
HAL Id: hal-01114758
https://hal.science/hal-01114758

Preprint submitted on 9 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata and rational expressions
Jacques Sakarovitch

To cite this version:

Jacques Sakarovitch. Automata and rational expressions. 2015. �hal-01114758�

https://hal.science/hal-01114758
https://hal.archives-ouvertes.fr

Automata and rational expressions

Jacques Sakarovitch

LTCI, CNRS and Télécom ParisTech

2010 Mathematics Subject Classification: 68Q45

Key words: Finite automata, regular expressions. Rational sets, recognisable sets.

This text is an extended version of the chapter ‘Automata and rational expressions’ in

the AutoMathA Handbook [47] that will appear soon, published by the European Science

Foundation and edited by Jean-Éric Pin.

It contains not only proofs, examples, and remarks that had been discarded due to the

severe space constraints induced by the edition of a handbook of very large scope, but also

developments that were not included as they did not seem to belong to the main stream

of the subject. For that reason, the numbering of theorems, propositions, defintions, etc.

may differ in the two versions, even if the general outline is the same.

Contents

1 A new look at Kleene’s theorem 2

2 Rationality and recognisability 4

2.1 Rational expressions . 4

2.2 Finite automata . 5

2.3 The ‘second step’ of Kleene’s theorem 6

3 From automata to expressions: the Γ-maps 7

3.1 Preparation: rational identities and Arden’s lemma 7

3.2 The state-elimination method . 9

3.3 The system-solution method . 11

3.4 The McNaughton–Yamada algorithm . 13

3.5 The recursive method . 17

3.6 Star height and loop complexity . 19

4 From expressions to automata: the ∆-maps 24

4.1 Preparation: closure and quotient . 24

4.2 The standard automaton of an expression 25

4.3 The derived-term automaton of an expression 31

5 Changing the monoid 35

5.1 Rationality . 35

5.2 Recognisability . 36

6 Introducing weights 37

6.1 Weighted languages, automata, and expressions 37

6.2 From automata to expressions: the Γ-maps 40

6.3 From expressions to automata: the ∆-maps 41

7 Notes 44

References 46

Index 50

2 J. Sakarovitch

1 A new look at Kleene’s theorem

Not very many results in computer science are recognised as being as basic and funda-

mental as Kleene’s theorem. It was originally stated as the equality of two sets of objects,

and is still so, even if the names of the objects have changed — see for instance Theo-

rem 1.4.11 in Chapter 1 of [47]. This chapter proposes a new look at this statement, in

two ways. First, we explain how Kleene’s theorem can be seen as the conjunction of two

results with distinct hypotheses and scopes. Second, we express the first of these two

results as the description of algorithms that relate the symbolic descriptions of the objects

rather than as the equality of two sets.

A two step Kleene’s theorem In Kleene’s theorem, we first distinguish a step that con-

sists in proving that the set of regular (or rational) languages is equal to the set of lan-

guages accepted by finite automata — a set which we denote by RatA∗. This seems

already to be Kleene’s theorem itself and is indeed what S. C. Kleene established in [34].

But it is not, if one considers — as we shall do here — that this equality merely states the

equality of the expressive power of rational expressions and that of finite labelled directed

graphs. This is universally true. It holds independently of the structure in which the labels

of the automata or the atoms of the expressions are taken, in any monoids or even in the

algebra of polynomials under certain hypotheses.

By the virtue of the numerous properties of finite automata over finitely generated

(f.g., for short) free monoids: being apt to determinisation for instance, the family of lan-

guages accepted by such automata is endowed with many properties as well: being closed

under complementation for instance. These properties are extraneous to the definition of

the languages by expressions, and then — by the former result — to the definition by

automata. It is then justified, especially in view of the generalisation of expressions and

automata to other monoids and even to other structures, to set up a definition of a new

family of languages by new means, that will extend in the case of other structures, these

properties of the languages over f.g. free monoids. It turns out that the adequate definition

will be given in terms of representations by matrices of finite dimension; we shall call the

languages defined in that way the recognisable languages and we shall denote their family

by RecA∗. The second step of Kleene’s theorem consists then in establishing that finite

automata are equivalent to matrix representations of finite dimension under the hypothesis

that the labels of automata are taken in f.g. free monoids.

These two steps correspond to two different concepts: rationality for the first one, and

recognisability for the second one. This chapter focusses on rationality and on the first

step, namely the equivalence of expressiveness of finite automata and rational expressions.

For sake of completeness however, we sketch in Section 2 how one gets from rational sets

to recognisable sets in the case of free monoids and in Section 5, we see that the same

construction fails in non-free monoids and explore what remains true.

The languages and their representation Formal languages or, in the weighted variant,

formal power series, are potentially infinite objects. We are only able to compute finite

ones; here, expressions that denote, or automata that accept, languages or series. Hope-

fully, these expressions and automata are faithful description of the languages or series

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 3

they stand for, all the more effective that one can take advantage of this double view.

In order to prove that the family of languages accepted by finite automata coincide

with that of the languages denoted by rational expressions we proceed by establishing

a double inclusion. As sketched in Figure 11, given an automaton A that accepts a lan-

guage K , we describe algorithms which compute from A an expression F that denotes the

same language K — I call such algorithms a Γ-map. Conversely, given an expression E

that denotes a language L, we describe algorithms that compute from E an automaton B
that accepts the same language L — I call such algorithms a ∆-map.

Most of the works devoted to the conversion between automata and expressions ad-

dress the problem of the complexity of the computation of these Γ- and ∆-maps. I have

chosen to study here the maps for themselves, how the results of different maps applied to

a given argument are related, rather than to describe the way they are actually computed.

The Γ-maps are considered in Section 3, the ∆-maps in Section 4.

bK
bL

P (A∗) RatA∗

b
E

b
F

RatEA∗

b

A
b

B
AutA∗

Γ
∆

Figure 1. The Γ- and ∆-maps

The path to generalisation The main benefit of splitting Kleene’s theorem into two

steps is to bring to light that the first one is a statement whose scope extends much be-

yond languages. It is first generalised to subsets of arbitrary monoids and then, with some

precaution, to subsets with multiplicity, that is, to (formal power) series. This latter exten-

sion of the realm of Kleene’s theorem is a matter for the same ‘splitting’ and distinction

between series on arbitrary monoids and series on f.g. free monoids.

It would thus be possible to first set up the convenient and most general structure and

then state and prove Kleene’s theorem in that framework. My experience, however, is that

many readers tend to be repelled and flee when confronted with statements outside the

classical realm of words, languages, and free monoids. This is where I stay in the first

three sections of this chapter. The only difference with the classical exposition will be in

the terminology and notation that will be carefully chosen or coined so that they will be

ready for the generalisation to arbitrary monoids in Section 5 and to series in Section 6.

Notation and definitions given in Chapter 1 are used in this chapter without comment

when they are refered to under the same form and with the exact same meaning.

1P (A∗) denotes the power set of A∗, that is, the set of all languages over A∗.

Long version February 12, 2015

4 J. Sakarovitch

2 Rationality and recognisability

We first introduce here a precise notion of rational expression, and revisit the definition of

finite automata in order to fix our notation and to state, under the form that is studied here

and eventually generalised later, what we have called above the ‘first step of Kleene’s

theorem’ and which we now refer to as the Fundamental theorem of finite automata.

Second, we state and prove ‘the second step’ of Kleene’s theorem in order to make the

scope and essence of the first step clearer by contrast and difference.

2.1 Rational expressions

The set of rational languages of A∗, denoted by RatA∗ is the smallest subset of P (A∗)
which contains the finite sets (including the empty set) and is closed under union, product,

and star. A precise structure-revealing specification for building elements of this family

can be given by rational expressions.

Definition 2.1. A rational expression over A∗ is a well-formed formula built inductively

from the constants 0 and 1 and the letters a in A as atomic formulas, using two binary

operators + and · and one unary operator
∗
: if E and F are rational expressions, so are

(E+ F), (E · F), and (E∗). We denote by RatEA∗ the set of rational expressions over A∗

and often write expression for rational expression. (As in [54], ‘rational expression’ is

preferred to the more traditional regular expression for several reasons and in particular

as it will be used in the weighted case as well, see Section 6.)

With every expression E in RatEA∗ is associated a language of A∗, which is called

the language denoted by E and we write2 it as E . The language E is inductively defined

by3 0 = ∅ , 1 = {1A∗} , a = {a} for every a in A, (E+ F) = E∪ F , (E · F) = E F ,

and (E∗) = {E}∗ . Two expressions are equivalent if they denote the same language.

Proposition 2.1. A language is rational if and only if it is denoted by an expression.

Like any formula, an expression E is canonically represented by a tree, which is called

the syntactic tree of E. Let us denote by ℓ (E) the literal length of the expression E (that

is, the number of all occurences of letters from A in E) and by d(E) the depth of E which

is defined as the depth — or height4— of the syntactic tree of the expression.

The classical precedence relation between operators: ‘
∗
> · > + ’ allows to save

parentheses in the writing of expressions: for instance, E + F · G∗ is an unambiguous

writing for the expression (E + (F · (G∗))) . But one should be aware that, for instance,

(E ·(F ·G)) and ((E ·F) ·G) are two equivalent but distinct expressions. In particular, the

derivation that we define at Section 4 yields different results on these two expressions.

2The notation L(E) is more common, but E is simpler and more appropriate when dealing with expressions

over an arbitrary monoid or with weighted expressions.
3The empty word of A∗ is denoted by 1A∗ .
4We rather not use height because of the possible confusion with the star height, cf. Section 4.

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 5

In the sequel, any operator defined on expressions is implicitely extended additively

to sets of expressions. For instance, it holds:

∀X ⊆ RatEA∗ X =
⋃

E∈X E .

Definition 2.2. The constant term of an expressionE overA∗, written c(E), is the Boolean

value, inductively defined and computed using the following equations:

c(0) = 0 , c(1) = 1 , ∀a ∈ A c(a) = 0 ,

c(F+ G) = c(F) + c(G) , c(F · G) = c(F)c(G) , c(F∗) = 1 .

The constant term of a language L of A∗ is the Boolean value c(L) that is equal to 1

if and only if 1A∗ belongs to L. By induction on d(E), c(E) = c(E) holds.

2.2 Finite automata

We denote an automaton over A∗ by A = 〈Q,A,E, I, T 〉 where Q is the set of states,

and is also called the dimension of A, I and T are subsets of Q, and E ⊆ Q×A×Q

is the set of transitions labelled by letters of A. The automaton A is finite if E is finite,

hence, if A is finite, if and only if (the useful part of) Q is finite.

A computation in A from state p to state q with label w is denoted by p
w
−−→
A

q . The

language accepted5 by A, also called the behaviour of A, denoted by A , is the set of

words accepted by A, that is, the set of labels of successful computations:

A =
{

w ∈ A∗
∣

∣

∣ ∃i ∈ I, ∃t ∈ T i
w
−−→
A

t
}

.

The first step of Kleene’s theorem, which we call Fundamental theorem of finite automata

then reads as follows.

Theorem 2.2. A language of A∗ is rational if and only if it is the behaviour of a finite

automaton over A∗.

Theorem 2.2 is proved by building connections between automata and expressions.

Proposition 2.3 (Γ-maps). For every finite automaton A over A∗, there exist rational

expressions over A∗ which denote A .

Proposition 2.4 (∆-maps). For every rational expression E over A∗, there exist finite

automata over A∗ whose behaviour is equal to E .

Section 3 describes how expressions are computed from automata, Section 4 how

automata are associated with expressions. Before going to this matter, which is the main

subject of this chapter, let us establish the second step of Kleene’s theorem.

5I prefer not to speak of the language ‘recognised’ by an automaton, and I would not say that a language is

‘recognisable’ when accepted by a finite automaton, in order to have a consistent terminology when generalising

automata to arbitrary monoids.

Long version February 12, 2015

6 J. Sakarovitch

2.3 The ‘second step’ of Kleene’s theorem

Let us first state the definition of recognisable languages, under the form that is given for

recognisable subsets of arbitrary monoids (cf. Section 1.5.2).

Definition 2.3. A language L of A∗ is recognised by a morphism α from A∗ into a

monoid N if L = α−1(α(L)) . A language is recognisable if it is recognised by a mor-

phism into a finite monoid. The set of recognisable languages ofA∗ is denoted byRecA∗.

Theorem 2.5 (Kleene). If A is a finite alphabet, then RatA∗ = RecA∗.

The proof of this statement paves the way to further developments in this chapter. Let

A = 〈Q,A,E, I, T 〉 be a finite automaton. The set E of transitions may be written as

a Q×Q-matrix, called the transition matrix of A, also denoted by E, and whose (p, q)-
entry is the set (the Boolean sum) of letters that label the transitions from p to q in A. A

fundamental (and well-known) lemma relates matrix multiplication and graph walking.

Lemma 2.6. Let E be the transition matrix of the automaton A of finite dimension Q.

Then, for every n in N, En is the matrix of the labels of paths of length n in A:

En
p,q =

{

w ∈ An
∣

∣

∣ p
w
−−→
A

q
}

.

The subsets I and T of Q may then be seen as Boolean vectors of dimension Q (I as

a row and T as a column-vector). From the notation E∗ =
∑

n∈N
En , it follows:

A = I ·E∗ · T . (2.1)

The next step in the preparation of the proof of Theorem 2.5 is to write the transition

matrix E as a formal sum E =
∑

a∈A µ(a)a , where for every a in A, µ(a) is a Boolean

Q×Q-matrix. These matrices µ(a) define a morphism µ : A∗ → BQ×Q . The second

lemma involves the freeness of A∗ and reads:

Lemma 2.7. Let µ : A∗ → BQ×Q be a morphism and let E =
∑

a∈A µ(a)a . Then, for

every n in N, En =
∑

w∈An µ(w)w and thus E∗ =
∑

w∈A∗ µ(w)w .

Proof of Theorem 2.5. By Theorem 2.2, a rational language L of A∗ is the behaviour of a

finite automaton A = 〈Q,A,E, I, T 〉 . By (2.1) and Lemma 2.6, we write

L = A = {w ∈ A∗ | I · µ(w) · T = 1} .

and thus L = µ−1(S) where S =
{

m ∈ BQ×Q
∣

∣ I ·m · T = 1
}

and L is recognisable.

Conversely, let L be a recognisable language of A∗, recognised by the morphism

α : A∗ → N and let S = α(L) . Consider the automaton Aα = 〈N,A,E, {1N}, S 〉
where E =

{(

n, a, nα(a)
) ∣

∣ a ∈ A, n ∈ N
}

. It is immediate that

Aα =
{

w ∈ A∗
∣

∣

∣ ∃p ∈ S 1N
w
−−→
A

p
}

= {w ∈ A∗ | α(w) ∈ S} = α−1(S) = L

and L is rational by Theorem 2.2.

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 7

We postpone to Section 5 the example that shows that recognisability and rationality

are indeed two distinct concepts and the description of the relationships that can be found

between them. As mentioned in Chapter 1, the following holds.

Theorem 2.8. The equivalence of finite automata over A∗ is decidable.

Proposition 2.4 then implies:

Corollary 2.9. The equivalence of rational expressions over A∗ is decidable.

3 From automata to expressions: the Γ-maps

For the rest of this section, A = 〈Q,A,E, I, T 〉 is a finite automaton over A∗, and E

is viewed, depending on the context, as the set of transitions or as the transition matrix

of A. As in (2.1), the language accepted by A is conveniently written as

A = I ·E∗ · T =
⋃

i∈I,t∈T (E∗)i,t .

