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Thou )g moacoustic englm operat ighVacousfic amplitude, they rarely exhibit
oﬂ% ciéorinatlo of wavefr e to nonli e gation. It has however been demonstrated
experim

entally that ob 1n1 waves rmoacoustlc engines is possible under specific con-
ditions. This paper aims at p a simple description of the periodic steady-state operation
of thermoacoustic engines\de ing the wave steepening process leading to shock wave formation.
klatlons are compared to experimental data in different engine configura-

Results of nu 1¢al
tions, and n@nprovements are proposed to reach a realistic description of the weakly nonlinear

propagation in thermoacoustic engines.

1 Introduction

Thermoacoustic engines (TAEs) are thermodynamic systems that make use of a temperature gradient
along a porous material to generate self-sustained acoustic oscillations. This auto-oscillation occurs
beyond a threshold temperature difference for which the thermoacoustic amplification taking place in
the thermoacoustic core compensates exactly all losses in the system. This onset condition is well de-

scribed by the linear theory of thermoacoustics [I]. However, above the onset threshold, the amplitude
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of the acoustic oscillation grows to reach high levels. The saturation of the growth of amplitude is
then controlled by nonlinear phenomena which are the cause for both acoustic and thermal power dis-
sipation. Among the many effects usually described are the acoustically enhanced thermal pumping
[1, 2], acoustically induced DC flows [3, [, [5], complex aerodynamical effects due to geometrical singular-
ities at interfaces between elements of different porosity or at geometric discontinuities [6], or nonlinear
propagation leading to higher harmonics generation [7] [§].

Thermoacoustic pumping is well described analytically for simple pore shapes [9], or with hybrid
analytic/experimental approaches for more complex materials [I0, [11]. Acoustic streaming is accounted
for in models by higher-order developments of the basic equations [I2] [13], and experimental solutions
are implemented to limit its effects [I4] [I5]. The aerodynamical effects at geometrical singularities have
been extensively studied numerically [16] and experimentally [I7, 8] in thermoac % tems, but
are often analytically disregarded because of the complexity of the involved @ ena. Some of these
effects may be minimized empirically by the use of artifacts such as eners [14]

Nonlinear propagation due to the high acoustic amphtude a b alt with by a proper design of
resonators [19]. It is usually ignored in the deseriptiofio h oacoustlc es for several Sons.
Firstly, when present, the magnitude of the XQ ee“ﬁis d to

) 4@ to nonhnei)‘I {}n
the one produced by other nonlinear phe Also, ave etries making

co
their resonances mharmom% when bui ape 0 $ﬁor such as a straight
tube, the presence of the tee perature grad nt ds to maki equenc1es of the higher modes
non-integer the funda nan& cyof the engine. Therefore, the formation
o @ 7%7 r a stron, 1@0 of 1s rarely observed in thermoacoustic engines,
although the acoustic pressure oscillati ach an amplitude of 10% of the static pressure [21] 22].
Nevertheless, it has been_ re a et al. [23] that is it possible to obtain an experimental
traveling shock wave i r thermoacoustlc engine under specific conditions. Furthermore, the
same team Show@ently that shock wave formation is also possible in a standing wave engine

[24].

This paper proposes a numerical investigation of the nonlinear behavior of simple standing or traveling
wave thermoacoustic engines such as the ones presented schematically in Fig.[I] In Section[2] the analytic
tools used in this study are briefly presented, for the description of the propagation in the thermoacoustic
core with the linear equations of thermoacoustics [I] and for the nonlinear propagation in the waveguides
with generalized Burgers equation in the form introduced by Sugimoto [25]. A numerical solving process
of these equations of propagation is proposed, based on the one used by Menguy and Gilbert [26] for the
case of forced oscillations and adapted to the case of self-sustained oscillations of undetermined frequency.

