convergence for standard FEM
[28, 18, 14, 3].

We start with a trace inequality in the weighted Sobolev space
HY(Q) = {v e L*(Q)/r’Vu € L*(Q)?},
equipped with its natural norm.

Lemma 3.4 Let T}, be a triangulation of Q0 satisfying the condition (H1’) and let
g €0, %[ Fiz K € Ty, and o an arbitrary segment included into K (see Figure 6).
Then for all v € HY(Q), we have

2
v
(19) /UQdS < | h|,|;K + hg |U|iK, if O ¢ K,
2
v
(20) [oras < Py oo e i
Pxc
A
K K o1

Figure 6: A triangle K and o0 C K and their transformation to the reference element

Proof: The estimate (19) is a particular case of (20) for 5 = 0, so we focus our
attention to the estimate (20). We use a standard scaling argument and then prove

14



first (20) on the reference triangle K of vertices (0,0),(1,0) and (0,1). On K one
has

(21) 1012 e S 1912 + 912, 4 Vo € HY(R),

where H“#(K) is defined as before with #(#) = || is the distance to (0,0). Indeed
by Hélder’s inequality (see for instance Lemma 8.4.1.2 of [18]) we have

N . 2
292 HYW(K) < WY(K),Vp< ——,
(22) () o W)V p <
while a standard trace theorem (see for instance Theorem 3 in appendix [IM] of [20])
yields

W' (K) < L(0K), Vp >

Q| W~

By composition we get

. . 1
HYY(K) — L*(0K), for anyf < 3

which proves (21).

We now extend & to obtain a second segment &y such that the extremities of 7y
belong to the boundary of K.

Denote by A a triangle included into K and such that 6; ¢ d.A. By Green’s
formula on the triangle A we have

aAQ
/ ﬁQﬁid§:/iAd:%,Vi:1,2.
0.4 4 0%;

Multiplying this identity by 7;|s, and summing the result on i = 1,2, we get

(23) /@ng < 2/ ﬁ2d§+4/|ﬁ||V@|da§
61 8A\61 A

< 2/ ﬁ2d§+4/ 19]| V| d.
oK K

Hoélder’s inequality and the well known embedding (see [18])

. N 4 1 1
Wl”’(K) — LY(K),Vp > =, with — 4+ - =1,
3 P q
lead to

/K 01V0ldi: < [0l il V0llyp i S 1011 -

15



Combined with (22) we obtain

[ 16119142 S 191

This estimate and the estimate (21) in (23) show that

[@2 45 S o2 4 + o2, 4

g

We conclude using the change of variables:
g : K — K :4 — v = Bgd + by,

where the matrix By satisfies |Bg| ~ hg due to the assumption (H1’) and using
the fact that the length of the segment o is clearly less than hg. [

Lemma 3.5 Let T}, be a triangulation of Q0 satisfying the condition (H1’) and let
g€ [0, %[ Fiz K € Ty, and o an arbitrary segment included into K. Then for all

v € H*P(Q), we have
v
—d
/Uan °

ov
—d
/(,371 y

Proof: By Cauchy-Schwarz’s inequality we have

ov
/o-%ds

and we conclude thanks to the estimates (19) or (20). "

Combining this Lemma and some arguments from [4, 9] and from [28], we can
prove the following error estimates.

2
S Wik +hklvlg, O ¢ K

2
Sl +hi Pl if O € K.

(24)

(25)

2
(26) sw/w%w

Theorem 3.6 Let u € Hy(Q) N H>F(Q), with B €]1 — X, [, (resp. upc € XJ)) be
the unique solution of (1) (resp. (18)). Then under the assumptions (H1’) to (H3’),
we have

(27) lu—upcllie S hlu

2,8,Q /S h|f|0,Q

16



Proof: Let us set
ov

a : Hy(Q) N H>P(Q) x Hy(Q) N H>(Q) 5 R: (v,w) = — Y w(z) o ds.
zezin g
Then (17) and (18) imply the orthogonality relation
a' (v —upc,v) = 0,Vv € X}.
Consequently it holds
(28) d(u—w,v)=d(upc —w,v),Yv,w € X},