In order to prove that A is rational, it is sufficient to establish the following.

Proposition 3.1. The entries of E∗ belong to the rational closure of the entries of E.

But we want to be more precise and describe procedures that produce for every entry

of E∗ a rational expression whose atoms are the entries of E (and possibly 1). There are

(at least) four classical methods to proving Proposition 3.1, which can easily be viewed

as algorithms serving our purpose and which we present here:

(1) Direct computation of A : the state-elimination method looks the most elementary

and is indeed the easiest for both hand computation and computer implementation.
(2) Computation of E∗ · T as a solution of a system of linear equations. Based on

Arden’s lemma, it also allows to consider E∗ · T as a fixed point.
(3) Iterative computation of E∗: known as McNaughton–Yamada algorithm and prob-

ably the most popular among textbooks on automata theory.
(4) Recursive computation of E∗: based on Arden’s lemma as well, this algorithm

combines mathematical elegance and computational inefficiency.

The first three are based on an ordering of the states of the automaton. For comparing

the results of these different algorithms, and of a given one when the ordering of states

varies, we first introduce the notion of rational identities, together with the key Arden’s

lemma for establishing the correctness of the algorithms as well as the identities. The sec-

tion ends with a refinement of Theorem 2.2 which, by means of the notions of star height

and loop complexity, relates even more closely an automaton and the rational expressions

that are computed from it.

3.1 Preparation: rational identities and Arden’s lemma

By definition, all expressions which denote the behaviour of a given automaton A are

equivalent. We may then ask whether, and how, this equivalence may be established

Long version February 12, 2015

8 J. Sakarovitch

within the world of expressions itself. We consider ‘elementary equivalences’ of more or

less simple expressions, which we call rational identities, or identities for short, and which

correspond to properties of (the semiring of) the languages denoted by the expressions.

And we try to determine which of these identities, considered as axioms, are necessary,

or sufficient, to obtain by substitution one expression from another equivalent one. It is

known — and out of the scope of this chapter — that no finite sets of identities exist that

allow to establish the equivalence of expressions in general (see Chapter 20). We shall

see however that a basic set of identities is sufficient to deduce the equivalence between

the expressions computed by the different Γ-maps described here.

Trivial and natural identities A first set of identities, that we call trivial identities,

expresses the fact that 0 and 1 are interpreted as the zero and unit of a semiring:

E+0 ≡ E , 0+E ≡ E , E·0 ≡ 0 , 0·E ≡ 0 , E·1 ≡ E , 1·E ≡ E , 0
∗ ≡ 1 .(T)

An expression is said to be reduced if it contains no subexpressions which is a left-hand

side of one of the above identities; in particular, 0 does not appear in a non-zero reduced

expression. Any expression H can be rewritten in an equivalent reduced expression H′;

this H′ is unique and independent of the way the rewriting is conducted. From now on, all

expressions are implicitely reduced, which means that all the computations on expressions

that will be defined below are performed modulo the trivial identities.

The next set of identities expresses the fact that the operators + and · are interpreted

as the addition and product in a semiring with their associativity, distributivity and com-

mutativity properties:

(E+ F) + G ≡ E+ (F+ G) and (E · F) · G ≡ E · (F · G) , (A)

E · (F+ G) ≡ E · F+ E · G and (E + F) · G ≡ E · G+ F · G , (D)

E+ F ≡ F+ E . (C)

The conjunction A ∧D ∧C is abbreviated as N and called the set of natural identities.

Aperiodic identities The product in P (A∗) is distributive over infinite sums; then

∀K ∈ P (A∗) K∗ = 1A∗ +K∗K = 1A∗ +KK∗ , (3.1)

from which we deduce the identities:

E
∗ ≡ 1+ E · E∗ and E

∗ ≡ 1+ E
∗ · E . (U)

From (U) and the gradation6 of A∗ follows Arden’s lemma whose usage is ubiquitous.

Lemma 3.2 (Arden). Let K and L be two subsets of A∗. Then K∗L is a solution,

K∗L is the unique solution if c(K) = 0 , of the equation X = KX+ L.

For computing expressions, we prefer to use Arden’s lemma under the following form:

Corollary 3.3. Let K and L be two rational expressions over A∗ with c(K) = 0. Then,

K∗L denotes the unique solution of X = K X+ L .

6That is, the elements of A∗ have a length which is a morphism from A∗ onto N (cf. Section 6).

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 9

The next two identities, called aperiodic identities, are a consequence of Lemma 3.2.

Proposition 3.4. For all rational expressions E and F over A∗

(E+ F)∗ ≡ E
∗ · (F · E∗)∗ and (E+ F)∗ ≡ (E∗ · F)∗ · E∗ , (S)

(E · F)∗ ≡ 1 + E · (F · E)∗ · F . (P)

There are many other (independent) identities (cf. Notes). The remarquable fact is

that those listed above will be sufficient for our purpose.

Identities special to P (A∗) Finally, the idempotency of the union in P (A∗) yields two

further identities:

E+ E ≡ E , (I) (E∗)
∗ ≡ E

∗ . (J)

In contrast with the preceding ones, these two identities (I) and (J) do not hold for

expressions over arbitrary semirings of formal power series (cf. Section 6).

3.2 The state-elimination method

The algorithm known as state-elimination method, originally due to Brzozowski and Mc-

Cluskey [13], works directly on the automaton A = 〈Q,A,E, I, T 〉. It consists in sup-

pressing the states in A, one after the other, while transforming the labels of the transitions

so that the language accepted by the resulting automaton is unchanged (cf. [61, 62]).

A current step of the algorithm is represented at Figure 2. The left diagram shows the

state q to be suppressed, a state pi which is the origin of a transition whose end is q and a

state rj which is the end of a transition whose origin is q (it may be the case that pi = rj).

By induction, the labels are rational expressions. The right diagram shows the automaton

after the suppression of q, and the new label of the transition from pi to rj . The languages

accepted by the automaton before and after the suppression of q are equal — a formal

proof will follow in the next subsection.

q

pi rj

Ki Hj

L

G
pi rj

G+ Ki L
∗Hj

Figure 2. One step in the state-elimination method

More precisely, the state-elimination method consists first in augmenting the set Q

with two new states i and t, and adding transitions labelled with 1 from i to every initial

state of A and from every final state of A to t. Then all states in Q are suppressed

according to the procedure described above and in a certain order ω(that can be decided

beforehand or determined step by step). At the end, only remain states i and t, together

with a transition from i to t labelled with an expression which we denote by Bω(A) and

which is the result of the algorithm. Thus it holds:

A = Bω(A) .

Long version February 12, 2015

10 J. Sakarovitch

Figure 3 shows every step of the state-elimination method on the automaton D3 drawn

in the upper left corner and following the order ω1 = r < p < q . It shows the result

Bω1
(D3) = a∗b (ba∗b + ab∗a)∗ba∗ + a∗ . The computation of Bω(A) may silently

involve identities in N. A common and natural way of performing the computation is to

use identities I and J as well: it yields simpler results. It is then to be stressed that the use

of I and J is not needed to establish these equivalence results.

The effect of the order The result of the state-elimination method obviously depends

on the order ω in which the states are suppressed. For instance, on the automaton D3 of

Figure 3, the other order ω2 = r < q < p yields Bω2
(D3) = (a + b (ab∗a)∗b)∗, and

ω3 = p < q < r yields

Bω3
(D3) = a∗ + a∗b (ba∗b)∗ba∗ + a∗b (ba∗b)∗a (b+ a (ba∗b)∗a)∗a (ba∗b)∗ba∗.

p q r
b

b

a

a

a b

D3

i

t

2 3 1
b

b

a

a

a b1

1

i

t

2 3
b

b

a ab∗a1

1

i

t

3a∗

a∗b

ba∗

ba∗b+ ab∗a
i

t

a∗ + a∗b (ba∗b+ ab∗a)∗ba∗

Figure 3. The state-elimination method exemplified on the automaton D3

Theorem 3.5 (Conway [18], Krob [35]). Let ω and ω′ be two orders on the set of states

of an automaton A. Then, N ∧ S ∧P Bω(A) ≡ Bω′(A) holds.

Proof. We can go from any order ω to any other order ω′ on Q by a sequence of transpo-

sitions. We therefore arrive at the situation illustrated in Figure 4 (left) and need to show

that the expressions obtained when we first remove the state r and then r′ are equivalent

to those obtained from removing first r′ and then r, modulo S ∧ P (without mentioning

the natural identities).

p q

r r′

K′ H

G

G′K H′

L L′

p q

r′
KL

∗
G+ K

′

KL∗H

G
′
L
∗
H+ H

′

G
′
L
∗
G+ L

′

Figure 4. First step of two in the state-elimination method

The removal of state r gives the expressions in Figure 4 (right). The removal of state r′

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 11

gives the expression:

E = KL
∗
H+ (KL

∗
G+ K

′) [G′
L
∗
G+ L

′]
∗
(G′

L
∗
H+ H

′) ,

which using S (and the natural identities) becomes:

E ≡ KL
∗
H+ KL

∗
G
[

L
′∗
G
′
L
∗
G
]∗

L
′∗
G
′
L
∗
H

+ K
′
[

L
′∗
G
′
L
∗
G
]∗

L
′∗
G
′
L
∗
H+ KL

∗
G
[

L
′∗
G
′
L
∗
G
]∗

L
′∗
H

′

+ K
′
[

L
′∗
G
′
L
∗
G
]∗

L
′∗
H

′ .

We write:

K
′
[

L
′∗
G
′
L
∗
G
]∗

L
′∗
H

′ ≡ K
′
L
′∗
H

′ + K
′
L
′∗
G
′
L
∗
[

GL
′∗
G
′
L
∗
]∗

GL
′∗
H

′

by usingP, and then, by ‘switching the brackets’ (using the identity (XY)∗X ≡ X (YX)∗

which is also a consequence of P), we obtain:

E ≡ KL
∗
H

+ KL
∗
G
[

L
′∗
G
′
L
∗
G
]∗

L
′∗
G
′
L
∗
H+ K

′
L
′∗
G
′
[

L
∗
GL

′∗
G
′
]∗

L
∗
H

+ KL
∗
G
[

L
′∗
G
′
L
∗
G
]∗

L
′∗
H

′ + K
′
L
′∗
G
′
[

L
∗
GL

′∗
G
′
]∗

L
∗
GL

′∗
H

′

+ K
′
L
′∗
H

′

an expression that is perfectly symmetric in the letters with and without ‘primes’, which

shows that we would have obtained the same result if we had started by removing r′

then r.

Aside from the formal proximity between expressions obtained from a given automa-

ton, the question of the length of these expressions is of course of interest, both from a

theoretical as well as practical point of view. The above example D is easily generalised

so as to find an exponential gap between the length of expressions for two distinct orders.

The search for short expressions is performed by heuristics, with more or less degree of

sophistication (see Notes).

3.3 The system-solution method

The computation of an expression that denotes the language accepted by a finite automa-

ton as the solution of a system of linear equations is nothing else than the state-elimination

method turned into a more mathematical setting, which allows then easier formal proofs.

Description of the algorithm Given A = 〈Q,A,E, I, T 〉 , for every p in Q, we

write Lp for the set of words which are the label of computations from p to a final state

of A: Lp =
{

w ∈ A∗
∣

∣

∣ ∃t ∈ T p
w

−−→
A

t
}

. For a subset R of Q, we write the symbol

Long version February 12, 2015

12 J. Sakarovitch

δp,R for 1 if p is in R and 0 if not. The system of equations associated with A is written:

A =
∑

p∈I

Lp =
∑

p∈Q

δp,I Lp (3.2)

∀p ∈ Q Lp =
∑

q∈Q

Ep,q Lq + δp,T (3.3)

where the Lp are the ‘unknowns’ and the entries Ep,q, which represent subsets of A, as

expressions Ep,q are sums of letters labelling paths of length 1. The system (3.3) may be

solved by successive elimination of the unknowns. The pivoting operations, which involve

subtraction and division that are not available in the semiring P (A∗), are replaced by the

application of Arden’s lemma, since c(Ep,q) = 0 for all p, q in Q.

After the elimination of a certain number of unknowns Lp — we write Q′ for the set

of indices of those which have not been eliminated — we obtain a system of the form:

A =
∑

p∈Q′

Gp Lp + H (3.4)

∀p ∈ Q′ Lp =
∑

q∈Q′

Fp,q Lq + Kp (3.5)

If we choose (arbitrarily) one element q in Q′, Corollary 3.3 applied to the corresponding

equation from the system (3.5), yields:

Lq = F
∗
q,q





∑

p∈Q′\q

Fq,p Lp + Kq



 (3.6)

which allows the elimination of Lq in (3.4)–(3.5) and gives:

A =
∑

r∈Q′\q

(

Gr + Gq F
∗
q,qFq,r

)

Lr + H+ Gq F
∗
q,qKq (3.7)

∀r ∈ Q′ \ p Lr =
∑

p∈Q′\q

(

Fr,p + Fr,q F
∗
q,qFr,p

)

Lp + Kr + Fr,q F
∗
q,qKq . (3.8)

When all unknowns Lq have been eliminated in the ordering ω on Q, the computation

yields an expression that we denote by Eω(A) and (3.7) becomes:

A = Eω(A) .

As for the state-elimination method, the identities N (and I and J) are likely to have been

involved at any step of the computation of Eω(A).

Comparison with the state-elimination method The state-elimination method and the

system-solution are indeed one and the same algorithm for computing the language ac-

cepted by a finite automaton, as stated by the following.

Proposition 3.6 ([54]). For any order ω on the states of A, it holds:

Bω(A) = Eω(A) .

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 13

Proof. We can build a generalised automaton B′ corresponding to the system (3.4)–(3.5),

with set of states is Q′ ∪ {i, t}, where i and t do not belong to Q′, and such that, for all p

and q in Q′:

(i) the transition from p to q is labelled Fp,q;

(ii) the transition from p to t is labelled Kp;

(iii) the transition from i to p is labelled Gp; and

(iv) the transition from i to t is labelled H .

Note that this definition applied to the system (3.2)–(3.3) characterises the automaton

constructed in the first phase of the state-elimination method applied to A.

The elimination in the system (3.4)–(3.5) of the unknown Lq by substitutions and

the application of Arden’s lemma give the system (3.7)–(3.8) whose coefficients are ex-

actly the transition labels of the generalised automaton obtained by removing the state q

from B′.

Thus, since the starting points correspond and since each step maintains the corre-

spondence, the expression obtained for A by the state-elimination method is the same as

that obtained by the solution of the system (3.2)–(3.3).

The state-elimination method reproduces, in the automaton A, the computations cor-

responding to the solution of the system: the latter is a formal proof of the former. As

another consequence of Proposition 3.6, the following corollary of Theorem 3.5 holds:

Corollary 3.7. Let ω and ω′ be two orders on the set of states of an automaton A. Then,

N ∧ S ∧P Eω(A) ≡ Eω′(A) .

3.4 The McNaughton–Yamada algorithm

Given A = 〈Q,A,E, I, T 〉 , the McNaughton–Yamada algorithm ([43]) — called here

MN-Y algorithm for short — truly addresses the problem of computing the matrix E∗,

whereas the two preceding methods rather compute the sum of some of the entries of E∗.