Section [3] is devoted to presenting numerical results for different engine configurations. We show that



Figure 1: Architectures of the thermoacoustic engines under consideration in this study: (A) Standing-wave engine made
of a thermoacoustic core (TAC) in a resonant waveguide; (B) Traveling-wave engine made of a similar TAC in a looped
tube. On top is the temperature distribution imposed in both engines, assuming linear variations. The TAC consists of
two heat exchangers (striped), a stack (hatched) and the part of the resonator comprising a temperﬁe}@iem7 referred

to as the thermal buffer tube (TBT).
higher harmonics generation can be favored or inhibited for various par @f the thermoacoustic
core (geometry, temperature distribution Ty (), position in the 2&[} L, etc.). Computed steady-

state waveforms are presented that show the possibilit h k ave formatjzn for both standmg and

traveling wave configurations under particular @ hese results(are ssedi el ti ith
available experimental results [23] Iﬂﬂ cussion is a o 1nterp% e&results The
conclusion presented in Seqtlor@ lights the main r ropos es to this study.

2 %ﬁe‘@)pproa thQ tion of TAEs

ct ment of the % P opag rmoacoustlc engines (TAEs) suggests a separa-
tion in two sub-problems: 6n one ha the simplified description of the nonlinear propagation in the
temperature-homogeneous w d and on the other hand, the description of the propagation in the
idealized thermoacoustic cor omprlslng an inhomogeneous temperature distribution. Analytic tools are
available for bot};@ems: nonlinear propagation in waveguides is expressed making use of generalized
Burgers’ equations [27], 28], and the propagation in the thermoacoustic core (TAC) is given by Rott’s
linear theory of thermoacoustics [I]. The coupling of the subsystems and the research of a solution with
an iterative harmonic balance method allows to compute the amplitudes for all harmonics of the periodic
steady-state regime, for a given set of geometrical parameters, thermophysical properties and an assigned

temperature distribution through the thermoacoustic core.
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2.1 Nonlinear propagation in waveguides

The nonlinear propagation of waves in ducts has since long been described, with application to various
fields [29, (30} [31]. In the context of this study, the work of Menguy and Gilbert [26] is worth considering.
Their use of the formalism of generalized Burgers’ equations to describe the lossy, weakly nonlinear
acoustic propagation allowed them to emphasize the shock wave formation in wind instruments. This
phenomenon, previously observed experimentally by Hirschberg et al. [32] is now known to explain
the brassiness of their tone [33]. The same approach is used in this study to describe the cascade
process of higher harmonics generation, applied to the thermoacoustic auto-oscillation whose frequency
is likely to drift with the variations of amplitude of the acoustic variables. In a fluid characterized by

its shear dynamic and kinematic viscosities p and v, its bulk viscosity 7, its thermal Conduct1V1ty r and

its specific heat capacity cp (all five parameters being assumed constant), the ne wave of
angular frequency w propagating in a resonator of radius R at the typlca .‘ of the sound speed in
that fluid may be characterized by three numbers: °
o M = ug/co, the acoustic Mach number, which is f the pea plitude of the particle
velocity to the speed of sound; (8) (8

e Re = up/+/vw, an acoustic R lds u% hic Kélo of %%X&OUS forces and

qualifies the type of IT undary layer t@kj

o Sh= \/V/w/ ar number, aad; is the ratl he visgous boundary layer thickness to the
1c tra verse d1 he Wa

at fﬁles from tens to a few hundreds of hertz, with waveg-

The oacoustlc engines usually operat
uides of a few Centlmeters rad pet high sound levels (145-175dBgp;, with a working fluid at
atmospheric pressure, t &,\)e ratios — ratio of acoustic pressure amplitude |p| to the static pressure
Py — from 0.5% l@’ Under these conditions, the three dimensionless numbers M, 1/Re and Sh
are small compared to unity, indicating that the nonlinear effects of propagation are not local but cu-
mulative [26], with two consequences. Firstly, any acoustic wave may be considered as the superposition
of two non-interacting counterpropagating waves, whose propagation is described by two independent
equations. Secondly, this allows to separate two scales of time and space for the description of the prop-
agation, one fast scale (resp. short) for the quasi-linear local acoustic propagation, and one slow scale
(resp. long) for the cumulative effects. Furthermore, the comparison of the relative amplitudes of the
dimensionless numbers allows to evaluate the importance of the different phenomena taking place during
propagation. A diagram of predominance is given in Fig. [2] allowing to visualize the domain of validity

of the chosen approach as a function of frequency and drive ratio. Conditions M = Sh? and M = Re%Sh
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Figure 2: Predominance diagram in the amplitude vs. frequency plane for a cylindrical tube of 4 cm in diameter filled
with air at ambient pressure. Each straight line represents the limit of predominance of one phenomenon over another:
Merkli condition is the upper limit for laminar flow in boundary layers; above M? = Sh, second order effects take over
boundary layer effects; M = Sh? and 1 =1 /(Re?Sh) are two limits under which a nonhnear descr1 i propagatlon
is not necessary. Parallel dashed lines represent the same conditions in a pore of the stack. dapt . 1 of [26].

