
HAL Id: hal-01114410
https://hal.science/hal-01114410v1

Preprint submitted on 9 Feb 2015 (v1), last revised 18 Apr 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Weakly nonlinear propagation in thermoacoustic
engines: a numerical study of higher harmonics
generation up to the appearance of shock waves

Come Olivier, Guillaume Penelet, Gaelle Poignand, Joël Gilbert, Pierrick
Lotton

To cite this version:
Come Olivier, Guillaume Penelet, Gaelle Poignand, Joël Gilbert, Pierrick Lotton. Weakly nonlinear
propagation in thermoacoustic engines: a numerical study of higher harmonics generation up to the
appearance of shock waves. 2015. �hal-01114410v1�

https://hal.science/hal-01114410v1
https://hal.archives-ouvertes.fr


Pre
-pr

int
sub

mi
tte
d t

o

Ac
ta
Ac
ust

ica

un
ite
d w

ith
Ac
ust

ica

Weakly nonlinear propagation in thermoacoustic engines:

a numerical study of higher harmonics generation

up to the appearance of shock waves

C. Olivier, G. Penelet, G. Poignand, J. Gilbert, P. Lotton

Laboratoire d’Acoustique de l’Université du Maine,
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Abstract

Though thermoacoustic engines usually operate at high acoustic amplitude, they rarely exhibit

strong deformation of the wavefront due to nonlinear propagation. It has however been demonstrated

experimentally that obtaining shock waves in thermoacoustic engines is possible under specific con-

ditions. This paper aims at presenting a simple description of the periodic steady-state operation

of thermoacoustic engines describing the wave steepening process leading to shock wave formation.

Results of numerical simulations are compared to experimental data in different engine configura-

tions, and model improvements are proposed to reach a realistic description of the weakly nonlinear

propagation in thermoacoustic engines.

1 Introduction

Thermoacoustic engines (TAEs) are thermodynamic systems that make use of a temperature gradient

along a porous material to generate self-sustained acoustic oscillations. This auto-oscillation occurs

beyond a threshold temperature difference for which the thermoacoustic amplification taking place in

the thermoacoustic core compensates exactly all losses in the system. This onset condition is well de- 5

scribed by the linear theory of thermoacoustics [1]. However, above the onset threshold, the amplitude
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of the acoustic oscillation grows to reach high levels. The saturation of the growth of amplitude is

then controlled by nonlinear phenomena which are the cause for both acoustic and thermal power dis-

sipation. Among the many effects usually described are the acoustically enhanced thermal pumping

[1, 2], acoustically induced DC flows [3, 4, 5], complex aerodynamical effects due to geometrical singular-10

ities at interfaces between elements of different porosity or at geometric discontinuities [6], or nonlinear

propagation leading to higher harmonics generation [7, 8].

Thermoacoustic pumping is well described analytically for simple pore shapes [9], or with hybrid

analytic/experimental approaches for more complex materials [10, 11]. Acoustic streaming is accounted

for in models by higher-order developments of the basic equations [12, 13], and experimental solutions15

are implemented to limit its effects [14, 15]. The aerodynamical effects at geometrical singularities have

been extensively studied numerically [16] and experimentally [17, 18] in thermoacoustic systems, but

are often analytically disregarded because of the complexity of the involved phenomena. Some of these

effects may be minimized empirically by the use of artifacts such as flow straighteners [14].

Nonlinear propagation due to the high acoustic amplitudes can be dealt with by a proper design of20

resonators [19]. It is usually ignored in the description of thermoacoustic engines for several reasons.

Firstly, when present, the magnitude of the losses due to nonlinear propagation is small compared to

the one produced by other nonlinear phenomena. Also, most engines have complex geometries making

their resonances inharmonic [20]. Even when built with a simpler shape of resonator such as a straight

tube, the presence of the steep temperature gradient tends to make the frequencies of the higher modes25

non-integer multiples of the fundamental resonant frequency of the engine. Therefore, the formation

of shock waves or a strong deformation of the wavefront is rarely observed in thermoacoustic engines,

although the acoustic pressure oscillations may reach an amplitude of 10% of the static pressure [21, 22].