Like the former methods, it relies on an ordering of Q but it is based on a different group-

ing of computations7 within A.

Description of the algorithm We write Mp,q for (E∗)p,q:

Mp,q =
{

w ∈ A∗
∣

∣

∣ p
w
−−→
A

q
}

.

The set Q ordered by ω is identified with the set of integers from 1 to n = Card (Q).
The key idea of the algorithm is to group the set of paths between any states p and q in Q

according to the highest rank of the intermediate states. We denote by M
(k)
p,q the set of

labels of paths from p to q which do not pass through intermediate states of rank greater

than k. And we shall compute expressions M
(k)
p,q such that M

(k)
p,q = M

(k)
p,q .

7In order to avoid confusion between the computations of expressions that denote the language accepted

by A and whose variations are the subject of the chapter, and the computations within A, which is the way we

call the paths in the labelled directed graph A, we use the latter terminology in this section.

Long version February 12, 2015

14 J. Sakarovitch

A path that does not pass through any intermediate state of rank greater than 0 passes

through no intermediate states, and therefore reduces to a single transition. Thus, M
(0)
p,q is,

for all p and q in Q, the set of labels of transitions which go from p to q; that is, M
(0)
p,q =

Ep,q and M
(0)
p,q = Ep,q . A path which goes from p to q without visiting intermediate

states of rank greater than k is:

(a) either a path (from p to q) which does not visit intermediate states of rank greater

than k − 1 ;

(b) or the concatenation:

• of a path from p to k without passing through states of rank greater than k−1;

• followed by an arbitrary number of paths which go from k to k without passing

through intermediate states of rank greater than k−1 ;

• followed finally by a path from k to q without passing through intermediate states

of rank greater than k−1 .

This decomposition is sketched in Figure 5 and implies that for all p and q in Q, for

all k 6 n, it holds:

M
(k)
p,q = M

(k−1)
p,q +M

(k−1)
p,k

(

M
(k−1)
k,k

)∗

M
(k−1)
k,q .

The algorithm ends with the last equation:

Mp,q = M
(n)
p,q if p 6= q , Mp,q = M

(n)
p,q + 1 if p = q .

For consistency with the previous sections, we write Mω(A) =
∑

p∈I,q∈T Mp,q and it

holds:

A = Mω(A) .

p q

k

Figure 5. Step k of MN-Y algorithm

Example 3.1. The MN-Y algorithm applied to the automaton R1 of Figure 6 yields the

following matrices (we group together, for each k, the four M
(k)
p,q into a matrix M(k)):

M
(0) =

(

a b

a b

)

, M
(1) =

(

a+ a(a)∗a b+ a(a)∗b
a+ a(a)∗a b+ a(a)∗b

)

,

M
(2) =

(

a+ a(a)∗a+ (b+ a(a)∗b)(b+ a(a)∗b)∗(a+ a(a)∗a)
a+ a(a)∗a+ (b+ a(a)∗b)(b+ a(a)∗b)∗(a+ a(a)∗a)

(b+ a(a)∗b) + (b+ a(a)∗b)(b+ a(a)∗b)∗(b+ a(a)∗b)
(b+ a(a)∗b) + (b+ a(a)∗b)(b+ a(a)∗b)∗(b+ a(a)∗b)

)

.

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 15

As in the first two methods, identities in N (as well as I and J) are likely to be used at

any step of the MN-Y algorithm. What is new is that identities D and U are particularly

fit for the computations involved in the MN-Y algorithm. For instance, after using these

identities, the above matrices become:

M
(1) =

(

a∗a a∗b

a∗a a∗b

)

and M
(2) =

(

(a∗b)∗a∗a (a∗b)∗a∗b
(a∗b)∗a∗a (a∗b)∗a∗b

)

.

1 2
b

a

a b

Figure 6. The automaton R1

Comparison with the state-elimination method Comparing the MN-Y algorithm with

the state-elimination method amounts to relating two objects whose form and mode of

construction are rather different: on the one hand, a Q×Q-matrix obtained by successive

transformations and on the other hand, an expression obtained by repeated modifications

of an automaton, hence of a matrix, but one whose size decreases at each step. This leads

us to a more detailed statement.

Proposition 3.8 ([54]). Let A = 〈Q,A,E, I, T 〉 be an automaton and for every p and q

in Q, let Ap,q be the automaton defined by Ap,q = 〈Q,A,E, {p}, {q} 〉 . For every (total)

order ω on Q and every p and q in Q, it holds:

N ∧U Mω(Ap,q) ≡ Bω(Ap,q) .

Proof. In the following, A and ω are fixed and remain implicit. The automaton A has n

states, identified with the integers from 1 to n; the two algorithms perform n steps starting

in a situation called ‘step 0’, the kth step of the state-elimination method consisting of the

removal of state k, and that of algorithmMN-Y consisting of calculating the labels of

paths that do not include nodes (strictly) greater than k. We write:

E
(k)(r, s)

for the label of the transition from r to s in the automaton obtained from A (and ω) at

the kth step of the state elimination method; necessarily, in this notation, k + 1 6 r and

k + 1 6 s (abbreviated to k + 1 6 r, s). As above, we write:

M
(k)
r,s

for the entry r, s of the n×n matrix computed by the kth step of MN-Y algorithm. At

step 0, the automaton A has not been modified and we have:

∀r, s , 1 6 r, s 6 n M
(0)
r,s = E

(0)(r, s) , (3.9)

which will be the base case of the inductions to come. The MN-Y algorithm is written:

∀k , 0 < k 6 n , ∀r, s , 1 6 r, s 6 n

M
(k)
r,s = M

(k−1)
r,s +M

(k−1)
r,k ·

(

M
(k−1)
k,k

)∗

·M
(k−1)
k,s . (3.10)

Long version February 12, 2015

16 J. Sakarovitch

The state-elimination algorithm is written:

∀k , 0 < k 6 n , ∀r, s , k < r, s 6 n

E
(k)(r, s) = E

(k−1)(r, s) + E
(k−1)(r, k) ·

(

E
(k−1)(k, k)

)∗

· E(k−1)(k, s) (3.11)

Hence we conclude, for given r and s and by induction on k:

∀r, s , 1 6 r, s 6 n , ∀k , 0 6 k < min(r, s) M
(k)
r,s = E

(k)(r, s) (3.12)

We see in fact (as there is even so something to see) that if k < min(r, s) then all integer

triples (l, u, v) such that M
(l)
u,v occurs in the computation of M

(k)
r,s by the (recursive) use

of (3.10), are such that l < min(u, v).
Suppose now that we have p and q, also fixed, such that 1 6 p < q 6 n (the other

cases are dealt with similarly). We call the initial and final states added to A in the

first phase of the state-elimination method i and t respectively; i and t are not integers

between 1 and n. The transition from i to p and that from q to t are labelled 1A∗ . Now let

us consider step p of each algorithm. For every state s, p < s, M
(p)
p,s is given by (3.10):

M
(p)
p,s = M

(p−1)
p,s +M

(p−1)
p,p ·

(

M
(p−1)
p,p

)∗

·M(p−1)
p,s

and E(p)(i, s) by:

E
(p)(i, s) =

(

E
(p−1)(p, p)

)∗

· E(p−1)(p, s)

and hence, by (3.12):

∀s , p < s 6 n U M
(p)
p,s ≡ E

(p)(i, s) . (3.13)

Next we consider the steps following p (and row p of the matrices M(k)). For all k, p < k,

and all s, k < s 6 n, M
(k)
p,s is always computed by (3.10) and E(k)(i, s) by:

E
(k)(i, s) = E

(k−1)(i, s) + E
(k−1)(i, k) ·

(

E
(k−1)(k, k)

)∗

· E(k−1)(k, s) . (3.14)

From (3.13), and based on an observation analogous to the previous one, we conclude

from the term-by-term correspondence of (3.10) and (3.14) that:

∀k , p < k , ∀s , p < s 6 n U M
(k)
p,s ≡ E

(k)(i, s) . (3.15)

The analysis of step q gives a similar, and symmetric, result to that which we have just

obtained from the analysis of step p: for all r, q < r, we have:

M
(q)
r,q = M

(q−1)
r,q +M

(q−1)
r,q ·

(

M
(q−1)
q,q

)∗

·M(q−1)
q,q

and E
(q)(r, t) = E

(q−1)(r, q) ·
(

E
(q−1)(q, q)

)∗

and hence

∀r , q < r 6 n U M
(q)
r,q ≡ E

(q)(r, t) . (3.16)

The steps following q give rise to an equation symmetric to (3.15) (for column q of the

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 17

matrices M(k)):

∀k , q < k , ∀r , q < r 6 n U M
(k)
r,q ≡ E

(k)(r, t) . (3.17)

Finally, from:

M
(k)
p,q = M

(k−1)
p,q +M

(k−1)
p,k ·

(

M
(k−1)
k,k

)∗

·M
(k−1)
k,q

and E
(k)(i, t) = E

(k−1)(i, t) + E
(k−1)(i, k) ·

(

E
(k−1)(k, k)

)∗

· E(k−1)(k, t)

Equations (3.12), (3.15) and (3.17) together allow us to conclude, by induction on k, that:

∀k , q 6 k 6 n U M
(k)
p,q ≡ E

(k)(i, t) . (3.18)

When we reach k = n in this equation we obtain the identity we want.

As a consequence of Proposition 3.8, we have the following corollary of Theorem 3.5:

Corollary 3.9. Let ω and ω′ be two orders on the states of an automaton A. Then,

N ∧ S ∧P Mω(A) ≡ Mω′(A) .

3.5 The recursive method

The last method we want to quote appeared first in Conway’s book Regular Algebra and

Finite Machines [18] which gave a new start to the formal study of rational expressions

(cf. Chapter 20). Originally, it yields a proof of Proposition 3.1(the entries of E∗ belong

to the rational closure of the entries of E). As we did above, we modify it so as to make it

compute from E, a matrix of rational expressions which denotes E, a matrix E′ of rational

expressions which denotes the matrix E∗.

Description of the algorithm The recursive method (for computing E′, our goal) is

based on computation on matrices via bloc decomposition.

Let M and M ′ be two Q×Q-matrices (over any semiring indeed) and let Q be the

disjoint union of R and S. Let us write their bloc decomposition according to Q = R∪S

as:

M =

(

F G

H K

)

M ′ =

(

F ′ G′

H ′ K ′

)

where F and F ′ are R×R-matrices, K and K ′ are S×S-matrices, G and G′ R×S-

matrices, and H and H ′ S×R-matrices. The bloc decomposition is consistent with the

matirx operations in the sense that we have:

M +M ′ =

(

F + F ′ G+G′

H +H ′ K +K ′

)

and

M ·M ′ =

(

F · F ′ +G ·H ′ F ·G′ +G ·K ′

H · F ′ +K ·H ′ H ·G′ +K ·K ′

)

Long version February 12, 2015

18 J. Sakarovitch

Let us write a block decomposition of E and the corresponding ones for E and E∗:

E =

(

F G

H K

)

, E =

(

F G

H K

)

, E∗ =

(

U V

W Z

)

,

where F and K (and thus F, K, U and Z) are square matrices. By (3.1)8, it follows that

E∗ =

(

U V

W Z

)

=

(

1 0
0 1

)

+

(

F G

H K

)(

U V

W Z

)

,

an equation which can be decomposed into a system of four other equations:

U = 1+ F U + G W , Z = 1 + H V + K Z , (3.19)

V = F V + G Z , and W = H U + K W . (3.20)

Corollary 3.3 applies to (3.20) and then, after substitution, to (3.19) gives:

V = F
∗
G Z and W = K

∗
H U .

U = (F + G K
∗
H)∗ and Z = (K + H F

∗
G)∗ .

This procedure leads to the computation of E∗ by induction on its dimension. By the

induction hypothesis, obviously fulfilled for matrices of dimension 1, F∗ and K∗ are

denoted by matrices of rational expressions F′ and K′. Let us write

E
′ =

(

(F+ GK′H)∗ F′G(K + HF′G)∗

K′H (F+ GK′H)∗ (K+ HF′G)∗

)

.

and E′ = E∗ holds. Another application of the induction hypothesis to (F+ GK′H)∗

and (K+ HF′G)∗ shows that the entries of E′, which we denote by Cτ (A) , where τ is

the recursive division of Q used in the computation, are all in RatEA∗.

Example 3.2. The recursive method applied to the automatonR1 of Example 3.1 (cf. Fig-

ure 6) directly gives (there is no choice for the recursive division):

Cτ (R1) =

(

(a+ b(b)∗a)∗ a∗b(b+ a(a)∗b)∗

b∗a(a+ b(b)∗a)∗ (b + a(a)∗b)∗

)

.

Comparison with the state-elimination method Both the recursive method and the

MN-Y algorithm yield a matrix of expressions. Example 3.2 shows that there is no hope

for an easy inference of teh equivalence of the two matrices. We state however the fol-

lowing conjecture.

Conjecture 3.10. Let A = 〈Q,A,E, I, T 〉 be an automaton. For every recursive divi-

sion τ of Q and for every pair (p, q) of states, there exists an ordering ω of Q such that:

N ∧U (Cτ (A))p,q ≡ Bω(Ap,q) .

More generally, and as a conclusion of the description of these four methods, one

would conjecture that the rational expressions computed from a same finite automaton

8applied to matrices with entries in P (A∗) rather than to elements of P (A∗).

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 19

are all equivalent modulo the natural identities and the aperiodic ones S and P. Even

if computed from is not formal enough, the above developments should make the general

idea rather clear.

3.6 Star height and loop complexity

The purpose of this last subsection is to present a refinement of Kleene’s Theorem —

or, rather, of the Fundamental Theorem of Finite Automata — which relates even more

closely than above an automaton and the rational expressions that are computed from it.

Among the three rational operators +, · and ∗, the operator ∗ is the one that ‘gives

access to the infinite’, hence the idea of measuring the complexity of an expression by

finding the degree of nestedness of this operator, a number called star height. On the

other hand, it is the circuits in a finite automaton that produce an infinite number of

computations, ‘all the more’ that the circuits are more ‘entangled’. The intuitive idea of

entanglement of circuits will be captured by the notion of loop complexity. We show how

the loop complexity of an automaton to the star height of an expression that is computed

from this automaton, a result which is due originally to Eggan ([21]).

Star height of an expression Let E be an expression over A∗. The star height of E,

denoted by h[E], is inductively defined by

if E = 0 , E = 1 or E = a ∈ A , h[E] = 0 ,

if E = E
′ + E

′′ or E = E
′ · E′′ , h[E] = max(h[E′], h[E′′]) ,

if E = F
∗ , h[E] = 1 + h[F] .

Example 3.3. (i) h[(a+ b)∗] = 1 ; h[a∗ (ba∗)∗] = 2 .

(ii) The heights of the three expressions computed for the automaton D3 at Section 3.2

are: h[Bω1
(D3)] = 2 , h[Bω2

(D3)] = 3 , and h[Bω3
(D3)] = 3 .

These examples draw attention to the fact that two equivalent expressions may have

different star heights and that star height is unrelated to the length. They also naturally

give rise to the so-called star-height problem. As it does not directly pertain to the matter

developed in this chapter, we postpone the few indications we give on this problem to the

Notes section ((see also Chapter 5).

Loop complexity of an automaton Let A = 〈Q,A,E, I, T 〉 be an automaton; we

call balls9 the strongly connected components of A that contain at least one transition.