Applying Lemma 3 of [4] to this right-hand side (see Remark 3.2) we then get
d(u—w,v) = alupc — w,v), Yo, w € X}.
As upc —w € X)) for w € X}, we conclude that

a'(u—w,v)

sup > |lupe — wli 0, Yw c Xy

vEXP w0 |U|1,Q
By Poincaré-Friedrichs’ inequality we arrive at
a(u—w,v
(29) I amsi
vEXP w0 |U|1,Q

It then remains to estimate the above right-hand side. Let us fix v,w € X}. We
first recall that

a(u—w,v)=— Z v(z) / wd&
zEZ;'L” b o

Applying successively Cauchy-Schwarz’s inequality and Lemma 1 of [4] to this right-
hand side, we obtain

N

(30) la'(u — w,v)

al 2 2

KeTy s,peZp(K

/ Ou—w)
BbsNdby, on

Applying now Lemma 3.5 we get

la'(u — w, v)|N|v|1Q(|u—w|19+ Z hi |U|2K+ Z hi(wwgﬁﬂ)

KET),,0¢K KeTy, 06K

1
2

17



Making use of the refinement conditions (H2’) and (H3’), we obtain

1
(1) @ w0 S ohe (- wlg + Blulp0)® Vo, w e X,

Combining the estimates (29), (31) and taking w := Tu € X}, the Lagrange
interpolant of u at the nodes of the triangulation 7}, we arrive at

(32) lusc = Tullio S llu = Tull .o + hlulzs.0.
This estimate and the well known error estimate (see [28] or Theorem 8.4.1.6 of [18])

(33) |lu— Tu

Lo Shjulzsa,

lead to (27) with the help of the triangular inequality. =

Using an Aubin-Nitsche’s trick we now establish a quadratic convergence rate
for ||u — upcllo,o under some supplementary hypotheses on the meshes and on f.

Theorem 3.7 Let the assumptions of Theorem 3.6 be satisfied. Assume further-
more that for all K € Ty, zx is the barycenter of K and that f € H'(Q). Then it
holds

(34) lu — upe

Proof: Consider the auxiliary (dual) problem: Let ¢ € H}(Q) be the unique
solution of

—A¢ =u—upc in §,
(35)

¢ = 0 on 0).

Then by the results from section 1 we know that ¢ € H>#(Q) with 3 as before, with
the estimate

(36) |0l28.0 + [0l1a S lu — usn|loo-
By the weak formulation of (35) we may write (since u — upc belongs to Hy(Q))
B lu-uselfe = [ V- use)- Vods
Q
= a(u—upc,d —v) +alu—upc,v), Vv € X},

We are then reduced to estimate the two terms of the right-hand side of (37):
For the first term we simply apply Cauchy-Schwarz’s inequality to write

(38) la(u — upc, ¢ — v)| < |u —upcliald — vha, Vv € Xp.
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For the second term we remark that
a(u —uge,v) = a(u,v) — alupe,v).
By the weak formulation of problem (1) we clearly have
a(u,v) = (f,v)q.
While by Lemma 3 of [4] we have (see Remark 3.2)
a(upc,v) = (f,0)q-

Alltogether we arrive at

(39) G(U—UBC,U) = (fav_ﬁ)ﬂ .
Note that
(fiv=Da= Y (fiv—Q)x,
KeTy,
where Q(v)|x = Z v(2) X2k, for all K € T),. Therefore, setting fx := ﬁ [y [ dz,

2€Zp(K)
the mean value of f on K € T}, the above identity may be transformed into

(40) (fo—0a= Y (f—frov—QW)k+ Y (fx.v — Q).

KET), KETy,

For all K € T}, Cauchy-Schwarz’s inequality and the Bramble-Hilbert Lemma
([11]) lead to

(f = [ v = Q)k| < If = frlloxllv — Q)[lo.x S P! flxlv]i k.