Nevertheless, it has been reported by Biwa et al. [23] that is it possible to obtain an experimental

traveling shock wave in an annular thermoacoustic engine under specific conditions. Furthermore, the30

same team showed more recently that shock wave formation is also possible in a standing wave engine

[24].

This paper proposes a numerical investigation of the nonlinear behavior of simple standing or traveling

wave thermoacoustic engines such as the ones presented schematically in Fig. 1. In Section 2, the analytic

tools used in this study are briefly presented, for the description of the propagation in the thermoacoustic35

core with the linear equations of thermoacoustics [1] and for the nonlinear propagation in the waveguides

with generalized Burgers equation in the form introduced by Sugimoto [25]. A numerical solving process

of these equations of propagation is proposed, based on the one used by Menguy and Gilbert [26] for the

case of forced oscillations and adapted to the case of self-sustained oscillations of undetermined frequency.

Section 3 is devoted to presenting numerical results for different engine configurations. We show that40
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Figure 1: Architectures of the thermoacoustic engines under consideration in this study: (A) Standing-wave engine made
of a thermoacoustic core (TAC) in a resonant waveguide; (B) Traveling-wave engine made of a similar TAC in a looped
tube. On top is the temperature distribution imposed in both engines, assuming linear variations. The TAC consists of
two heat exchangers (striped), a stack (hatched) and the part of the resonator comprising a temperature gradient, referred
to as the thermal buffer tube (TBT).

higher harmonics generation can be favored or inhibited for various parameters of the thermoacoustic

core (geometry, temperature distribution T0(x), position in the resonator xs/L, etc.). Computed steady-

state waveforms are presented that show the possibility of shock wave formation for both standing and

traveling wave configurations under particular conditions. These results are discussed in relation with

available experimental results [23, 24]. A brief discussion is also given to interpret these results. The 45

conclusion presented in Section 4 highlights the main results and proposes perspectives to this study.

2 Simplified approach for the description of TAEs

A basic treatment of the nonlinear propagation in thermoacoustic engines (TAEs) suggests a separa-

tion in two sub-problems: on one hand, the simplified description of the nonlinear propagation in the

temperature-homogeneous waveguide and, on the other hand, the description of the propagation in the 50

idealized thermoacoustic core comprising an inhomogeneous temperature distribution. Analytic tools are

available for both problems: nonlinear propagation in waveguides is expressed making use of generalized

Burgers’ equations [27, 28], and the propagation in the thermoacoustic core (TAC) is given by Rott’s

linear theory of thermoacoustics [1]. The coupling of the subsystems and the research of a solution with

an iterative harmonic balance method allows to compute the amplitudes for all harmonics of the periodic 55

steady-state regime, for a given set of geometrical parameters, thermophysical properties and an assigned

temperature distribution through the thermoacoustic core.
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2.1 Nonlinear propagation in waveguides

The nonlinear propagation of waves in ducts has since long been described, with application to various

fields [29, 30, 31]. In the context of this study, the work of Menguy and Gilbert [26] is worth considering.60

Their use of the formalism of generalized Burgers’ equations to describe the lossy, weakly nonlinear

acoustic propagation allowed them to emphasize the shock wave formation in wind instruments. This

phenomenon, previously observed experimentally by Hirschberg et al. [32] is now known to explain

the brassiness of their tone [33]. The same approach is used in this study to describe the cascade

process of higher harmonics generation, applied to the thermoacoustic auto-oscillation whose frequency65

is likely to drift with the variations of amplitude of the acoustic variables. In a fluid characterized by

its shear dynamic and kinematic viscosities µ and ν, its bulk viscosity η, its thermal conductivity κ and

its specific heat capacity cP (all five parameters being assumed constant), the acoustic plane wave of

angular frequency ω propagating in a resonator of radius R at the typical value c0 of the sound speed in

that fluid may be characterized by three numbers:70

• M = u0/c0, the acoustic Mach number, which is the ratio of the peak amplitude of the particle

velocity to the speed of sound;