In other words, a strongly connected component that contains at least two states is a ball,

and a strongly connected component reduced to a single state s is a ball if and only if s is

the source (and the destination) of at least one loop. Balls are pairwise disjoint but do not

form a covering (hence a partition) of Q since a state may belong to no ball (cf. Figure 7).

9Translation of the French: pelote.

Long version February 12, 2015

20 J. Sakarovitch

p q r
a b

a

b

a

b

p q r

a

b

a

b

p r

Figure 7. An automaton, its strongly connected components and its two balls

Definition 3.1. The loop complexity of an automaton A is the integer lc(A) defined

inductively by the following equations:

lc(A) = 0 if A contains no balls (in particular if A is empty);

lc(A) = max {lc(P) | P a ball in A} if A is not strongly connected;

lc(A) = 1 +min {lc(A \ {s}) | s state of A} if A is strongly connected.

Figure 8 shows automata with loop complexity 1, 2 and 3 respectively.

(a) lc(A) = 1 (b) lc(A) = 2 (c) lc(A) = 3

Figure 8. Automata with differents loop complexities

Eggan’s Theorem We are now ready to state the announced refinement of the Funda-

mental theorem of finite automata.

Theorem 3.11 (Eggan [21]). The loop complexity of a trim automaton A is the minimum

of the star height of the expressions computed on A by the state-elimination method.

This theorem may be proved by establishing a more precise statement which involves

a refinement of the loop complexity and which we call the loop index.

Let A = 〈Q,A,E, I, T 〉 be an automaton. If ω is an order on Q, we write ω for the

greatest element ofQ according to ω. If S is a sub-automaton of A, we also write ω for the

trace of the order ω over the set R of states of S and, in such a context, ω for the greatest

element of R according to ω. Then, the loop index of A relative to ω, written Iω(A), is

the integer inductively defined by the following:

• if A contains no ball, or is empty, then

Iω(A) = 0 ; (3.21)

• if A is not itself a ball, then

Iω(A) = max ({Iω(P) | P ball in A}) ; (3.22)

• if A is a ball, then

Iω(A) = 1 + Iω(A \ ω) . (3.23)

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 21

The difference with respect to loop complexity is that the state that we remove from a

strongly connected automaton (in the inductive process) is fixed by the order ω rather

than being the result of a minimisation. This definition immediately implies that

Property 3.12. lc(A) = min {Iω(A) | ω is an order on Q } .

Theorem 3.11 is then a consequence of the following.

Proposition 3.13 ([38]). For any order ω on the states of A, Iω(A) = h[Bω(A)] .

At this point, let us note that in the inductive definition of Iω(A) it is the greatest

element ω of Q that is considered whereas in the construction of the expression Bω(A) it

is the smallest element of Q suppressed first.

In the course of the computation of Bω(A) by the state elimination method we con-

sider automata whose transitions are labelled not by letters only but by rational expres-

sions in general. In order to define the index of such generalised automata, we first define

the index, written i(e), of a transition e as the star height of the label of e:

i(e) = h[|e|] .

The index of a generalised automaton is then defined inductively, by formulas that take

into account the index of every transition:

• if A is empty, then

Iω(A) = 0 ; (3.24)

• if A is not itself a ball, then

Iω(A) = max ({i(e) | e does not belong to a ball in A}

∪{Iω(P) | P ball in A}) ;
(3.25)

• if A is a ball, then

Iω(A) = 1 +max ({i(e) | e is adjacent to ω} , Iω(A \ ω)) . (3.26)

It is obvious that equations (3.24)–(3.26) reduce to (3.22)–(3.21) in the case of a ‘clas-

sic’ automaton whose transitions are all labelled with letters, that is, have index 0. Figure 9

shows two generalised automata and their index.

p q
b

b

a ab∗a

(a) Iω1
(B1) = 2; Iω2

(B1) = 3

p q

(b (ba)∗a)∗

b

a ab∗a

(b) Iω1
(B2) Iω2

(B2) = 3

Figure 9. Computation of the index of two automata for the two possible orders on

the states: ω1 = p < q, ω2 = q < p.

Long version February 12, 2015

22 J. Sakarovitch

Proof of Proposition 3.13. We proceed by induction on the number of states of A. The

state-elimination method consists in the first place of transformingA into an automaton B
by adding two states to A, an initial state and a final state, and transitions which are all

labelled by the empty word, the index of B being equal to that of A. By convention, the

added states are greater than all the other states of A in the order ω and are never removed

by the state-elimination method. On the other hand, the transition labels, including those

of the new transitions, may be modified in the course of the state-elimination method.

The base case of the induction is therefore a generalised automaton with 3 states of

the form of Figure 10 (a) or (b).

E

F

H

(a)

E

F

H

G

(b)

E

(c) The real base

Figure 10. Base case of the induction

In case (a), B contains no balls and we have

Iω(B) = max
(

h[E], h[F], h[H]
)

= h[E + F · H] = h[Bω(B)] . (3.27)

In case (b), the unique state of B that is neither initial nor final is a ball whose index

is 1 + h[G], and we have

Iω(B) = max
(

h[E], h[F], h[H], (1 + h[G])
)

= h[E+ F · G∗ · H] = h[Bω(B)] . (3.28)

Note that this reasoning is the essential part of the induction step and that for rigour, if not

for clarity, we could have taken the automaton of Figure 10(c) as our base case, for which

the statement is even more easily verified (and which corresponds to an automatonA with

no state).

Now let B be an automaton of the prescribed form with n + 2 states, q the smallest

state in the order ω and B′ the automaton which results from the first step of the state-

elimination method applied to B (which consists of the elimination of q). Because the

same states (other than q) are adjacent in B as in B′, and since q is the smallest element

in the order ω, the algorithm for computing the index runs the same way in B and B′,

that is, the succession of balls constructed in each automaton is identical, excluding the

examination of q in B. It remains to show that the values calculated are also identical.

Let P be the smallest ball in B that strictly contains q – if no such ball exists, take P =
B; and let P ′ the ‘image’ of P in B′. There are two possible cases: either (a) q is not the

source (and the destination) of a loop, or (b) it is, that is, q is a ball in B all by itself, and

the label of this loop is an expression G.

The transitions of P ′ are either identical to those of P , or, in case (a), labelled by

products F · H, where F and H are labels of transitions of P , or, in case (b), labelled by

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 23

products F · G∗ · H. It therefore follows that, in case (a)

Iω(P
′) = max

(

max {i(e) | e does not belong to a ball in P ′} ,

max {Iω(Q) | Q ball in P ′}
)

= max
(

max {i(e) | e does not belong to a ball in P} ,

max {Iω(Q) | Q ball in P}
)

= Iω(P) . (3.29)

In case (b), since Iω({q}) = 1 + h[G] , we have:

Iω(P
′) = max

(

max {i(e) | e does not belong to a ball in P ′} ,

max {Iω(Q) | Q ball in P ′}
)

= max
(

max {i(e) | e does not belong to a ball in P} , (1 + h[G]),

max {Iω(Q) | Q ball in P ′}
)

= max
(

max {i(e) | e does not belong to a ball in P} , Iω({q}) ,

max {Iω(Q) | Q ball in P , different from {q}}
)

= Iω(P) . (3.29)′

If P = B (and P ′ = B′), the equalities (3.29) and (3.29)′ become

Iω(B
′) = Iω(B) (3.30)

which proves the induction and hence the proposition. If not, and without starting an

induction on the number of overlapping balls that contain {q}, we can get from (3.29)

to (3.30) by noting that the transitions ofB′ are either identical to those ofB, or correspond

to transitions that are adjacent to q.

In case (a), the labels of these transitions (those corresponding to transitions adjacent

to q) are products of transitions of B: their index is obtained by taking a maximum,

and (3.30) is the result of the identity max(a, b, c) = max(a,max(b, c)) .

In case (b), the labels of the same transitions are, as before, of the form F ·G∗ ·H , with

index max(h[F], h[H], 1 + h[G]) . The corresponding transition in B has label F (or H);

it is inspected in the algorithm for computing the index when the indices of the transition

with label H (or F) and that of the ball {q}, with index 1+ h[G] , have already been taken

into account. The result, which is (3.30), follows for the same reason as above.

Theorem 3.11 admits a kind of converse stated in the following proposition whose

proof is postponed to the next section where we build automata from expressions.

Proposition 3.14. With every rational expression E is associated an automaton which

accepts E and whose loop complexity is equal to the star height of E.

Long version February 12, 2015

24 J. Sakarovitch

4 From expressions to automata: the ∆-maps

The transformation of rational expressions into finite automata establishes Proposition 2.4.

It is even more interesting than the transformation in the other way, both from a theoret-

ical point of view and for practical purposes, as there are many questions that cannot be

answered directly on expressions but require first their transformation into automata.

Every expression might be mapped to several automata, each of them being computed

in different ways. We distinguish the objects themselves, that is, the computed automata,

which we try to characterise as intrinsically as possible, from the algorithms that allow

to compute them. We present two such automata: the Glushkov, or position, automaton

and that we rather call the standard automaton of the expression, and the derived-term

automaton, that was first defined by Antimirov.

The standard automaton may be defined for expressions over any monoid whereas the

derived-term automaton will be defined for expressions over a free monoid only. In this

section however, we restrict ourselves to expressions over a free monoid. We begin with

the presentation of two techniques for transforming an automaton into another one, that

will help us in comparing the various automata associated with a given expression.

4.1 Preparation: closure and quotient

Closure Automata have been defined (Section 2.2) as graphs labelled by letters of an
alphabet. It is known that the family of languages accepted by finite automata is not
enlarged if transitions labelled by the empty word — called spontaneous transitions —
are allowed as well. The backward closure of such an automaton A = 〈Q,A,E, I, T 〉 is
the equivalent automaton B = 〈Q,A, F, I, U 〉 with no spontaneous transitions defined
by

F =
{

(p, a, r)
∣

∣

∣
∃q ∈ Q p

1A∗

−−−→
A

q , (q, a, r) ∈ E
}

and U =
{

p

∣

∣

∣
∃q ∈ T p

1A∗

−−−→
A

q
}

.

It is effectively computable, as the determination of F and U amounts to computing the

transitive closure of a finite directed graph.

Morphisms and quotient Automata are structures; a morphism is a map from an au-

tomaton into another one which is compatible with this structure.

Definition 4.1. Let A = 〈Q,A,E, I, T 〉 and A′ = 〈Q′, A,E′, I ′, T ′ 〉 be two au-

tomata. A map ϕ : Q → Q′ is a morphism (of automata) if:

(i) ϕ(I) ⊆ I ′ ,

(ii) ϕ(T) ⊆ T ′ ,

(iii) ∀(p, a, q) ∈ E
(

ϕ(p), a, ϕ(q)
)

∈ E′ .

The automaton A′ is a quotient of A if, moreover,

(iv) ϕ(Q) = Q′ , that is, ϕ is surjective,

(v) ϕ(I) = I ′ ,

(vi) ϕ−1(T ′) = T ,

(vii) ∀(r, a, s) ∈ E′ , ∀p ∈ ϕ−1(r) , ∃q ∈ ϕ−1(s) (p, a, q) ∈ E .

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 25

If ϕ is a morphism, we write ϕ : A → A′ , and the inclusion A ⊆ A′ holds. If A′ is

a quotient of A, then A = A′ holds.

Definition 4.1 generalises the classical notion of quotient of complete deterministic

automata to arbitrary automata. Every automaton A admits a minimal quotient, which is

a quotient of every quotient of A. In contrast with the case of deterministic automata, the

minimal quotient of A is canonically associated with A, not with the language accepted

by A.

4.2 The standard automaton of an expression

The first automaton we associate with an expression E, which we write SE and which

plays a central role in our presentation, has first been defined by Glushkov (in [29]). For

the same purpose, McNaughton and Yamada computed the determinisation of SE in their

paper [43] that we already quoted. In order to give an intrinsic description of SE, we

define a restricted class of automata, and then show that rational operations on sets can be

lifted on the automata of that class.

4.2.1 Operations on standard automata An automaton is standard if it has only one

initial state, which is the end of no transition. Figure 11 shows a standard automaton, both

as a sketch, and under the matrix form. The definition does not forbid the initial state i

from also being final and the scalar c, equal to 0 or 1, is the constant term of A .

Ai

c

A =

〈

(

1 0
)

,







0 J

0 F






,







c

U







〉

.

Figure 11. A standard automaton

Every automaton is equivalent to a standard one. More important for our purpose,

their special form allows to define operations on standard automata that are parallel to

the rational operations. Let A (as in Figure 11) and B (with obvious notation) be two

standard automata; the following standard automata are defined:

A+ B =

〈

(

1 0 0
)

,

















0 J K

0 F 0

0 0 G

















,

















c+ d

U

V

















〉

, (4.1)

A · B =

〈

(

1 0 0
)

,

















0 J cK

0 F U ·K

0 0 G

















,

















cd

Ud

V

















〉

, (4.2)

Long version February 12, 2015

26 J. Sakarovitch

A∗ =

〈

(

1 0
)

,







0 J

0 H






,







1

U







〉

, (4.3)

where H = U · J +F . The use of the constants c and d allows a uniform treatment of

the cases whether the initial states of A and B are final or not.

These constructions are shown at Figure 12.

i j
a

b

a

b

(a) A+ B

i j
a

b

a

b

a

b

b

a

a

b

(b) A · B

i
a

b

a

b

b

a

(c) A∗

Figure 12. Operations on standard automata

Straightforward computations show that (A+ B) = A + B , (A · B) = A · B and

(A∗) = A∗ .

With every rational expression E and by induction on its depth, we thus canonically

associate a standard automaton, which we write SE and which we call the standard au-

tomaton of E. The induction and the computations show that the map E 7→ SE is a

∆-map:

Proposition 4.1. If E is a rational expression over A∗, then SE = E .

The inductive construction of SE also implies:

Property 4.2. If E is a rational expression, the dimension of SE is ℓ(E) + 1 .

Example 4.1. Figure 13 shows SE1
, where E1 = (a∗b+ bb∗a∗)∗ .

The example of E =
(

(

(a∗ + b∗)
∗
+ c∗

)∗
+ d∗

)∗

. . . shows that the direct compu-

tation of SE by (4.1)–(4.3) leads to an algorithm whose complexity is cubic in ℓ(E). The

quest for a better algorithm leads to a construction that is interesting per se.

4.2.2 The star-normal form of an expression The star-normal form of an expression

has been defined by Brüggemann-Klein (in [11]) in order to design a quadratic algorithm

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 27

a

b

b

a

a

b b

a

a
b

b

b

b

a

b

Figure 13. The automaton SE1
.

for the computation of the standard automaton of an expression. The interest of this notion

certainly goes beyond that complexity improvement.

Definition 4.2 ([11]). A rational expression E is in star-normal form (SNF) if and only if

for any F such that F∗ is a subexpression of E, c(F) = 0 .10

Two operators on expressions, written • and �, are defined by a mutual recursion on

the depth of the expression that defines and allows to compute the star-normal form of

the expression.