On the other hand one has

(fio— Q)i = fl /K v ds— /K Q(v) dx)

= fx /deaj—? Z v(z) ] =0,

ZEZh(K)

K]

since zx is the barycenter of K and since the quadrature rule — Z v(z) is

ZEZh(K)
exact on Py.
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These results in (40) yield
|(f,v = 0)al S K| flia v
Inserting this estimate in (39) we have shown that
(41) la(u — upc, v)] S W flelvlie.

At this stage we come back to (37) and use the estimates (38) and (41) to get
for all v € X}:

1,0

(42)  fju— UBC’“%@ < |u—upclialg —viia+h |flia(lv — ¢lia + |9a)
We now take v := I¢ and by (33) and (27) we obtain
lu = upcllon S W1 floglélpa + P2 |flLallélie + 16l2p.0).
We conclude by using (36). =

Remark 3.8 Analogously one can prove for quasi-uniform meshes (i.e. § =0) the
slow orders of convergence

e fllog
WEE| f

||U — UBcl||1,0

ANRIA

||U — Upcllo,n 1,0,

for any € > 0. This is confirmed by the results presented in [10].

Remark 3.9 In Theorem 3.7, the assumption on the points zx to be the barycenter
of K is essential to obtain a rate of convergence of order 2 as shown in [22].

Remark 3.10 Our finite volume-element method may be used for the approxima-
tion of singularly perturbated reaction-diffusion problems using anisotropic meshes.
In that case adapting the proof of Theorems 3.6 and 3.7 and using the results from
[1, 2] one can obtain some error estimates but which seem to be less interesting than
those obtained by the conforming finite element method.

4 The nonconforming finite volume-element me-
thod

The general idea of the method is similar to the one of the previous section except
that we approximate the solution u of (1) in the P; non conforming finite element
space (see [12, 8]).
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As before the primal mesh consists in a regular triangulation 7}, of Q2. With the
same notation as in the previous section, the dual mesh is built as follows: consider
an arbitrary interior point zx of K € T}, then for e € E,(K) N Ey(L), the box
associated with e is defined by b, := |J,., Conv|[zk, 2, x] (see Figure 7). The
set of boxes is simply By, := {b. : e € E,}. For any edge e we denote by m, the
midpoint of e.

Figure 7: An example of a box b,

Let us set Ei" = {e € Ej/e C Q} the set of interior edges of T}, and by
Ef*t = {e € E,/e C 0Q} the set of exterior edges of T},. We further introduce the
Crouzeix-Raviart finite element space:

Spyi={v, € L*(Q)/)  vnr € P1(K),VK € Ty,
Up k (Me) = Vpr(Me), Ve € EM K LeT,:e=KNL,
and vy, (m,) = 0,Ve € Ef"'}.

Since S) is not included into Hy (2), the space S is equipped with the norm ||-[]1, :=

1Bt

KET}L

4.1 The discretization

Integrating (1) on a box b, and using the divergence formula, we have for all e € Ej,

(43) - /a 0 g — [ (@) e

be 8718

where n, means the outward normal vector along 0b,.

21



By analogy with the previous section, the approximation of (1) in the noncon-
forming finite volume-element method sense is then to find ugy € SP satisfying

0
(44) —/ UBN s = f(z) dx Ve € E™.
ab. OMe be

Proposition 4.1 ([8]) Consider a regular triangulation Ty, of Q and a correspond-
ing set of bozes By,. Then the system (44) admits a unique solution ugy € Sp.

4.2 The error estimates

As before using Lemma 3.5 and adapting the arguments from [8] and from [28], we
can prove the following error estimate.