represent the limits under which nonlinear phenomena are small neglected linear effects
&Pn a linear description of acoustic

(e.g. the bulk losses or the effects of the curvature of the waveg

propagation would suffice. Condition M? = Sh &

8 ands S i 1t above w@&oundary layer-effects
are to be ignored compared to second order S, o jter descrlbﬁ‘2 @1 oax e one
used here. Merkli condition Re = \/W% s the limit KB

is laminar, a necessary COMI@ e expression o t e a; e used thereafter. The
cut-off frequency of t 1 e for plane waves 1 1ven as the%e dotted line for information.

The descripti giye re is that nnen& (only plane waves propagate and the

h the oundary layers

a ation the the r@‘t)c re is 1 N' refore does not account for transverse modes,
though the frequency of the higher harmonics ¢@nsidered can be above that cut-off frequency.
These limits border a glonﬁl>t ed by the shaded area in Fig. [2] which comprises the condi-
t

tion of nominal operat wo studied thermoacoustic engines. The acoustic propagation in the
resonators may b@& described by the two independent generalized Burgers’ equations [25]

St T, 1
Oop+ F p+0g, Pt = i?agipi F 0. p+ (1)

where o is a long spatial scale and 6 a delayed time scale [35]. Subscript + (resp. —) stands for

propagation in the positive (resp. negative ) x direction. € = M VTH is an evaluation of the importance of

the nonlinear effects. Stokes’ number St = 2%6 ( + gvp—rl)’ where Pr = E£ stands for the importance
of bulk losses, that are proportional to the square of the frequency (as is emphasized by the double
derivative in the time domain). This last term is negligible for small deformations of the wavefront, but

cannot be ignored any more once the shock is formed. The term with the fractional derivative stands
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for the thermoviscous losses taking place in the boundary layer, whose relative importance is designated
by T = Sh (1 + %) and proportional to the square root of the frequency. The fractional derivative

is defined as the convolution product

1
89;0 Ogp * N

- = / (0,00 (2)

2.2 Propagation through the TAC

By thermoacoustic core (TAC), we designate the parts of the engine between z = 1 and © = x5

(see Fig. comprising an inhomogeneous temperature distribution and consisting of aqbient heat

thermal buffer between

exchanger (AHX), a porous medium designated as the stack, submitted to a te adient by a

hot heat exchanger (HHX) and a thermal buffer tube (TBT) which, pro

the HHX and the ambient temperature waveguide. On the dlagr )&myg;mnance (Fig. 7 the limits
of predominance are also represented in dashed lines fo W} gation of an acoustic wave in a pore
of the stack (or of one of the heat exchangers 0 nt hydrauhc adiu he ﬁo nal ing
conditions of the engine are below the V% ain of the \presen represented
by the dotted area More" p Workmg % th % Sh? condition,

. ar u 1t1 are beli
indicating that a nonh ion of the p 1n the t necessary as long as the

predomlnant boun effects are 1 acc nted oreoyer, in the engine core, the presence
ratu 1en €s not e ecouphng of the acoustic propagation into
two'€ounterpropagating wa refore, t@ 1 be described with a different approach than the

rest of the engine. In the reque ain, it can be described by a scattering matrix [36] obtained
from the classical equatlo. oacoustics [1], and expressing counterpropagating components of
the acoustic pressure variatiolls at one extremity of the core (z = z3) as a function of the same variables
at the other endﬁzl), with help of the reflection and transmission coefficients R* and 7+ of the

core



Coupling this description of the acoustic propagation through the thermoacoustic core together with
the expression of the nonlinear propagation in the temperature homogeneous waveguides is sufficient to
obtain the saturated waveforms of a thermoacoustic engine. However, as stated in Section [l various
phenomena of heat and mass transfer work together to dissipate energy in TAEs. Ignoring the additional
losses generated by these phenomena would yield numerical amplitudes obtained with the current linear
description of the thermoacoustic core beyond the observed experimental saturation levels of the acoustic
amplitudes. It is therefore necessary to include some nonlinear effects in the description of the TAC
for the solution to converge to realistic amplitudes of saturation. Among the previously cited effects,
sudden changes of the effective cross-section area at porous elements interfaces are the source of localized