0
�

= 0 , 1
�

= 0 , ∀a ∈ A a
�

= a , (4.4)

(F+ G)
�

= F
�

+ G
�

, (4.5)

(F · G)
�

=

{

F
� + G

�

if c(F) = c(G) = 1 ,

F• · G• otherwise ,
(4.6)

(F∗)
�

= F
�

. (4.7)

0
• = 0 , 1

• = 1 , ∀a ∈ A a• = a , (4.8)

(F+ G)
•
= F

• + G
• , (4.9)

(F · G)• = F
• · G• , (4.10)

(F∗)
•
= (F

�

)∗ . (4.11)

Example 4.2. Let E2 = (a∗b∗)∗ . Then

E2
• =

(

(a∗b∗)
�
)∗

=
(

(a∗)
�

+ (b∗)
�
)∗

=
(

(a)
�

+ (b)
�
)∗

= (a+ b)∗ .

Theorem 4.3 ([11]). For any expression E, E• is in star-normal form and SE• = SE .

Theorem 4.3 implies in particular that E• is equivalent to E. It relies on three com-

putations on Boolean standard automata which are the direct consequence of the formu-

las (4.1)–(4.3). and of the idempotency identity I.

Property 4.4. Let A, A′, B and B′ be four (Boolean) standard automata.

(1) If A∗ = A′∗ and B∗ = B′∗ then (A+ B)∗ = (A′ + B′)
∗

.

(2) If c(A) = c(B) = 1 , then (A+ B)∗ = (A · B)∗ .

(3) A∗ = (A∗)
∗

.

10The definition, as well as the construction, have been slightly modified from the original, for simplification.

Long version February 12, 2015

28 J. Sakarovitch

Proof. (i) Let

A =

〈

(

1 0
)

,

(

0 J

0 F

)

,

(

c

U

)

〉

and A′ =

〈

(

1 0
)

,

(

0 J ′

0 F ′

)

,

(

c′

U ′

)

〉

.

The hypothesis implies

A∗ =

〈

(

1 0
)

,

(

0 J

0 U · J + F

)

,

(

1
U

)

〉

= A′∗ =

〈

(

1 0
)

,

(

0 J ′

0 U ′ · J ′ + F ′

)

,

(

1
U ′

)

〉

,

hence J = J ′ , U = U ′ and U · J + F = U ′ · J ′ + F ′ . Accordingly, if we have

B =

〈

(

1 0
)

,

(

0 K

0 G

)

,

(

d

V

)

〉

and B′ =

〈

(

1 0
)

,

(

0 K ′

0 G′

)

,

(

d′

V

)

〉

,

then K = K ′ , V = V ′ and V · K + G = V ′ · K ′ + G′ hold. From (4.1) and (4.3)

follow

(A+ B)∗ =

〈

(

1 0 0
)

,





0 J K

0 U · J + F U ·K
0 V ·K V ·K +G



,





1
U

V





〉

=

〈

(

1 0 0
)

,





0 J ′ K ′

0 U ′ · J ′ + F ′ U ′ ·K ′

0 V ′ ·K ′ V ′ ·K ′ +G′



,





1
U ′

V ′





〉

= (A′ + B′)∗ .

(ii) With the same notation as before we have on one hand-side

A+ B =

〈

(

1 0 0
)

,





0 J K

0 F 0
0 0 G



,





1
U

V





〉

and then

(A+ B)∗ =

〈

(

1 0 0
)

,





0 J K

0 U · J + F U ·K
0 V ·K V ·K +G



,





1
U

V





〉

,

and on the other

A · B =

〈

(

1 0 0
)

,





0 J K

0 F U ·K
0 0 G



,





1
U

V





〉

and then

(A · B)∗ =

〈

(

1 0 0
)

,





0 J K

0 U · J + F U ·K + U ·K
0 V ·K V ·K +G



,





1
U

V





〉

,

and the equality follows from the idempotency identity I.

(iii) Again with the same notation, we have:

A∗ =

〈

(

1 0
)

,

(

0 J

0 U · J + F

)

,

(

1
U

)

〉

and (A∗)
∗
=

〈

(

1 0
)

,

(

0 J

0 U · J + U · J + F

)

,

(

1
U

)

〉

and the equality follows from the idempotency identity I.

Proof of Theorem 4.3. We establish by a simultaneous induction that the following two

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 29

statements hold:

E
• is in SNF and SE• = SE (4.12)

E
�

is in SNF and (S
E

�)∗ = SE∗ . (4.13)

Both (4.12) and (4.13) clearly hold for the base clauses.

• E = F+ G

– E• = F• + G• is in star-normal form by induction. Moreover,

SE• = SF• + SG• = SF + SG by induction

= SE since E = F+ G .

– E
�

= F
�

+ G
�

is in star-normal form by induction. Moreover,

(S
E

�)
∗
= (S

F
� + S

G
�)

∗
= (SF + SG)

∗
by induction and by Property 4.4 (i)

= SE∗ since E = F+ G .

• E = F · G

– E• = F• · G• is in star-normal form by induction. Moreover,

SE• = SF• · SG• = SF · SG by induction

= SE since E = F · G .

– E
� = F

�+G
�

or E
� = F• ·G• is in star-normal form by induction. Moreover:

(i) if c(F) = c(G) = 1 , then

(S
E

�)∗ = (S
F

� + S
G

�)∗ = (SF + SG)
∗

by induction and by Property 4.4 (i)

= (SF · SG)
∗

by Property 4.4 (ii)

= SE∗ since E = F · G .

(ii) if c(F)c(G) = 0 , then

(S
E

�)∗ = (SF• · SG•)∗ = (SF · SG)
∗

by induction

= SE∗ since E = F · G .

• E = F∗

– E• = (F�)
∗

is in star-normal form by induction and since c(F�) = 0 . More-

over,

SE• = (S
F

�)
∗
= SF∗ by induction and (4.13)

= SE since E = F
∗ .

– E
�

= (F∗)
�

= F
�

is in star-normal form by induction. Moreover

(S
E

�)
∗
= (S

F
�)

∗
= SF∗ by induction

= SE∗ since E = F and by Property 4.4 (iii) .

As the computation of E• is linear in ℓ(E), the goal is achieved by the following:

Long version February 12, 2015

30 J. Sakarovitch

Theorem 4.5 ([11]). Let E be a rational expression in star-normal form. Then, the in-

ductive computation of SE by (4.1)–(4.3) has a quadratic complexity in ℓ(E).

Proof. to be done

4.2.3 The Thompson automaton A survey on ∆-maps cannot miss out the method due

to Thompson [58]. It was designed to be directly implementable as a program, primarily

for searching with rational expressions in text. It is based on the use of spontaneous transi-

tions. Figure 14 shows the basic steps of the construction, which, by induction, associates

with an expression E a unique (and well-defined) automaton TE. It is remarkable that this

construction corresponds indeed to another way of defining the standard automaton.

Proposition 4.6. The backward closure of TE is equal to SE.

a 1A∗

(a) base cases

i′ t′ i′′ t′′
1A∗

(b) product

i′ t′

i′′ t′′

i t

1A∗

1A∗

1A∗

1A∗

(c) union

i′ t′i t
1A∗ 1A∗

1A∗

1A∗

(d) star

Figure 14. Thompson’s construction

Figure 15 shows the construction applied to the expression E2 = (a∗b+ bb∗a)∗ .

a b

b

b

a

Figure 15. The automaton TE2

4.2.4 Loop complexity of standard automata We end this section with the proof of

Proposition 3.14: With every rational expression E, we can associate an automaton equiv-

alent to E and whose loop complexity is equal to the star height of E.

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 31

The sketches at Figure 12 (a) and (b) make clear that if A and A′ are standard au-

tomata, it holds

lc((A+A′)) = lc((A · A′)) = max{lc(A), lc(A′)} .

It follows then from Definition 3.1 that the loop complexity of the sum and product of

standard automata is equal to the star height of the expressions for the sum and product,

provided equality hold for the operands.

The same relation does not holds for the star of a standard automaton, as seen on the

example shown at Figure 16: the loop complexity of the automaton is not necessarily

incremented by the star operation. In the opposite way, the star operation (on standard au-

tomata) may well increase the loop complexity by more than 1, as shown by SE1
. Hence,

it is not true that lc(SE) = h[E] holds.

a a

a

a a

a

Figure 16. The standard automaton A3 of a (a2)∗ and A∗
3

In order to circumvent this difficulty, we replace the star operation on standard au-

tomata by a more elaborate one. A standard automaton is normalised if it has only one

final state and if this final state is not the origin of any transition. An obvious construc-

tion transforms any standard automaton A into an equivalent normalised one, which we

write Anor, and we have:

Property 4.7. lc(Anor) = lc(A) .

We further write A0 for the standard automatonA in which the initial state is not final.

The automaton
(

Anor
0 · A0

)

has a cut-vertex t. Finally, let B =
(

Anor
0 · A0

)∗
and B′

the automaton in which t has been made final. Clearly, B = A∗ and Proposition 3.14 is

established with the proof of the following lemma.

Lemma 4.8. lc(B′) = lc(A) + 1 .

Proof. The automaton B′ without its initial state i is a ball; by definition, we have

lc(B′) = 1 +min {lc(B′ \ {i, s}) | s ∈ B′ \ i} . (4.14)

The final state t of Anor is a cut vertex (of the underlying graph) of Anor
0 · A0 If we

set s = t in (4.14), the balls of B′′ = B′ \ {i, s} are those of Anor
0 and A0 and hence

lc(B′) 6 lc(A) + 1 . If we take an arbitrary s in Anor
0 or A0, B′′ contains either A1

or Anor
0 and lc(B′) > lc(A) + 1 .

4.3 The derived-term automaton of an expression

Let us first recall the (left) quotient operation on languages:

∀L ∈ P (A∗) , ∀u ∈ A∗ u−1L = {v ∈ A∗ | uv ∈ L} .

Long version February 12, 2015

32 J. Sakarovitch

i t
a a

a

a

i t
a a

a

a
a a

a

a

a

Figure 17. The standard automata A3nor and B′
3 buit from

(

A3nor
0 · A3

0
)∗

The quotient is a (right) action of A∗ on P (A∗):

∀L ∈ P (A∗) , ∀u, v ∈ A∗ (uv)−1L = v−1
(

u−1L
)

. (4.15)

A fundamental, and characteristic, property of rational languages — which is another

way to express that they are recognisable — is that they have a finite number of quotients.

The principle of the construction we present in this section, and which we call deriva-

tion, is to transfer the quotient on languages to an operation on the expressions. First

introduced by Brzozowski [12], the definition of the derivation of an expression E has

been modified by Antimirov [4] (cf. Notes) and yields a non-deterministic automaton AE,

which we propose to call the derived-term automaton of E. This construction concerns

thus expressions over free monoids only. In the sequel, E is a rational expression over A∗.

Definition 4.3 (Brzozowski–Antimirov [4]). The derivation of E with respect to a letter a

of A, denoted by ∂
∂a E, is a set of rational expressions over A∗, inductively defined by:

∂

∂a
0 =

∂

∂a
1 = ∅, ∀b ∈ A

∂

∂a
b =

{

{1} if b = a ,

∅ otherwise,
, (4.16)

∂

∂a
(F+ G) =

∂

∂a
F ∪

∂

∂a
G , (4.17)

∂

∂a
(F · G) =

(

∂

∂a
F

)

· G ∪ c(F)
∂

∂a
G , (4.18)

∂

∂a
(F∗) =

(

∂

∂a
F

)

· F∗ . (4.19)

Equation (4.18) should be understood with the convention that the product xX of a

set X by a Boolean value x is X if x = 1 and ∅ if x = 0. The induction involved in

Equations (4.17)–(4.19) should be interpreted by extending derivation additively (as are

always derivation operators) and by distributing (on the right) the · operator over sets

as well. Finally, every operation on rational expressions is computed modulo the trivial

identities T, but not modulo the natural identies N — nor the idempotent identites I

and J.

Definition 4.4. The derivation of E with respect to a non-empty word v of A∗, denoted

by ∂
∂v E , is the set of rational expressions over A∗, defined by (4.17)–(4.19) for letters

in A and by induction on the length of v by:

∀u ∈ A+ , ∀a ∈ A
∂

∂ua
E =

∂

∂a

(

∂

∂u
E

)

. (4.20)

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 33

The derivation of expressions is indeed parallel to the quotient of languages as we

have the following property.

Property 4.9.

∀L,K ⊆ A∗ , ∀a ∈ A a−1(L ∪K) = a−1L ∪ a−1K ,

a−1(LK) = (a−1L) ∪ c(L)a−1K ,

a−1(L∗) = (a−1L)L∗ .

It follows, by induction on the depth of the expression:

∀E ∈ RatEA∗ , ∀a ∈ A
∂

∂a
E = a−1

E (4.21)

which in turn implies, by induction on the length of words and the parallel between (4.20)

and (4.15):

∀E ∈ RatEA∗ , ∀u ∈ A+ ∂

∂u
E = u−1

E . (4.22)

In particular, we have:

Property 4.10. If E is not a constant, there exists u in A+ such that c(∂
∂u E) = 1 .

Example 4.3. The derivation of E1 = (a∗b+ bb∗a)∗ (cf. Example 4.1) yields:

∂

∂a
E1 =

∂

∂aa
E1 = {a∗bE1} ,

∂

∂b
(E1)

∗ = {E1, b
∗aE1} ,

∂

∂b
a∗bE1 = {E1} ,

∂

∂a
(b∗aE1)

∗ = {E1} ,
∂

∂b
(b∗aE1)

∗ = {b∗aE1} .

4.3.1 The derived-term automaton Derivation thus associates a pair of an expression

and a word with a set of expressions. We now turn this map into an automaton.

Definition 4.5. We call true derived term of E every expression that belongs to ∂
∂w E for

some word w of A+; we write TD (E) for the set of true derived terms of E:

TD (E) =
⋃

w∈A+
∂

∂w E . (4.23)

The set D (E) = TD (E) ∪ {E} is the set of derived terms of E.

Example 4.4 (Example 4.3 cont.). D (E1) = {E1, a
∗bE1, b

∗aE1} .

The sets of derived terms and the rational operations are related by the following

equations, from which most of the subsequent properties will be derived.

Proposition 4.11. Let F and G be two expressions. Then, TD (F+ G) = TD (F) ∪
TD (G), TD (F · G) = (TD (F)) · G ∪ TD (G), and TD (F∗) = (TD (F)) · F∗ hold.

Starting from TD (0) = TD (1) = ∅ and TD (a) = {1} for every a in A, TD (E)
can be computed from Proposition 4.11 by induction on d(E) and without reference to

Long version February 12, 2015

34 J. Sakarovitch

the derivation operation (cf. the prebases in [44] and Definition 6.2 below). It follows in

particular that Card (TD (E)) 6 ℓ (E) and thus:

Corollary 4.12. Card (D (E)) 6 ℓ (E) + 1 .

The computation of D (E) is a ∆-map, as expressed by the following.

Definition 4.6 (Antimirov [4]). The derived-term automaton of E is the automaton AE

whose set of states is D (E) and whose transitions are defined by:

(i) if K and K′ are derived terms of E and a a letter of A, then (K, a,K′) is a transition

if and only if K′ belongs to ∂
∂a K;

(ii) the initial state is E;

(iii) a derived term K is final if and only if c(K) = 1.

Theorem 4.13 ([4]). For any rational expression E, E = AE .

Example 4.5 (Example 4.4 cont.). The automaton AE1
is shown at Figure 18.

a∗bE2 E2 b∗aE2

b

a b

a

ba b

Figure 18. The automaton AE1
.