Theorem 4.2 Let u € H(Q) N H*?(Q), with § €]1 — I, %[, (resp. upy € S§) be
the unique solution of (1) (resp. (44)). Then under the assumptwns (H1’) to (H3’),
we have

(45) | S hlulzpa S
Proof: Setting
ap(v,w) = /Vv Vwdz,
KeT,
a(v,w) = — Z w(me) @ds,
ecEim Obe One
h

and taking into account (43) and (44), the next orthogonality relation holds:
a(u —ugy,v) = 0,Yv € S,

This identity and Lemma 3.2 of [8] yield

(46) ap(upy — w,v) = a(upy — w,v) = a(u — w,v), Yo, w € Sj.

This allows to conclude

)§ sup M,vwesﬁi.

(A7) lusy — i < sup 2AEDY Z U0
'0652,11760 ||U||17h

vESY v£D ||U 1,h

Using Cauchy-Schwarz’s inequality and Lemma 3.5 of [8] (see the estimate (3.26) of
[8]) we get

2
U —w
/ Ou = w) ds ,Yw € Sp.
9be by

48)  lupy —wlia < [ D> >

KeTy eleEp(K

One

22



This right-hand side is now estimated using Lemma 3.5 to obtain

lupy — w1 < ( Z (|U—w|iK+h§€2ﬁ|U|§,ﬁ,K)

KeTy,0eK

1
2

S <|u—w|%,K+hz|u|§,K>) Vwes)

KeT,,0¢K
Using the refinement rules (H2’) and (H3’) we arrive at

2.8,0 ||U — w||1,h,Vw € Sg,

1,h § h|U

Jupy —w
and by the triangular inequality we conclude

(49) ||’LLBN — U

1w S hlulppa+ lu—wlliy, Yw € S).

Now we take w = Iogu, the Crouzeix-Raviart interpolant of u which satisfies,
thanks to Theorem 3.7 of [14], the error estimate

(50) |lu — Icru

1,h 5 h’|u|2767ﬂ

The estimates (49) and (50) lead to the conclusion. "

For the estimation of the L?-norm we first prove the following error estimates.

Lemma 4.3 Let T}, be a triangulation of Q2 satisfying the condition (H1’) and let
g e o, %[ Fix K € T}, such that O € K and e an arbitrary edge of K. Then for all
v e HY(Q)

(51) v — M2
where M%v = é [, vds is the mean value of v on e. Consequently for all v € H“?(1)
and w € H'(Q) we have

i1-8
0,e 5 hIQ( |U|1,ﬁ,K7

(52)

[0 = Mo = MEw) ds| S ol sl

e

Proof: First we remark that M% has a meaning for v € HY(Q2) due to the
embedding H"?(K) < L?(e).

On the reference triangle K due to the compact embedding of H“#(K) into
L2(K), we clearly have

1o — Mg

0,é 5 ||77 - MS@“Lg,f( 5 |@ - Mg@h,ﬁ,f( 5 |@

1L.B.K"
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By change of variables and the assumption (H1’) we conclude

1 R R 1 l_ﬁ
[ = Mvlloe < lel2 |0 = Mgolloe S hiclol gz S hic o],k

The estimate (52) directly follows from (51) and Cauchy-Schwarz’s inequality.
]

Theorem 4.4 Let the assumptions of Theorem 4.2 be satisfied. If, for all K €
Ty, 2k is the barycenter of K and if f € H'(Q), then it holds

(53) lu—upnlloe S P2 fllLe-

Proof: We use a duality argument as in Theorem 3.7 but with necessary adaptations
due to the nonconformity of the approximation (see [8, Thm 3.2] for the regular case).
Consider the auxiliary (dual) problem: Let ¢ € H}(2) be the unique solution of

—A¢ =u—ugy in §,
(54)
¢ =0 on 0f).

Then by the results from section 1 we know that ¢ € H*#(Q) with 3 as before, and
(55) [Pl28.0 + [le S llu— usnloe-
Now by (54) and Green’s formula on each triangle K we may write

lu—usnlEg = =3 / U — upy)Addz

KeTy,

= (/Vu—uBN) V(;de—/a (u—uBN)%ds>.