dissipation of acoustic energy that results in a pressure drop Ap through the TAC. These so-called minor

losses may be evaluated roughly by extrapolating to oscillatory flows [37] the D%@or of such

interfaces, yielding
4 Apo
Ap(t) ~ — o= —= (K261 + K21<Z52 (4)

where pg is the density of the fluid at the temperature o ace A the cross-section area of the

waveguide, ¢1 and ¢o the porosity of the elemen e side of &n inte f and K 12 %ﬁ

tabulated losses coefficients for a sudden%@xpansmn or 2@ ;é ¢ Velomty

u is evaluated from Euler’ s equati . Taki count those losses

proportional to u? yleld ar scatterin, r the t 0 tlc core

4&@ Q _snl {SU Pl 5)

One should note that such y &. s not intended to be accurate, but should give an order of

magnitude of the encount in the TAC, allowing realistic levels of saturation. Besides, one of
the main effects @ the other nonlinear effects described in Section [I] is heat convection away
from the TAC, thuslimiting the efficiency of thermal-to-acoustic conversion by disturbing the temper-
ature distribution. However, the model used in this study is based on an imposed linear temperature
distribution in the thermoacoustic core. Therefore, there is no need to account for other nonlinear effects

in the present description of the propagation within the thermoacoustic core, whose effect would merely

translate into a variation of the temperature of the heat exchanger, which is in this model imposed.

2.3 Solving process

Equations describing the nonlinear propagation of plane waves in a thermoviscous fluid do not have

any analytic solution. They are solved numerically in the frequency domain for the different sections
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of waveguide [0;z1] and [z; L], coupled by the scattering matrix (5)), and with boundary conditions

depending on the geometry of the engine. The solution is sought in the form of a harmonic series

Jr
8

p= [an (o) sinnb + by, (o) cosnd], (6)

n

Il
-

the introduction of which in the lossy Burgers’ equation and term-by-term equalization yields a set
of equations for the coefficients a,, and b,,. This set is solved numerically following the steps stated here
after, which consist in an extension to self-sustained oscillations of the work of Menguy and Gilbert [26]

for forced oscillations.

e (i) The initial harmonic spectrum is defined with a fundamental frequency close to the resonant
frequency of the engine (e.g., at the resonance frequency of the empty resonator @ amplitude

of the fundamental of a few hundreds of Pa and 0 for all harmonics, at o Xtre y of the engine.

e (ii) The signal is propagated through the whole engme‘oa@gj rting point by applying a

backwards finite differences scheme on equations esonator parts, and thanks to the

scattering matrix through the TAC. X)@ Q@ C)%)
the ar%& of each h fina, re compared
the s er the phase of the

e (iii) After one complete cycle
element-wise to the am KM the initial s

fundamental com pared betw 1n1tlal ¢Z ates oy
o (iv) If @ as 1ﬂerence %ﬁal ahd nal tates of the fundamental is not zero (i.e, if
0

mod [2n depend 1| th Workmg mode), the frequency of the fundamental

adjusted. Due to the-nonline ift of the resonant frequency with the amplitude of the acoustic
pressure (sometimes CK} ear detuning [8]), this correction has to be repeated at each
iteration of the r cess, contrarily to the case of forced oscillations where the frequency is

imposed by g source.

e (v) If the difference e of amplitudes (in the sense of the absolute deviations) between initial and final
states is smaller than a predefined small threshold e, the obtained solution is considered to be the
steady-state saturated spectrum and the search of a solution stops here. If e > ¢, the steady-state
has not been reached yet. The spectrum obtained after this iteration is used to initiate the next
iteration and steps (ii) through (v) are repeated until a satisfying solution is found (see Ref. [26]

for a more detailed description of the procedure in the case of forced oscillations).