4.3.2 Relationship with the standard automaton The constructions of the standard

and derived-term automata of an expression are of different nature. But both arise from the

same inner structure of the expression by two inductive processes, and the two automata

have a structural likeness which yields another proof of Corollary 4.12:

Theorem 4.14 ([17]). For any rational expression E, AE is a quotient of SE.

4.3.3 Derivation and bracketing The derivation operator is sensitive to the bracketing

of expressions; on the other hand, it does commute to the associativity identity A.

Example 4.6. Let ab (c (ab))∗ be an expression which is not completely bracketed. The

derivation of the two expressions obtained by different bracketings yields:

D
(

a (b (c (ab))∗)
)

= {a (b (c (ab))∗) , b (c (ab))∗, (c (ab))∗ , (ab) (c (ab))∗} .

D
(

(ab) (c (ab))∗
)

= {(ab) (c (ab))∗ , b (c (ab))∗, (c (ab))∗} .

More precisely, we have the following.

Proposition 4.15 ([3]). Let E, F and G be three rational expressions. Then:

Card
(

D
(

(E · F) · G
))

6 Card
(

D
(

E · (F · G)
))

and A D
(

(E · F) · G
)

≡ D
(

E · (F · G)
)

.

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 35

5 Changing the monoid

Most of what has been presented so far extends without problems from languages to

subsets of arbitrary monoids, from expressions over a free monoid to expressions over

such monoids. We run over definitions and statements to transform them accordingly.

The main difference will be that rational and recognisable sets do not coincide anymore,

making the link between finite automata and rational expressions even tighter, and ruling

out quotient and derivation that refer to the recognisable ‘side’ of rational languages.

Non-free monoids of interest in the field of computer science and automata theory

are, among others, direct products of free monoids (for relations between words), free

commutative monoids (for counting purpose), partially commutative, or trace, monoids

(for modelling concurrent or parallel computations), free groups and polycyclic monoids

(in relation with pushdown automata).

In the sequel, M is a monoid, and 1M its identity element.

5.1 Rationality

Rational sets and expressions Product and star are defined in P (M) as in P (A∗) and

the set of rational subsets of M , denoted by RatM , is the smallest subset of P (M)
which contains the finite sets (including the empty set) and which is closed under union,

product, and star.

Rational expressions over M are defined as those over A∗, with the only difference

that the atoms are the elements of M ; their set is denoted by RatEM . We also write E

for the subset denoted by an expression E. Two expressions are equivalent if they denote

the same subset and we have the same statement as Proposition 2.1:

Proposition 5.1. A subset of M is rational if and only if it is denoted by a rational

expression over M .

A subset G of M is a generating set if M = G∗ . The direct part of Proposition 5.1

may be restated with more precision as: any rational subset of M is denoted by a rational

expression whose atoms are taken in any generating set. It follows from the converse part

that a rational subset of M is contained in a finitely generated submonoid.

Finite automata An automaton over M , denoted by A = 〈Q,M,E, I, T 〉 , is defined

like an automaton over A∗, with the only difference that the transitions are labelled by

elements of M : E ⊆ Q×M×Q . Then, A is finite if E is finite.

The subset accepted by A, called the behaviour of A and denoted by A as above, is

the set of labels of successful computations: A =
{

m ∈ M
∣

∣

∣ ∃i ∈ I, ∃t ∈ T i
m

−−→
A

t
}

.

The fundamental theorem of finite automata In this setting, the statement appears

more clearly different from Kleene’s theorem. Its first appearance11 seems to be in Elgot

and Mezei’s paper on rational relations.

11Hidden in a footnote!

Long version February 12, 2015

36 J. Sakarovitch

Theorem 5.2 ([23]). A subset of a monoid M is rational if and only if it is the behaviour

of a finite automaton over M whose labels are taken in any generating set of M .

There is not much to change in Propositions 2.3 and 2.4 to establish Theorem 5.2.

Proposition 5.3 (Γ-maps). For every finite automaton A over M , there exist rational

expressions over M which denote A .

All four methods described in Section 3 apply for arbitrary M , even if their formal

proof may be slightly different (Arden’s lemma does not hold anymore).

Proposition 5.4 (∆-maps). For every rational expression E over M , there exist finite

automata over M whose behaviour is equal to E .

Here again, the algorithms and results described in Section 4.2 for the construction of

the standard automaton, Thompson automaton, etc. pass over to expressions over M . On

the contrary, quotients in M define recognisable subsets of M and not rational ones (see

below) and derivation of expressions over M does not make sense anymore.

5.2 Recognisability

Definition 2.3 may be rephrased verbatim for arbitrary monoids. A subset P of M is said

to be recognised by a morphism α : M → N if P = α−1(α(P)) . A subset of M is

recognisable if it is recognised by a morphism from M into a finite monoid. The set of

recognisable subsets of M is denoted by RecM .

Recognisable and rational subsets We can then reproduce almost verbatim the con-

verse part of the proof of Theorem 2.5. Let P be in RecM , recognised by a morphism α.

We replace the alphabetA by any generating set G ofM in the construction of the automa-

ton Aα. If M is finitely generated, G is finite, so is Aα and P is rational by Theorem 5.2:

Proposition 5.5 (McKnight [42]). If M is finitely generated, then RecM ⊆ RatM .

On the other hand, the first part of the quoted proof does not generalise to non-free

monoids and the inclusion in Proposition 5.5 is strict in general. For instance, the set

(a, c)∗ =
(

(a, 1)(1, c)
)∗

is a rational subset of a∗× c∗ (where the product is formed

component wise). It is accepted by a two-state automaton which induces a map µ from

the generating set of a∗×c∗ into B2×2:

µ
(

(a, 1)
)

=
(

0 1
0 0

)

and µ
(

(1, c)
)

=
(

0 0
1 0

)

.

But this map does not define a morphism from a∗×c∗ into B2×2.

Decision problems for rational sets In general, RatM is not a Boolean algebra. This

is also accompanied with undecidability results. The undecidability of Post Correspon-

dence Problem, easily expressed in terms of monoid morphisms, implies for instance:

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 37

Theorem 5.6 (Rabin–Scott [48]). It is undecidable whether the intersection of two ratio-

nal sets of {a, b}∗×{c, d}∗ is empty or not.

From which one deduce:

Theorem 5.7 (Fischer–Rosenberg [24]). The equivalence of finite automata, and hence

of rational expressions, over {a, b}∗×{c, d}∗ is undecidable.

In contrast, the cases whereRatM is an effective Boolean algebra — such as whenM

is a (finitely generated) free commutative monoid [28] or free group [26] — play a key

role in model-checking issues which involve counters, or pushdown automata.

6 Introducing weights

Most of the statements about automata and expressions established in the previous sec-

tions extend again without much difficulties in the weighted case, as we have taken care

to formulate them adequately. There are two questions though that should be settled first

in order to set up the framework of this generalisation. First, the definition of the star

operator requires some mathematical apparatus to be meaningful. Second, the definition

of weighted expressions has to be tuned in such a way that former computations such as

the derivation remain valid.12

6.1 Weighted languages, automata, and expressions

6.1.1 The series semiring The weights, with which we enrich the languages or subsets

of monoids are taken in a semiring, so as to give the set of series we build the desired struc-

ture. We are interested in weights as they actually appear in the modelisation of phenom-

ena that we want to be able to describe (and not because they fullfil some axioms). These

are the classical numerical semirings N, Z, Q, etc., the less classical 〈Z ∪ +∞,min,+ 〉,
etc. None of them are Conway semirings (cf. Chapter 20), N is a quasi-Conway semir-

ing but not the others. In the sequel, K is a semiring. The unweighted case corresponds

to K = B and will be refer to as the Boolean case.

As in the Boolean case, free monoids give rise to results which do not hold in non-free

ones (the Kleene–Schützenberger theorem). But not all non-free monoids allow to easily

define series with weights in arbitrary semirings. We restrict ourselves to graded monoids,

that is, which are equipped with a length function. They behave exactly like the free

monoids as far as the construction of series is concerned, they cover many monoids that

12The definition of the behaviour of weighted automata also conceals a problem due to the existence of

spontaneous or ε-transitions). This is out of the scope of this chapter where we focus on the relationships

between automata and expressions. All usual definitions eventually allow to establish that every automaton

whose behaviour is defined is equivalent to a proper automaton. This is how we define a weighted automaton

and where we begin our presentation. We thus save a significant amount of foundation results. On this subject,

we refer to other chapters of this handbook (Chapters 4 and 20) and other works ([57, 9, 37, 54, 20, 41]).

Long version February 12, 2015

38 J. Sakarovitch

are considered in computer science, and they are sufficient to make clear the difference

between the free and non-free cases as far as rationality is concerned. In the sequel, M is

a finitely generated graded monoid.

Series Any map s from M to K is a formal power series (series for short) over M with

coefficients in K. The image by s of an element m in M is written <s,m> and is called

the coefficient of m in s. The set of these series, written K〈〈M〉〉, is equipped with the (left

and right) ‘exterior’ multiplications, the pointwise addition, and the (Cauchy) product:

for every m in M , <st,m> =
∑

uv=m <s, u><t, v> . As M is graded, the product is

well-defined, and the three operations make K〈〈M〉〉 a semiring (cf. Chapter 4).

The support of a series s is the subset of elements of M whose coefficient in s is

not 0K. A series with finite support is a polynomial; the set of polynomials over M with

coefficients in K is written K〈M〉.

Topology The following definition of the star as an infinite sum calls for the definition

of a topology on K〈〈M〉〉. The semirings K we consider are equipped with a topology

defined by a distance, whether it is a discrete topology (N, Z, 〈Z ∪ +∞,min,+ 〉, etc.)

or a more classical one (Q, R, another L〈〈N〉〉, etc.). Since M is graded (and finitely

generated) it is easy to derive a distance which defines on K〈〈M〉〉 the simple convergence

topology:

sn converges to s if, and only if, for all m in M , <sn,m> converges to <s,m> .

Along the same line, a family of series {si}i∈I is summable if for every m in M the

family {<si,m>}i∈I is summable (in K). An obvious case of summability is when for

every m in M there is only a finite number of indices i such that <si,m> is different

from 0K, in which case the family {si}i∈I is said to be locally finite.

All quoted semirings that we consider are topological semirings, that is, not only

equipped with a topology, but their semiring operations are continuous. We also use

silently in the sequel the following identification: if Q is a finite set, K〈〈M〉〉Q×Q, the

semiring of Q×Q-matrices with entries in K〈〈M〉〉 is isomorphic to KQ×Q〈〈M〉〉, the

semiring of series on M with coefficients in KQ×Q.

Star The star, denoted t∗, of an element t in an arbitrary topological semiring T (not

only in a semiring of series) is defined if the family {tn}n∈N is summable and in this case,

t∗ =
∑

n∈N
tn and t is said to be starable. If t∗ is defined, then t∗ = 1T+t t∗ = 1T+t∗t

hold. If moreover T is a ring, this can be written (1 − t) t∗ = t∗(1 − t) = 1 and t∗ is

the inverse of 1 − t . Generally in semirings, the star of an element may be viewed as a

substitute of taking the inverse in a poor structure that has no inverse. Hence is the name

rational given to objects that can be computed with the star.

The constant term of a series s is the coefficient of the identity ofM : c(s) = <s, 1M> .

A series is proper if its constant term is zero. If s is proper, the family {sn}n∈N is locally

finite since M is graded and the star of a proper series of K〈〈M〉〉 is thus always defined.

Lemma 6.1. Let s and t be two series in K〈〈M〉〉. If s∗ is defined, then s∗t is the unique

solution of the equation X = sX+ t .

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 39

6.1.2 Rational series and expressions The rational operations on K〈〈M〉〉 are: the two

exterior multiplications by elements of K, the addition, the product, and the star which is

not defined everywhere. A subset E of K〈〈M〉〉 is closed under star if for every s in E such

that s∗ is defined then s∗ belongs to E . The rational closure of a set E , written KRat E , is

the smallest subset of K〈〈M〉〉 closed under the rational operations and which contains E .

The set of (K-)rational series, written KRatM , is the rational closure of K〈M〉.

Weighted rational expressions A rational expression on M with weight in K — a

weighted expression — is defined by completing Definition 2.1 with two operations for

every k in K: if E is an expression, then so are (kE) and (Ek). The set of weighted

rational expressions is written KRatEM . As for the languages, we write E for the

series denoted by E, with the supplementary equations: (kE) = k E and (Ek) = E k.

The constant term c(E) is defined as in Definition 2.2 but for the last equation

[c(F∗) = 1] which is replaced by: ‘c(F∗) = c(F)
∗

if the latter is defined’. An ex-

pression is valid if its constant term is defined. As M is graded, c(E) = <E , 1M> holds

for every valid weighted rational expression E. Finally, the following holds:

Proposition 6.2. A series of K〈〈M〉〉 is rational if and only if it is denoted by a valid

rational K-expression over M .

In this framework, we reformulate Lemma 6.1 as:

Corollary 6.3. Let U and V be two expressions in KRatEM . If (c(U))∗ is defined,

then U∗V denotes the unique solution of the equation X = UX+ V .

6.1.3 Weighted automata and the fundamental theorem An automaton A over M

with weight in K, a K-automaton for short, still written A = 〈Q,M,E, I, T 〉 , is an

automaton where the sets of initial and final states are replaced with maps from Q to K,

that is, every state has an initial and a final weight, and where the set E of transitions is

contained in Q×K×(M \ 1M)×Q, that is, every transition is labelled with a monomial

in K〈M〉, different from a constant term. The automaton A is finite if E is finite.

Alternatively, the same automaton is (more often) written A = 〈 I, E, T 〉 , with the

convention taken at Section 2: E is the transition matrix of A, a Q×Q-matrix whose

(p, q)-entry is the sum of the labels of all transitions from p to q, and I and T are vectors

in KQ. In this setting, A is finite if every entry of E is a polynomial of K〈M〉.
The label of a computation in A is, as above, the product of the labels of the transitions

that form the computation, multiplied (on the left) by the initial weight of the origin and

(on the right) by the final weight of the end of the computation. With the definition we

have taken for automata (no transition labelled with a constant term), and because M is

graded, the family of labels of all transitions of A is summable and the series accepted

by A, also called behaviour of A and written A , is its sum. The fundamental theorem of

automata then reads:

Theorem 6.4. Let M be a graded monoid. A series of K〈〈M〉〉 is rational if and only if it

is the behaviour of a finite K-automaton over M .

Long version February 12, 2015

40 J. Sakarovitch

6.1.4 Recognisable series The distinction between rational and recognisable carries

over from subsets of a monoid M to series over M . The equivalence between automata

over free monoids and matrix representation (cf. Section 2.3) paves the way to the defini-

tion of recognisability.

A K-representation of M of dimension Q is a triple (λ, µ, ν) where µ : M → KQ×Q

is a morphism, and λ and ν are two vectors of KQ. The representation (λ, µ, ν) realises

the series s =
∑

m∈M (λ ·µ(m) ·ν)m ; a series in K〈〈M〉〉 is recognisable if it is realised

by a representation and the set of recognisable series is denoted by KRecM . The family

of rational and of recognisable series are distinct in general. A proof which is very similar

to the one given at Section 2.3, and which is independent from K, yields the following.

Theorem 6.5 (Kleene–Schützenberger). If A is finite, then KRatA∗ = KRecA∗ .