KeTy,

Note that, contrary to the previous situation, ugy is no more in H}(Q2) and con-
sequently the above boundary terms are not equal to zero. For all v € S we then
get

(56) lu —upn |50 = an(u — upn, ¢ — )
+ah(u—uBN, Z / U—UBN —dS
KeT, ¥ 0K
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We now estimate the three terms of the above right-hand side. For the first one
Cauchy-Schwarz’s inequality leads to

(57) lan(u —upn, ¢ —v)| < ||u — upn||1pllé — ||

For the second term the identity (3.38) of [8] showed that
ou
(58) ap(u — upn,v) = Z </ v—ds+(f,v—Q(v))K> ,
Ker, “OK g

where, for all K € Tj, Q(v)|x := Z v(me)gk., and gr, is the characteristic

e€EL(K)
function of the set b, x. So it remains to estimate the two terms of the right-hand

side of (58).
As v € S} we may write

(59) K;/@Kz}%ds_l(;e;/ < (%)) ds.

Since ¢ = 0 on the boundary and is continuous in €2 the above identity may be
transformed into

z/@KU%d,ﬁ Y /U_ <__M(§z)> s

KGT KET}L eEEh

- > ¥ / 0= 0= Mio-0) (G- MiGh) as

KeTy, ecER(K

Consequently by Lemma 4.3 we obtain

Z /8Kva—nds

KeTy,

S Y e b =6

KET},, 060K

+ > hilupxv—¢

K€ETy,, 020K

1,K

1L,K-

Making use of the refinement rules (H2) and (H3’) we arrive at

ou
Z /aKva— ds

KET}L

(60) S hlulzg, ®|l1,n-
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For the second term of the right-hand side of (58) by the identity (3.45) of [8]
we have

(fiv=QW)k = (f = fr,v— Q) x, VK € Tj,
where we recall that fx is the mean of f on K. Cauchy-Schwarz’s inequality and
the Bramble-Hilbert Lemma ([11]) then yield

(f = fr,v = Q)| < If = frlloxllv = Q)llox S Wil fluklvhik, VK € T.
This estimate directly leads to

(61) 1Y (fv = Q))xl S RHvllial flie.

KeTy,

Coming back to (58) and using the estimates (60) and (61) we get
jan(u — upn, v)| S hlulzpolld — vl + B2|[vllLal e,
and by the triangular inequality

(62) |an(u = upn,v)| S A 2)(ll¢ Q)-

For the estimation of the boundary terms in (56), we remark that the fact that
u is continuous in €, is zero on the boundary and that ugy belongs to SP allow to

write
Z/ u—uBN — ds
oK

KeTy,

=3 [ (= ) = M= ) <Z—Z—M(gz)>

KeTh

By Lemma 4.3 we then get

0
Z /M((u - uBN)£ ds

KeTh

S Z h}(_ﬂ|¢|2,ﬂ,K|U —upn|1Kx + Z hi|®lo,xlu — upn|i K-

KeT),,0€0K KeT, 040K

Using Cauchy-Schwarz’s inequality and the assumptions (H2’) and (H3’) we arrive

at
O
(63) K; /8 (u— ua) 5 ds

Using the estimates (57), (62) and (63) into (56) and taking v := Icr¢ the
Crouzeix-Raviart interpolant of ¢, we conclude thanks to the estimates (45), (50)
and (55). =

f, h |¢|2,ﬁ,9||u - UBN||1,h-
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5 Numerical tests
Consider the Laplace equation with Dirichlet boundary conditions,
—Au=0 1in§, u=g on 0,

in the domain © := (—1,1)?\ [0,1] x [—1, 0], which has a non convex corner at the
origin with interior angle w = 37” The right-hand side g is taken such that

u = r¥?sin %9

is the exact solution of the problem. It has the typical singular behaviour near
the corner [18]. We approximate the above problem using the cell-center method
of section 2 and the conforming finite volume-element method from section 3. For
both methods we use quasi-uniform meshes and appropriate refined ones for h = %,
for the values n = 10, 50, 100, 125, as illustrated by Figures 8 and 9 for n = 10.