The definition of the system is such here that it tends to the point where losses compensate the thermoa-

coustic amplification for all harmonics after a sufficient number of iterations, whatever the initial state



Resonator Stack
L A 3.04m lg 2.0cm
B 0.84m Yos A 0.47mm
xs/L Al 0.14 B  0.75mm
A2 0.22 1) A 0388
R 2.05 mm B 074
Heat exchangers pores square
ln 1.0cm TBT
Yoh 0.5 mm lw A 30cm
on 0.66 B 32cm
pores slits I air 100hPa

Table 1: Engines parameters for numerical simulations. Al and A2 are two configurations of the same standing wave
engine A [24]; B is a traveling wave engine [23]. Both engines are based on similar parts except for the stack geometry
(different porosity ¢, and hydraulic radius yo) and work with air at ambient pressure.

provided. In practice, in order to reduce the computation time, the number of, com ec@monies has
to be limited to a reasonable number. However, since the energy content ch harmonic decreases
with its rank due to volumetric losses proportional to w?, the, tr% eryor drops quickly when the

number of harmonics is increased over a few tens. \

3 Results and discussion%\}X){&\ %\Cﬁ‘b& K)\Q@

Two classical engines are mbd K@ls study. {Lhe cdn Q@n are ¢ 0 n\to escrlbe actual engines

for which experimental r ult wing Shock wa atlon are a . The first one (A) is
a standing Wave engl losed at b nd, one is a quasi-traveling wave engine
sonator, @ f smnl r tlon but with a stack with slightly different

spec catlons [23]. The dimensions of th engihes are prov1ded in Table |1} The length [,, of the TBT
is not defined in either refe no secondary heat exchanger is used to constrain the cold
temperature in the r a n the quasi-traveling wave engine (B), the amplification of the TAC
&e temperature distribution [36]. Assuming a linear temperature distribution

can be highly seﬁ
To(z), 1y is then defined to match the given experimental onset threshold of the experimental apparatus.
In the standing wave engine however, the sensitivity to the temperature distribution appears to be much
less important. The TBT is chosen to be short enough to allow the placement of the core close to the
extremity of the engine.

It is to be noted that, though the data provided in Ref. [23] [24] is admittedly sufficient for the
description of the linear behavior of the engines (i.e., their onset threshold), it is not enough for a precise
rendering of their operation above threshold. Some parameters are not provided in the description of
the experimental configurations, either because they were not relevant in the frame of the presented

work or because they were not available to the authors (e.g., the temperature distribution in the whole

190

195

200

205



210

215

220

225

230

235

240

TAC); these parameters are nonetheless important to describe theoretically the steady-state operation
above threshold. These above-mentioned experimental configurations are however used as reference for
this study, still allowing for a qualitative comparison. The description of the nonlinear effects controlling
the amplitude of saturation in the model presented in this paper provides only an estimate of their
amplitude, and therefore does not allow for a quantitative comparison.

The computed periodic steady state waveform in a thermoacoustic engine described with the previous
tools is the result of the balance of the phenomena taking place in the two sections of the engine. On one
hand, the nonlinear propagation of high amplitude acoustic waves induces the cascade of energy from
the fundamental frequency of the periodic oscillation regime to its higher harmonics. This phenomenon

prevails in the temperature homogeneous resonant parts of the engine. With the generation of higher

harmonics also comes additional thermal and viscous dissipation, increasing wit .cy These
losses are the main source of saturation of the amplitude, together Wlth the or lo es in the TAC.
On the other hand, from the linear theory of thermoacoustics, a core with a given set of
parameters (geometry, temperature distribution Ty (x pos1t10 r onator xs/L, etc.) can be seen
either as a source or a sink of volume flow rate [6]. 1on galn pos1t1ve or ne
dependent on the acoustic impedance w1th1n , and th 1 d1 erent fi @ﬁc of
a wave. Indeed, the acoustic unped nce 1s by geomet c%n eratlon he boundary
conditions at the extremltlés

To favor the wavefron de ation and p0551 d to the fo of a shock wave, balance has
to be achieve armonlc b p0$1 cation from the core and the increase of

cé&«i the casc er Wer i on one hand, and the losses, the decrease of

energy due to the cascade to higher ha omcs n the possible attenuation from the core on the other

hand.