6.2 From automata to expressions: the Γ-maps

With the definition taken for a K-automaton A = 〈 I, E, T 〉 , every entry of E is a

proper polynomial of K〈M〉, E is in K〈M〉Q×Q, hence a proper polynomial ofKQ×Q〈M〉,
and E∗ is well-defined. Lemma 2.6 generalises to K-automata and A = I ·E∗ ·T holds.

In every respect, the weighted case is similar to the Boolean one. The direct part of

Theorem 6.4 follows from the generalised statement of Proposition 3.1:

Proposition 6.6. The entries of the star of a proper matrix E of K〈〈M〉〉Q×Q belong to

the rational closure of the entries of E.

The same algorithms as those presented at Section 3: the state-elimination and system-

solution methods, the McNaughton–Yamada and recursive algorithms, establish the

weighted version of Proposition 2.3:

Proposition 6.7. Let M be a graded monoid. For every finite K-automaton A over M ,

there exist rational expressions over M which denote A .

If the algorithms are the same, one has to establish nevertheless their correctness in this

new and more complex framework. We develop the case of the system-solution method,

the other ones could be treated in the same way. To begin with, we have to enrich the

set of trivial identities in order to set up the definition of reduced weighted expressions,

which in turn is necessary to define computations on expressions. The set T as defined at

Section 3.1 is now denoted as Tu:

E+0 ≡ E , 0+E ≡ E , E·0 ≡ 0 , 0·E ≡ 0 , E·1 ≡ E , 1·E ≡ E , 0
∗ ≡ 1 (Tu)

and augmented with three other sets of identities:

0KE ≡ 0 , E0K ≡ 0 , k 0 ≡ 0 , 0k ≡ 0 , 1KE ≡ E , E1K ≡ E (TK)

k (hE) ≡ khE , (Ek)h ≡ Ekh , (kE)h ≡ k (Eh) (AK)

1k ≡ k 1 , E · (k 1) ≡ Ek , (k 1) · E ≡ kE (UK)

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 41

From now on, all computations on weighted expressions are performed modulo the trivial

identities T = Tu ∧TK ∧AK ∧UK . Besides the trivial identities, the natural identities

N = A ∧D ∧C hold on the expressions of KRatEM for any K and (graded) M , and,

in contrast, the identities I and J that are special to P (M) do not hold anymore.

The system-solution method starts from a proper automaton A = 〈 I, E, T 〉 of di-

mension Q whose behaviour is A = I · V where V = E∗ · T is a vector in K〈〈M〉〉Q.

Lemma 6.1 easily generalises and as E is proper (in KQ×Q〈〈M〉〉), V is the unique solu-

tion of the equation X = EX + T which we rewrite as a system of Card (Q) equations:

∀p ∈ Q Vp =
∑

q∈Q Ep,q Vq + Tp 1 (6.1)

where the Vp are the ‘unknowns’, where the entries Ep,q , which are linear combinations

of elements of M , are considered as expressions and denoted as such and where Tp 1 is

the series reduced to the monomial Tp 1M . The system (6.1) may be solved by successive

elimination of the unknowns, by means of Corollary 6.3. When all unknowns Vq have

been eliminated following an order ω on Q, the computation yields an expression that we

denote by Eω(A), as in Section 3.3, and A = Eω(A) holds.

The parallel with the Boolean case can be carried on: given a K-automaton A of

dimension Q, an ordering ω, and a recursive division τ on Q, the expressions Bω(A),
Mω(A), and Cτ (A) that all denote A are computed by the state-elimination method, the

McNaughton–Yamada and recursive algorithms respectively. The results on the compari-

son between these expressions also extend to the weighted case.

Proposition 6.8. For every order ω on Q, Bω(A) = Eω(A) holds.

Proposition 6.9. For every order ω on Q, N ∧U Mω(Ap,q) ≡ Bω(Ap,q) holds.

Theorem 3.5 also extends to the weighted case (and it is now clear why it was impor-

tant that identities I and J do not play a role in that result).

Theorem 6.10. Let ω and ω′ be two orders on the set of states of a K-automaton A.

Then, N ∧ S ∧P Bω(A) ≡ Bω′(A) holds.

6.3 From expressions to automata: the ∆-maps

6.3.1 The standard automaton of a weighted expression The definition of a standard

weighted automaton is the same as the one of a standard automaton for the Boolean case:

a unique initial state on which the initial map takes the value 1K and which is not the end

of any transition. Such an automaton may thus be represented as in Figure 11 and every

weighted automaton is equivalent to, and may be turned into, a standard one.

As in the Boolean case, operations are defined on standard weighted automata that are

parallel to the rational weighted operators. With the notation of Figure 11, the operators

Long version February 12, 2015

42 J. Sakarovitch

A+ B and A · B are given by (4.1) and (4.2), kA and Ak by

kA =

〈

(

1 0
)

,







0 kJ

0 F






,







k c

U







〉

, Ak =

〈

(

1 0
)

,







0 J

0 F






,







ck

U k







〉

,

and A∗, which is defined when c∗ is defined, by the following modification of (4.3):

A∗ =

〈

(

1 0
)

,







0 c∗ J

0 H






,







c∗

U c∗







〉

, (4.3’)

where H = U ·c∗ J+F . As in Section 4.2, these operations allow to associate with every

weighted expression E and by induction on its depth, a standard weighted automaton SE

which we call the standard automaton of E. Straightforward computations show that

(kA) = kA , (Ak) = A k , (A+ B) = A+ B , (A · B) = A · B and (A∗) = A∗.

From which one concludes that the construction of SE is a ∆-map:

Proposition 6.11 ([14, 39]). If E is a weighted expression over A∗, then SE = E .

The automaton SE has ℓ(E) + 1 states. Computing SE from (4.1), (4.2) and (4.3’)

is cubic in ℓ(E) and a star-normal form for weighted expressions is something that does

not seem to exist in the general case. Figure 19 shows the standard Q-automaton SE3

associated with E3 = (16 a
∗ + 1

3 b
∗)∗ and Z-automaton SE4

associated with E4 = (1 −
a)a∗.

1

2 2 2
1
3 a

2
3 b

1
3 a

2
3 b

4
3 a

5
3 b

1

1 1

1
−a a

a a

Figure 19. The Q-automaton SE3
and the Z-automaton SE4

It is the necessary definition of kA and Ak that rules out the equivalence km ≡ mk ,

with m in M , from the set of trivial identities.

6.3.2 The derived-term automaton of a weighted expression The (left) quotient op-

eration also extends from languages to series: for every s in K〈〈A∗〉〉, and every u in A∗,

u−1s is defined by <u−1s, v> = <s, uv> for every v in A∗. The quotient is a (right)

action of A∗ on K〈〈A∗〉〉: (uv)−1s = v−1
(

u−1s
)

.

In contrast with the Boolean case, a series in KRatA∗ may have an infinite number

of distinct quotients. However, the quotient operation allows to express a characteristic

property of rational series. Let us call stable a subset U of K〈〈A∗〉〉 closed under quotient.

Then, a characterisation due to Jacob reads: a series of K〈〈A∗〉〉 is rational if and only if

it is contained in a finitely generated stable submodule of K〈〈A∗〉〉, cf. [9, 56].

Derivation The derivation of weighted rational expressions implements the lifting of

the quotient of series to the level of expressions. It yields an effective version of the

characterisation quoted above.

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 43

In the sequel, addition in K is written ⊕ to distinguish it from the + operator in ex-

pressions. The set of (left) linear combinations of K-expressions with coefficients in K

is denoted, by abuse, by K〈KRatEA∗〉. In the following, [k E] or k E is a monomial

in K〈KRatEA∗〉 whereas (k E) is an expression in KRatEA∗. An external right multi-

plication on K〈KRatEA∗〉 by an expression and by a scalar is needed in the sequel. It is

first defined on monomials by ([k E] · F) ≡ k (E · F) and ([k E] k′) ≡ k (E k′) and then

extended to K〈KRatEA∗〉 by linearity.

Definition 6.1 ([39]). The derivation of E in KRatEA∗ with respect to a in A, denoted

by ∂
∂a E, is a linear combination of expressions in KRatEA∗ defined by (4.16) for the

base cases and inductively by the following formulas.

∂

∂a
(k E) = k

∂

∂a
E ,

∂

∂a
(E k) =

([

∂

∂a
E

]

k

)

,
∂

∂a
(E+F) =

∂

∂a
E⊕

∂

∂a
F ,

∂

∂a
(E · F) =

([

∂

∂a
E

]

· F

)

⊕ c(E)
∂

∂a
F , and

∂

∂a
(E∗) = c(E)

∗

([

∂

∂a
E

]

· (E∗)

)

.

The last equation is defined only if E
∗ is a valid expression. The derivation of an

expression with respect to a word u is defined by induction on the length of u: for ev-

ery u in A+ and every a in A, ∂
∂ua E = ∂

∂a
(

∂
∂u E

)

and the definition of derivation is

consistent with that of quotient of series since for every u in A+, ∂
∂u (E) = u−1E holds.

The derived-term automaton At Section 4.3.1, we have defined the derived terms of

a (Boolean) expression as the expressions that occur in a derivation of that expression.

Proposition 4.11 then established properties that allow to compute these derived terms,

without derivation. For the weighted case, we take the same properties as the definition.

Definition 6.2 ([39]). The set TD (E) of true derived terms of E in KRatEA∗ is in-

ductively defined by: TD (k E) = TD (E), TD (E k) = (TD (E) k), TD (E+ F) =
TD (E) ∪ TD (F), TD (E · F) = (TD (E)) · F ∪ TD (F), TD (E∗) = (TD (E)) · E∗,

starting from the base cases TD (0) = TD (1) = ∅ , and TD (a) = {1} for every a in A.

TD (E) is a set of unitary monomials of K〈KRatEA∗〉, with Card (TD (E)) 6 ℓ(E) .

The set of derived terms of E is D (E) = TD (E)∪{E} . Theorem 6.12 insures consistency

between Definitions 6.1 and 6.2; the usefulness of the latter follows from Theorem 6.13.

Theorem 6.12 ([51, 39]). Let E be in KRatEA∗ and D (E) = {K1, ...,Kn}. For every a

in A, there exist an n×n-matrix µ(a) with entries in K such that

∀i ∈ [n] ∂
∂a Ki =

⊕

j∈[n] µ(a)i,j Kj .

The derivation of an expression E in KRatEA∗ with respect to every word in A+ is

thus a linear combination of derived terms of E. Hence the derived terms of an expres-

sion denote the generators of a stable submodule that contains the series denoted by the

expression. Theorem 6.12 yields the the derived-term automaton of E, AE = 〈 I,X, T 〉 ,

of dimension D (E), with I = 1K if Ki = E and 0K otherwise, X =
⊕

a∈A µ(a)a , and

Tj = c(Kj) . The K-derivation is another ∆-map since AE = E holds.

Long version February 12, 2015

44 J. Sakarovitch

Morphisms and quotients of (Boolean) automata are generalised to Out-morphisms

and quotients of K-automata (cf. [56, 5]). Theorem 4.14 is then extended to the weighted

case.

Theorem 6.13 ([39]). Let E be in KRatEA∗. Then AE is a quotient of SE.

Remark 6.14. This statement is a justification for Definition 6.2. The monomials that ap-

pear in the derivations of an expression E are in D (E). The converse is not necessarily true

when K is not a positive semiring: some derived terms may never occur in a derivation,

as it can be observed for instance on the Z-expression E4 = (1 − a)a∗ (cf. Figure 20).

With a definition of derived terms based on derivation only, Theorem 6.13 would not hold

anymore.

1

1 1

1
−a a

a a

E2 a∗

a

Figure 20. The Z-automaton SE4
and its Z-quotient AE4

7 Notes

Most of the material presented in this chapter has appeared in previous work of the author

[54, 55, 56].

Section 1. New look at Kleene’s theorem A detailled history of the development of

ideas at the beginning of the theory of automata is given in [46]. Berstel [7] attributes to

Eilenberg the idea of distinguishing the family of recognisable from that of rational sets.

Besides the already quoted Elgot and Mezei’s paper [23], other authors have certainly

noticed the equality of expressiveness of automata and expressions beyond free monoids.

It is part of Walljasper’s thesis [59]; it can be found in Eilenberg’s treatise [22]. The

splitting of Kleene’s theorem has been proposed in [53].

Section 3. From automata to expressions First note that this section is mostly of

theoretical interest: for which practical purpose would one exchange an automaton for an

expression?

Identities. As mentioned, the axiomatisation of rational expressions, even hinting at

bibliographic references, is out of the scope of this chapter. Conway showed that besides

the identities S and P (that are at the basis of the definition of the so-called ‘Conway

semirings’, cf. Chapter 20), each finite simple group gives rise to an identity that is inde-

pendent from the others [18]. Krob, who showed that this set of identities is complete,

coined S and P the aperiodic identities [35].

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 45

State-elimination method. The example D3 of Figure 3 is easily generalised so as to

find an exponential gap between the length of expressions for two distinct orders. The

search for short expressions is performed by heuristics; as reported in [30], the naive one,

modified or not as in [19], appears to be good (cf. Chapter 12 for more information on the

subject).

McNaughton–Yamada algorithm is the implementation in the semiring of languages

of the comtemporary Floyd–Roy–Warshall algorithms (in the Boolean or tropical semir-

ings) [27, 49, 60].

Star height. The star height of a rational language L is the minimum of the star

heights of the rational expressions that denote L. Whether the star height of a language

is effectively computable has been a long standing open problem until it was positively

solved first by K. Hashiguchi [31] and then by D. Kirsten [33].

Section 4. From expressions to automata The presentation of the standard automaton

given here is not the classical one, and not only for the chosen name. The recursive defini-

tion, also used in [25] for instance, avoids the definition of First, Last, and Follow

functions that are built in most papers on the subject. Based on these functions, other au-

tomata may be defined: e.g. in [43] they are used to compute directly the determinisation

of SE, in [32] positions with the same image by Follow are merged, giving rise to a

possibly smaller automaton, called follow automaton.

Attributing derivation to Brzozowski and Antimirov together is an unusual but sensible

foreshortening. Original Brzozowski’s derivatives [12] are obtained by replacing ‘∪’ by

a ‘+’ in (4.17) and (4.18). Derivatives are then expressions, and there is a finite number of

them, modulo the A, C, and I identities. By replacing the ‘+’ by a ‘∪’ in Brzozowski’s

definition, Antimirov [4] changed the derivatives into a set of expressions, which he called

partial derivatives, as they are ‘parts’ of derivatives. As they are applied to union of

sets, and not to expressions, the A, C, and I identities come for free, and are no longer

necessary to insure the finiteness of derived terms.

A common technique for defining ∆-maps has been the linearisation E of the expres-

sion E, that is, making all letters in E distinct by indexing them by their position in E

(e.g. [43, 32]). Berry–Sethi [6] showed that the (Brzozowski) derivatives of E coincide

with the states of SE, whereas Berstel–Pin [8] observed that E is a local language L and

interpreted Berry-Sethi’s result as the construction of the deterministic automaton canon-

ically associated with L.

The similarity between Mirkin’s prebases [44] and Antimirov’s derived terms was

noted by Champarnaud–Ziadi [16], who called equation automaton the derived-term au-

tomaton.

Allauzen–Mohri have generalised Proposition 4.6 and Theorem 4.14 and computedAE

and the follow automaton of E from TE by quotient and elimination of marked sponta-

neous transitions [2].