From the numerical solutions obtained by the cell-center method, the mesh de-
pending norm ||e, ||, and the L?-norm ||e;||p.o were computed. Tables 1 and 2 show
respectively the rate of convergence for quasi-uniform meshes and g-refined meshes
for § = % Figure 10 illustrates the same result in a double logarithmic scale so that
the slope of the curves corresponds to the approximation order of convergence. From
these results we may conclude that refined meshes allow to improve significantly the
order of convergence.

For the conforming finite volume-element method, Tables 3, 4 and Figure 11
show the rate of convergence for quasi-uniform meshes and [S-refined meshes for
B = 5 of the L*norm ||u — upc|lon and of the H'-norm |lu — upc||1,0. As before
these results confirm that the use of refined meshes improves significantly the order
of convergence.

Note that numerical tests for the nonconforming finite volume-element method
give similar results.
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Figure 8: Quasi-uniform mesh for n=10

n le-ll- lerllo.c
10 | 4.3554E-02 | 5.17E-03
50 | 1.6464E-02 | 6.92E-04
100 | 1.1162E-02 | 3.66E-04
125 | 1.0382E-02 | 3.50E-04

Table 1: Numerical results for quasi-uniform meshes for the cell-center method

n lexll- lerllo
10 | 4.3863E-02 | 4.19E-03
50 | 8.7885E-03 | 1.91E-04
100 | 4.4022E-03 | 5.30E-04
125 | 3.5286E-03 | 3.16E-04

Table 2: Numerical results for S-refined meshes (3 = 3) for the cell-center method
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Figure 9: [-refined mesh for g = % and n =10
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Figure 10: Comparison of quasi-uniform (line (1)) and graded meshes (line (2)) for
the cell-center method
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n | ||lu—upclloqn for a non refined mesh | ||u — upc||on for a f-refined mesh (f=1/3)
10 4.9514 E-03 2.0370 E-03
50 6.1035 E-04 1.1324 E-04
100 2.4593 E-04 3.1821 E-05
110 2.1697 E-04 2.6701 E-05

Table 3: Numerical error of the L?-norm for quasi-uniform meshes and S-refined
meshes (8 = g) for the conforming finite volume-element method

n | |lu—upclio for a non refined mesh | [[u — upcli,o for a f-refined mesh (5=1/3)
10 0.1126 6.9098 E-02
50 3.9283 E-02 1.6420 E-02
100 2.4848 E-02 8.7142 E-03
110 2.3329 E-02 7.9830 E-03

Table 4: Numerical error of the H'-norm for quasi-uniform meshes and S-refined
meshes (3 = 3) for the conforming finite volume-element method

References

[1] T. Apel, Anisotropic interpolation error estimates for isoparametric quadrilat-
eral finite elements, Computing, 60, 157-174, 1998.

2] T. Apel, G. Lube, Anisotropic mesh refinement for a singularly perturbed
reaction-diffusion model problem, Appl. Numer. Math., 26, 415-433, 1998.

3] T. Apel, Anisotropic finite elements : Local estimates and applications, Ad-
vances in Numerical Mathematics, Teubner, Stuttgart, 1999.

[4] R. E. Bank, D. J. Rose, Some error estimates for the box method, STAM J.
Numer. Anal., 24, 777-787, 1987.

[5] J. Baranger, J. F. Maitre, F. Oudin, Connection between finite volume and
mized finite element methods, Math. Mod. Numer. Anal., 30, 445-465, 1996.

(6] Z. Cai, On the finite volume-element method, Numer. Math., 58, 713-735, 1991.

(7] S. Champier, T. Gallouét, R. Herbin, Convergence of an upstream finite volume
scheme for a nonlinear hyperbolic equation on a triangular mesh, Numer. Math.,
66, 139-157, 1993.