• Re = u0/
√
νω, an acoustic Reynolds number [34], which is the ratio of inertia to viscous forces and

qualifies the type of flow in the boundary layer thickness δν =
√
ν/ω;

• Sh =
√
ν/ω/R, the shear number, which is the ratio of the viscous boundary layer thickness to the75

characteristic transverse dimension of the waveguide.

Thermoacoustic engines usually operate at frequencies from tens to a few hundreds of hertz, with waveg-

uides of a few centimeters in radius, and high sound levels (145-175 dBSPL with a working fluid at

atmospheric pressure, that is drive ratios – ratio of acoustic pressure amplitude |p| to the static pressure

P0 – from 0.5% up to 10%). Under these conditions, the three dimensionless numbers M , 1/Re and Sh80

are small compared to unity, indicating that the nonlinear effects of propagation are not local but cu-

mulative [26], with two consequences. Firstly, any acoustic wave may be considered as the superposition

of two non-interacting counterpropagating waves, whose propagation is described by two independent

equations. Secondly, this allows to separate two scales of time and space for the description of the prop-

agation, one fast scale (resp. short) for the quasi-linear local acoustic propagation, and one slow scale85

(resp. long) for the cumulative effects. Furthermore, the comparison of the relative amplitudes of the

dimensionless numbers allows to evaluate the importance of the different phenomena taking place during

propagation. A diagram of predominance is given in Fig. 2, allowing to visualize the domain of validity

of the chosen approach as a function of frequency and drive ratio. Conditions M = Sh2 and M = Re2Sh
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Figure 2: Predominance diagram in the amplitude vs. frequency plane for a cylindrical tube of 4 cm in diameter filled
with air at ambient pressure. Each straight line represents the limit of predominance of one phenomenon over another:
Merkli condition is the upper limit for laminar flow in boundary layers; above M2 = Sh, second order effects take over
boundary layer effects; M = Sh2 and 1 = 1/(Re2Sh) are two limits under which a nonlinear description of the propagation
is not necessary. Parallel dashed lines represent the same conditions in a pore of the stack. Adapted from Fig. 1 of [26].

represent the limits under which nonlinear phenomena are small compared to the neglected linear effects 90

(e.g. the bulk losses or the effects of the curvature of the waveguide), and a linear description of acoustic

propagation would suffice. Condition M2 = Sh stands as the limit above which boundary layer effects

are to be ignored compared to second order effects, better described by another approach than the one

used here. Merkli condition Re = u0/
√
νω < 400 is the limit under which the flow in the boundary layers

is laminar, a necessary condition for the expression of the boundary layer losses used thereafter. The 95

cut-off frequency of the waveguide for plane waves is given as the vertical dotted line for information.

The description given here is that of a one-dimensional system (only plane waves propagate and the

amplification from the thermoacoustic core is 1-D) and therefore does not account for transverse modes,

though the frequency of the higher harmonics considered can be above that cut-off frequency.

These limits border a domain, represented by the shaded area in Fig. 2, which comprises the condi- 100

tion of nominal operation of the two studied thermoacoustic engines. The acoustic propagation in the

resonators may therefore be described by the two independent generalized Burgers’ equations [25]

∂σp± ∓ p±∂θ±p± = ±St

ε
∂2θ±p± ∓

T

ε
∂

1
2

θ±
p± (1)

where σ is a long spatial scale and θ a delayed time scale [35]. Subscript + (resp. −) stands for

propagation in the positive (resp. negative ) x direction. ε = M γ+1
2 is an evaluation of the importance of

the nonlinear effects. Stokes’ number St = M2

2Re2

(
4
3 + η

ν
γ−1
Pr

)
, where Pr = µcP

κ , stands for the importance 105

of bulk losses, that are proportional to the square of the frequency (as is emphasized by the double

derivative in the time domain). This last term is negligible for small deformations of the wavefront, but

cannot be ignored any more once the shock is formed. The term with the fractional derivative stands