3.1 Quam-s@(p}'wave engine

Figure[3|shows the progressive deformation of the steady-state wavefront with the increase of the imposed
temperature difference AT = T}, — T}, , above the onset threshold for two different positions of the core
in the resonator of the standing wave engine (configuration (A) of Fig[)). In configuration (A1) the core
is placed close to the extremity (x4/L = 0.14) (which corresponds to the final experimental configuration
of Ref. [24]), whereas in configuration (A2) the core is closer to the center (z;/L = 0.22). At first glance,
one can see that in both cases the wavefront distorts progressively as the imposed temperature difference
increases. However for an amplitude of the pressure oscillations corresponding to a drive ratio (that is

ratio of the peak-to-peak amplitude of pressure oscillations to the static pressure) of 10 %, configuration

10



pressure [kPa]
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57

pressure [kPa]
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Figure 3: Computed deformation of the wavefront for two different positions zs/L of
standing wave engine (configuration (A) of Fig. [1) for increasing temperature differg
50K with a step of 5K. (Al): zs/L = 0.14, (A2): zs/L = 0.22. The case highlighted
of 10 %. Dashed lines stand for maximum slope in each case, showing tﬁat% ormed in the upper case (infinite

slope), and not in the lower one (finite slope).

show

G‘ej@) daste @@Q to

ximum sloge?s or the cases
le for tion.

pears
Waveforms tempe ences in the configuration

(A1) clearly exhibits formed shocks — the maxi
ﬁ&a

infinity — when configuration (A2) does n
in bold black on Figure Co

Figure El
(A1) where the sh s more
T n e th is fdr Kﬁs amplit es to increase. The peak amplitude however
grows mor slowly as mor% smps& shock for higher AT. At high amplitudes, one

he waveform. The large sharp accidents (circled on Fig. [4(a))

) shows t

stic core is closer to the extremity,

should note the presence of 1rregu
are not numerical artlfacts ain present no matter how many harmonics are taken into account
in the computation rkiependent of the spatial discretization of the problem; they are more likely
due to the multi[ﬁections caused by the presence of the steep temperature gradient and the porous
elements interfaces in the TAC. One can also distinguish small “high frequency” oscillations (emphasized
by the zoomed portion on Fig. (a)). They are the result of the harmonic series truncation; the energy
carried by the truncated part of the spectrum is rejected on the last computed harmonics. Figure (b)
illustrates the temporal evolution of the saturated shock wave at regularly spaced points in the engine.
The spatio-temporal evolution of the shock in the quasi-standing wave engine is the result of the two
counterpropagating waves of equivalent amplitudes propagating back and forth, being reflected on its

rigid terminations. The propagation of the shock in the engine is highlighted by the arrows. One acoustic

period last for one round trip of the shock in the engine, showing that the engine works on its first mode
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pressure [kPa]
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Figure 4: (a): Acoustic pressufe w computed in the standing wave engine (A1) when the TAC is placed at position
zs/L = 0.14, for increasing/ tempeérature differences beyond threshold from 5 to 100 K with a step of 5K up to 50 K, then

10K, shown at positio: 0.
(b): Spatio-temporalfevolution of a quasi-standing shock wave computed for AT = 100K in the engine configuration (Al).
One can clearly see a ck wave going back and forth in the engine as emphasized by the arrows.

12



pressure [kPa]

[«——> 20 kPa

a‘p

Figure 5: (a): Acoustic pressure waveform computed in the o asi ing waw en @gr 1ncrgasm

differences from 5 to 100 K beyond threshold at posmo

(b): Spatio-temporal evolution of a quasi-travelin, ve ' mputed for = O Ki 1n t %,\ ﬁguratlon
(B) of Fig. l One can clearly see a shock wave% ockwise in th e ck arrow, ted in Flg

One can also distinguish a wavefront propagatin, terclockw1se TAY, aLro )

— the half-wavelength &esults are t mpared W%; Obtained experimentally by
Biwa et al. %ﬂputed W % resent ilar\temporal evolution, and amplitude of the
nitude t one&% ms to have captured the nonlinear behavior

e wave propagatlon E
3.2 Quas1—travehn %@nglne

Figure [f] shows i t AQ' fashion the numerical results for the configuration of quasi-traveling wave

engine (B). In this case however, it is worth mentioning that the engine is spatially translation invariant;
that is, the position of the core is not relevant to describe the behavior of the engine. Fig.[5] (a) shows the
progressive formation and growth of the shock with the increase of the imposed temperature difference
above threshold AT. Fig. (b) shows a formed traveling shock wave going around the looped engine
as emphasized by the black arrow, operating one rotation around the engine per period because the
engine is working on its first mode — the one-wavelength mode. Signals at positions 0 and 1 are identical.
Since the wave is not purely traveling [40], a small counterpropagating wavefront can also be observed,
emphasized by the gray line. These results are to be compared with those obtained experimentally by