30



[Log(llu-u_{BC}|_{1,0mega})|
28

24 | 2
1

20 7 7

16 7

12

] @
2
08

04 T T T T T T T T T T T
04 08 12 16 20 24 28

[Log(1/m)|

Figure 11: Comparison of quasi-uniform (line (1)) and graded meshes (line (2)) for
the conforming finite volume-element method

8]

[10]

[11]

[12]

[13]

P. Chatzipanteliditis, A finite volume method based on the Crouzeiz-Raviart
element for elliptic PDE’ s in two dimensions, Numer. Math., 82, 409-432,
1999.

P. Chatzipanteliditis, Finite volume methods for elliptic PDE’ s : a new ap-
proach, Math. Mod. Numer. Anal., 36, 307-324, 2002.

P. Chatzipanteliditis, R. D. Lazarov, The finite volume-element method in non
convex polygonal domains, in: R. Herbin, O. Kroner eds, Finite Volume for
Complex Applications, Hermes, 171-178, 2002.

P. G. Ciarlet, The finite element method for elliptic problems, Studies in Math-
ematics and its applications, North Holland, 1978.

M. Crouzeix, P. A. Raviart, Conforming and non conforming finite element
methods for solving the stationnary Stokes equation I, RAIRO-M?AN, 7, 77-
104, 1973.

K. Djadel, S. Nicaise, J. Tabka, Some refined finite volume methods for elliptic
problems with singularities, in: R. Herbin, O. Kroner eds, Finite Volume for
Complex Applications, Hermes, 729-736, 2002.

31



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

H. El Bouzid, S. Nicaise, Nonconforming finite element methods and singular-
ities in polygonal domains, Advances in Mathematical Sciences and Applica-
tions, 7, 935-962, 1997.

H. El Sossa, Quelques méthodes d’éléments finis mizctes raffinées basées sur I’
utilisation des champs de Raviart-Thomas, Thesis, University of Valenciennes
(France), 2001.

R. Eymard, T. Gallouét, R. Herbin, Finite volume methods, Handbook of Nu-
merical Analysis, 7, 723-1020, 2000.

T. Gallouét, R. Herbin, M. H. Vignal, Error estimates on the approximate
finite volume solution of convection-diffusion equations with general boundary
conditions, STAM J. Numer. Anal., 37, 1935-1972, 2000.

P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies
in Mathematics, 21, Pitman, Boston, 1985.

W. Hackbush, On first and second order boxr schemes, Computing, 41, 277-296,
1989.

B. Heinrich, Finite difference methods on irreqular networks, Int. Series of Num.
Math., 82, Birkhauser Verlag, Basel, 1987.

B. Heinrich, The box method for elliptic interface problems on locally refined
meshes, in: W. Hackbush and al. eds, Adaptive methods-algorithm, theory and
appl., Notes Numer. Fluid. Mech., 46, 177-186, 1994.

H. Juanguo, X. Shitong, On the finite volume-element method for general self-
adjoint elliptic operator, STAM J. Numer. Anal., 35, 1762-1774, 1998.

J. A. Mackenzie, K.W. Morton, Finite volume solutions of convection-diffusion
test problems, Math. Comp., 60, 189-220, 1992.

K. W. Morton, Finite volume methods and their analysis, Oxford University
Computing Laboratory, report n° 90/11, 1990.

K. W. Morton, Numerical solution of convection-diffusion problems, Chapman
and Hall, London, 1996.

L. A. Oganesyan, L. A. Rukhovets, Variational-difference methods for the so-
lution of elliptic equations, Izd. Akad. Nauk Armyanskoi SSR, Jerevan, 1979,
in Russian.

32



[27] S. Ramadhyani, S. V. Patankar, Solution of the Poisson equation : Comparison
of the Galerkin and control-volume methods, Int. J. for Numer. Meth. in Eng.,

15, 1395-1418, 1980.

[28] G. Raugel, Résolution numérique par une méthode d’éléments finis du probléme
de Dirichlet pour le laplacien dans un polygone, C. R. Acad. Sc. Paris, Série 1,
286, 791-794, 1978.

[29] H. Triebel, Interpolation theory, function spaces, differential operators, North
Holland, 1978.

33