In [15], an algorithm is given which is a kind of converse of a ∆-map: it recognises if

an automaton is the standard automaton SE of an expression E and, in this case, computes

such an E in star-normal form. The problem of inverting a Γ-map has been given a partial

answer in [40]: it is possible to compute A from Bω(A) for certain A (and any ω); this

has lead to the definition of a variant of the derivation: the broken derivation, that has

been further studied in [3].

Long version February 12, 2015

46 J. Sakarovitch

Section 5. Changing the monoid Proposition 5.5 leads naturally to consider monoidsM

in which RatM = RecM holds, and which one could call Kleene monoids. In [52] was

defined the family of rational monoids which contains all previously known examples of

Kleene monoids; still the inclusion is strict [45]. Commutative Kleene monoids, as well

as finitely generated submonoids of Rat a∗ are rational monoids [50, 1].

Section 6. Introducing weights If the definition of rational (and algebraic) series in

non-commuting variables as generalisation of rational (and context-free) languages on

one hand-side, as well as the formalisation of rational expressions on the other, date back

to the beginning of automata theory, the formalisation of weighted rational expressions

seem to have appeared in various papers in the years 2000 only [14, 51, 39]. A satisfactory

definition of trivial identities for weighted expressions proves to be tricky and has evolved

in the publications of the author.

By replacing quotient and derivation by co-induction, Rutten formulated the equiva-

lent of Theorem 6.12 [51].

Krob [36] and Berstel–Reutenauer [10] have considered ‘weighted rational expres-

sion’ slightly different from those expression dealt with in this chapter. With their dif-

ferentiation and derivation, they have tackled different problems than the construction of

∆-maps.

Acknowledgements The author is grateful to Z. Ésik and to J. Brzozowski who read a

first draft of this chapter and made numerous and helpful remarks. P. Gastin, A. Demaille,

and H. Grüber sent corrections on the first version. The careful reading of the final version

by A. Szilard has been very encouraging and most helpful, and is heartily acknowledged.

References

[1] S. Afonin and E. Khazova. On the structure of finitely generated semigroups of unary regular

languages. Int. J. Foundations Computer Sci., 21:689–704, 2010. 46

[2] C. Allauzen and M. Mohri. A unified construction of the Glushkov, Follow, and Antimirov

automata. In R. Kralovic and P. Urzyczyn, editors, MFCS 2006, number 4162 in Lect. Notes

in Comput. Sci., pages 110–121, 2006. 45

[3] P.-Y. Angrand, S. Lombardy, and J. Sakarovitch. On the number of broken derived terms of a

rational expression. J. Automata, Languages, and Combinatorics, 15:27–51, 2010. 34, 45

[4] V. Antimirov. Partial derivatives of regular expressions and finite automaton constructions.

Theoret. Computer Sci., 155:291–319, 1996. 32, 34, 45

[5] M.-P. Béal, S. Lombardy, and J. Sakarovitch. Conjugacy and equivalence of weighted au-

tomata and functional transducers. In D. Grigoriev, editor, CSR 2006, number 3967 in Lect.

Notes in Comput. Sci., pages 58–69, 2006. 44

[6] G. Berry and R. Sethi. From regular expressions to deterministic automata. Theoret. Computer

Sci., 48:117–126, 1986. 45

[7] J. Berstel. Transductions and Context-Free Languages. Teubner, 1979. 44

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 47

[8] J. Berstel and J.-E. Pin. Local languages and the Berry-Sethi algorithm. Theoret. Computer

Sci., 155:439–446, 1996. 45

[9] J. Berstel and C. Reutenauer. Les séries rationnelles et leurs langages. Masson, 1984. Trans-

lation: Rational Series and Their Languages. Springer, 1988. 37, 42

[10] J. Berstel and C. Reutenauer. Extension of Brzozowski’s derivation calculus of rational ex-

pressions to series over the free partially commutative monoids. Theoret. Computer Sci.,

400(1-3):144–158, 2008. 46

[11] A. Brügemann-Klein. Regular expressions into finite automata. Theoret. Computer Sci.,

120:197–213, 1993. 26, 27, 30

[12] J. A. Brzozowski. Derivatives of regular expressions. J. Assoc. Comput. Mach., 11:481–494,

1964. 32, 45

[13] J. A. Brzozowski and E. J. McCluskey. Signal flow graph techniques for sequential circuit

state diagrams. IEEE Trans. Electronic Computers, 12:67–76, 1963. 9

[14] P. Caron and M. Flouret. Glushkov construction for multiplicities. In A. Paun and S. Yu,

editors, CIAA 2000, number 2088 in Lect. Notes in Comput. Sci., pages 67–79, 2001. 42, 46

[15] P. Caron and D. Ziadi. Characterization of Glushkov automata. Theoret. Computer Sci.,

233:75–90, 2000. 45

[16] J.-M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s word partial deriva-

tives. Fundam. Inform., 45(3):195–205, 2001. 45

[17] J.-M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives and finite automa-

ton constructions. Theoret. Computer Sci., 289:137–163, 2002. 34

[18] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971. 10, 17, 44

[19] M. Delgado and J. Morais. Approximation to the smallest regular expression for a given

regular language. In M. Domaratzki, A. Okhotin, K. Salomaa, and S. Yu, editors, CIAA 2004,

volume 3317 of Lect. Notes in Comput. Sci., pages 312–314, 2004. 45

[20] M. Droste, W. Kuich, and H. Vogler. (Ed.), Handbook of Weighted Automata, Springer, 2009.

37

[21] L. C. Eggan. Transition graphs and the star-height of regular events. Michigan Math. J.,

10:385–397, 1963. 19, 20

[22] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974. 44

[23] C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM J. Res.

and Develop., 9:47–68, 1965. 36, 44

[24] P. C. Fischer and A. L. Rosenberg. Multitape one-way nonwriting automata. J. Computer

System Sci., 2:88–101, 1968. 37

[25] S. Fischer, F. Huch, and T. Wilke. A play on regular expressions: functional pearl. In P. Hudak

and S. Weirich, editors, ICFP 2010, pages 357–368, 2010. 45

[26] M. Fliess. Deux applications de la représentation matricielle d’une série non commutative. J.

Algebra, 19:344–353, 1971. 37

[27] R. W. Floyd. Algorithm 97. Comm. Assoc. Comput. Mach., 5:345, 1962. 45

[28] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages. Pacif. J.

Math., 16:285–296, 1966. 37

[29] V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16:1–53, 1961. 25

Long version February 12, 2015

48 J. Sakarovitch

[30] H. Gruber, M. Holzer, and M. Tautschnig. Short regular expressions from finite automata:

Empirical results. In S. Maneth, editor, CIAA 2009, volume 5642 of Lect. Notes in Comput.

Sci., pages 188–197, 2009. 45

[31] K. Hashiguchi. Algorithms for determining relative star height and star height. Inform. and

Comput., 78:124–169, 1988. 45

[32] L. Ilie and S. Yu. Follow automata. Inform. and Comput., 186(1):140–162, 2003. 45

[33] D. Kirsten. Distance desert automata and the star height problem. RAIRO Theor. Informatics

and Appl., 39(3):455–509, 2005. 45

[34] S. C. Kleene. Representation of events in nerve nets and finite automata. in C. Shannon and

J. McCarthy, editors, Automata Studies, Princeton Univ. Press, pages 3–41, 1956. 2

[35] D. Krob. Complete systems of B-rational identities. Theoret. Computer Sci., 89:207–343,

1991. 10, 44

[36] D. Krob. Differentiation of K-rational expressions. Int. J. of Algebra and Computation, 2:57–

87, 1992. 46

[37] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer, 1986. 37

[38] S. Lombardy and J. Sakarovitch. On the star height of rational languages. In M. Ito, editor,

Words, Languages and Combinatorics III. World Scientific, 2003. 21

[39] S. Lombardy and J. Sakarovitch. Derivation of rational expressions with multiplicity. Theoret.

Computer Sci., 332:141–177, 2005. 42, 43, 44, 46

[40] S. Lombardy and J. Sakarovitch. How expressions can code for automata. RAIRO Theor.

Informatics and Appl., 39:217–237, 2005. Corrigendum. 44:339–362, 2010. 45

[41] S. Lombardy and J. Sakarovitch. The validity of weighted automata. Int. J. of Algebra and

Computation, 23(4):863–914, 2013. 37

[42] J. McKnight. Kleene’s quotient theorems. Pacific J. Math., 14:43–52, 1964. 36

[43] R. McNaughton and H. Yamada. Regular expressions and state graphs for automata. IRE

Trans. Electronic Computers, 9:39–47, 1960. 13, 25, 45

[44] B. G. Mirkin. An algorithm for constructing a base in a language of regular expressions.

Engineering Cybernetics, 5:51–57, 1966. 34, 45

[45] M. Pelletier and J. Sakarovitch. Easy multiplications II. Extensions of rational semigroups.

Inform. and Comput., 88:18–59, 1990. 46

[46] D. Perrin. Les débuts de la théorie des automates. Technique et Science Informatique, 14:409–

443, 1995. 44

[47] J.-É. Pin. AutoMathA Handbook, to appear. Vol. 1 and 2. 1, 2

[48] M. O. Rabin and D. Scott. Finite automata and their decision problems. I.B.M. J. Res. De-

velop., 3:125–144, 1959. Reprinted in Sequential Machines : Selected Papers (E. Moore, ed.),

Addison-Wesley, 1965. 37

[49] B. Roy. Transitivité et connexité. C. R. Acad. Sci. Paris Sér. A, 249:216–218, 1959. 45

[50] C. P. Rupert. On commutative Kleene monoids. Semigroup Forum, 43:163–177, 1991. 46

[51] J. M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata,

and power series. Theoret. Computer Sci., 308:1–53, 2003. 43, 46

[52] J. Sakarovitch. Easy multiplications I. The realm of Kleene’s theorem. Inform. and Comput.,

74:173–197, 1987. 46

Long version of Ch. 2 of AutoMAthA Handbook

Automata and rational expressions 49

[53] J. Sakarovitch. Kleene’s Theorem revisited. In A. Kelemenova and K. Kelemen, editors,

Trends, Techniques and Problems in Theoretical Computer Science, number 281 in Lect.

Notes in Comput. Sci., pages 39–50, 1987. 44

[54] J. Sakarovitch. Eléments de théorie des automates. Vuibert, 2003. Corrected English transla-

tion: Elements of Automata Theory, Cambridge University Press, 2009. 4, 12, 15, 37, 44

[55] J. Sakarovitch. The Language, the Expression and the (small) Automaton. In J. Farré,

I. Litovsky, and S. Schmitz, editors, CIAA 2005, number 3845 in Lect. Notes in Comput.

Sci., pages 15–30, 2005. 44

[56] J. Sakarovitch. Rational and recognisable power series, 2009. in M. Droste et al., editors,

Handbook of Weighted Automata, Springer, pages 105–174. 42, 44

[57] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer,

1977. 37

[58] K. Thompson. Regular expression search algorithm. Comm. Assoc. Comput. Mach., 11:419–

422, 1968. 30

[59] S. J. Walljasper. Non-Deterministic Automata and Effective Languages. PhD thesis, Univ.

Iowa, 1970. 44

[60] S. Warshall. A theorem on Boolean matrices. J. Assoc. Comput. Mach., 9:11–12, 1962. 45

[61] D. Wood. Theory of Computation. John Wiley, 1987. 9

[62] S. Yu. Regular languages. in G. Rozenberg and A. Salomaa, editors, Handbook of Formal

Languages, vol. 1, Elsevier, pages 41–111, 1997. 9

Long version February 12, 2015

Index

accepted, see automaton

algorithm, see McNaughton–Yamada

aperiodic, see identities

Arden’s lemma, 8, 11, 38, 40

automaton, 4, 35

normalised standard –, 30

behaviour of –, 4, 35, 39

dimension of –, 4

language accepted by –, 4

language recognised by –, 4

series accepted by –, 39

standard –, 24

standard weighted –, 41

subset accepted by –, 35

weighted –, 39

automaton (of an expression)

derived term –, 43, 45

derived-term –, 33

equation –, 45

follow –, 44

Glushkov –, 23, 41, 44

position –, 23, 44

standard –, 25, 35, 41, 44

Thompson –, 29, 35

backward, see closure

behaviour, see automaton

bloc decomposition (of matrices), 17

block decomposition, see matrix

broken derivation, see derivation

closure (backward), 23

co-induction, 45

coefficient, see series

constant term

of a language, 4

of a series, 38

of an expression, 4

Conway, see semiring

decomposition

bloc – (of matrices), 17

denoted, see expression

depth, see expression

derivation (of an expression), 31, 35

broken –, 45

K- –, 42

derivative (of an expression), 44

partial –, 44

derived term (of an expression), 33, 43

true –, 33, 43

derived-term, see automaton (of...)

equation automaton, see automaton (of...)

equivalent, see expression

expression, 3

constant term of –, 4

depth of –, 4

derivation of –, see derivation

equivalent –s, 4

language denoted by –, 3

literal length of –, 4

rational –, 3

reduced –, 7, 40

regular –, 3

series denoted by –, 38

star height of –, 18

star-normal form, see star-normal form

valid –, 38

weighted rational –, 38, 45

follow automaton, see automaton (of...)

free monoid, 31

Fundamental theorem

of finite automata, 3, 5, 35, 39

generating set, see monoid

Glushkov, see automaton (of...)

graph

ball in –, 19

strongly connected component, 19

height, see star height

50

Index 51

identities

aperiodic –, 8, 44

natural –, 8, 40

rational –, 7

trivial –, 7, 40, 41

Kleene monoid, 45

Kleene’s theorem, 1, 5, 35, 39

language

accepted, see automaton

constant term of –, 4

denoted, see expression

rational –, 3

recognisable –, 5

recognised, see automaton

Lemma

Arden’s, 12

literal length, see expression

loop

index, 20

matrix

block decomposition of –, 16

transition –, 5

McNaughton–Yamada algorithm, 7, 13, 40,

44

method

recursive, 7, 16, 40

state-elimination, 7, 8, 40, 44

system-solution, 7, 11, 40

monoid

finitely generated –, 35, 37

generating set of –, 35

graded –, 8, 37

Kleene –, 45

rational –, 45

multiplication (exterior), 37

normalised standard automaton, 30

polynomial, 37

power series, see series

prebase, 45

proper, see series

quotient

of a language, 31

of a series, 41

of an automaton, 24

rational

closure, 6, 38

expression, see expression

identities, see identities

language, 3

monoid, 45

series, 38

subset, 34, 44

recognisable

language, 5

subset, 35, 44

recognised, see automaton

recursive, see method

reduced expression, see expression

regular expression, see expression

representation, 39

semiring, 37

Conway –, 37, 44

quasi-Conway –, 37

series, 37

coefficient in a –, 37

constant term of –, 38

denoted, see expression

proper –, 38

rational –, 38

recognisable –, 39

support of –, 37

spontaneous, see transition

stable, 42

standard, see automaton

standard automaton

normalised –, 30

star height

loop complexity, 19

of a rational language, 44

of expression, 18

problem, 19, 44

star-normal form

expression in –, 26, 45

of an expression, 26, 41

starable, 38

Long version February 12, 2015

52 Index

state-elimination, see method

support, see series

system-solution, see method

Thompson, see automaton (of...)

transition

matrix, 5

spontaneous, 23

Long version of Ch. 2 of AutoMAthA Handbook