Biwa et al. for a similar configuration [23], where a good qualitative agreement is observed.
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Figure 6: Amplification rate « of the three first modes of the engines Qer rature gradient imposed for the
three configurations (A1), (A2), and (B). Modes 4 to 6 are also given 1n 81t1ve amplification rate means that
a wave at the frequency of the corresponding mode will be amplifi . a=0 for mode 1 represents the onset

threshold, for which T}, — T. = AT, A
[ )
3.3 A linear interpretation 0 K;\.
To attempt an interpretati(m o lets presented ab v ely - @a tially and cautiously
—on a linear analysis of \%ﬂ cation of the t coustlc en 0 this end, we will rely on the

method prese e ){g 1on rat giyen by the imaginary part of the complex
from tﬁ} sfer mat x hermoacoustic engine. Figure [6] shows the

:@ b

amplification rate « for the first modes af the 1Herent configurations of engines. If a > 0, the mode

is amplified by the thermoaciigj at is the core acts as a source of energy at that frequency.

If a < 0, the thermoac haves as an energy sink and the wave is attenuated. Though the
frequencies of tha@’des do not correspond strictly to those of the harmonics of the working mode
— mainly because of inharmonicity induced by the presence of the temperature gradient —, they are still
close enough for a qualitative analysis of the behavior of the harmonics in the engine.

One can notice that the first modes are more amplified with the increase of the imposed temperature
difference along the stack in both cases (A1) and (B), corresponding respectively to the standing wave
engine with the core close to the extremity and the traveling wave engine. This means that the greater
the temperature difference is, the less the energy cascaded from the fundamental frequency will be
attenuated in the TAC, thus facilitating the wavefront deformation. Case (A2) however shows a different
behavior: though the fundamental frequency of the working mode seems more easily amplified in this

configuration, the second and third harmonics are always (linearly) attenuated. The energy cascaded
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from the fundamental frequency will then be dissipated in the thermoacoustic core, limiting its transit
to the superior harmonics and consequently prevent the deformation of the wavefront. Finally, the shock
wave generation in a thermoacoustic engine appears to be related to the attenuation or amplification in
its core of the higher harmonics produced by the energy cascade from the fundamental frequency. In
cases (A1) and (B), the thermoacoustic core acts as an amplifier for the higher harmonics, supporting
the wavefront deformation, whereas in case (A2), it behaves as an energy sink, creating a barrier for
energy cascade impeding the deformation. Because such an interpretation is based on observing the
variations of an amplification rate defined in the frame of a linear theory, it has to be considered with
caution. Nevertheless, this interpretation is also the one supported by Biwa et al. [23, 24] from the
measurements of intensity at both side of the TAC. This work furthermore brings a numerical approach
that successfully renders the nonlinear behavior of the studied engines, as well as an&)‘ reading of

the linear model of the acoustic propagation to support this interpretation. 6
4 Conclusion K§
In this paper, a numerical simulation of the n @g;‘m%@@mmc g@@mc

geometry is presented. It uses the formah erahzed Burge ons for ropaga‘mon

in the temperature homogme aye ulde sections a 1zed thermoacoustics in
the engine’s core, solved to obtain th steady— e of auto-oscillation. This
expressions proved t 01ent q@am cription of th€ wave steepening in thermoacoustic

le geony ing an ei&)a ing wave configurations. Numerical results

1 results obtained in [23] 24].

or b t
sho good qualitative agre 1th

Furthermore, a more acc rate

jon of the thermoacoustic core should help to obtain a better
quantitative match. Nota ing-a nonlinear profile temperature, both in the stack and the TBT, will
influence the ampli ate of the core, particularly in the quasi-traveling wave engine. Besides, the
description of mﬁsses is quite rough in this work, only aiming at getting an order of magnitude of
the losses. A more accurate description is important for the prediction of the levels of saturation, and
should be accompanied by more exhaustive evaluation of the thermophysical parameters in the experi-
mental configuration, such as the presence of acoustically induced streaming or the spatial distribution

of temperature in the different elements composing the core. A qualitative comparison would be possible

only under these conditions.
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