5



Pre
-pr

int
sub

mi
tte
d t

o

Ac
ta
Ac
ust

ica

un
ite
d w

ith
Ac
ust

ica

for the thermoviscous losses taking place in the boundary layer, whose relative importance is designated

by T = Sh
(

1 + γ−1√
Pr

)
and proportional to the square root of the frequency. The 1

2 fractional derivative110

is defined as the convolution product

∂
1
2

θ p = ∂θp ∗
1√
πθ

=
1√
π

∫ θ

−∞

1√
θ − θ′

∂θ′p(θ
′, σ)dθ′. (2)

2.2 Propagation through the TAC

By thermoacoustic core (TAC), we designate the parts of the engine between x = x1 and x = x2

(see Fig. 1) comprising an inhomogeneous temperature distribution and consisting of an ambient heat

exchanger (AHX), a porous medium designated as the stack, submitted to a temperature gradient by a115

hot heat exchanger (HHX) and a thermal buffer tube (TBT) which provides a thermal buffer between

the HHX and the ambient temperature waveguide. On the diagram of predominance (Fig. 2), the limits

of predominance are also represented in dashed lines for the propagation of an acoustic wave in a pore

of the stack (or of one of the heat exchangers, of equivalent hydraulic radius). The nominal working

conditions of the engine are below the validity domain of the approach presented above, represented120

by the dotted area. More particularly, the working conditions are below the M = Sh2 condition,

indicating that a nonlinear description of the propagation in the stack is not necessary as long as the

predominant boundary layer effects are well accounted for. Moreover, in the engine core, the presence

of a strong temperature gradient T0(x) does not allow the decoupling of the acoustic propagation into

two counterpropagating waves. Therefore, the TAC will be described with a different approach than the125

rest of the engine. In the frequency domain, it can be described by a scattering matrix [36] obtained

from the classical equations of thermoacoustics [1], and expressing counterpropagating components of

the acoustic pressure variations at one extremity of the core (x = x2) as a function of the same variables

at the other end (x = x1), with help of the reflection and transmission coefficients R± and T ± of the

core130 p̃+(x2)

p̃−(x1)

 = S (ω, T0(x))

p̃+(x1)

p̃−(x2)


=

T + R−

R+ T −


p̃+(x1)

p̃−(x2)

 . (3)
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Coupling this description of the acoustic propagation through the thermoacoustic core together with

the expression of the nonlinear propagation in the temperature homogeneous waveguides is sufficient to

obtain the saturated waveforms of a thermoacoustic engine. However, as stated in Section 1, various

phenomena of heat and mass transfer work together to dissipate energy in TAEs. Ignoring the additional

losses generated by these phenomena would yield numerical amplitudes obtained with the current linear 135

description of the thermoacoustic core beyond the observed experimental saturation levels of the acoustic

amplitudes. It is therefore necessary to include some nonlinear effects in the description of the TAC

for the solution to converge to realistic amplitudes of saturation. Among the previously cited effects,

sudden changes of the effective cross-section area at porous elements interfaces are the source of localized

dissipation of acoustic energy that results in a pressure drop ∆p through the TAC. These so-called minor 140

losses may be evaluated roughly by extrapolating to oscillatory flows [37] the DC behavior of such

interfaces, yielding

∆p(t) ' − 4

3π

Aρ0
2

(K12φ1 +K21φ2)|u|2(t), (4)

where ρ0 is the density of the fluid at the temperature of the interface, A the cross-section area of the

waveguide, φ1 and φ2 the porosity of the elements on each side of an interface, and K12 and K21 are

tabulated losses coefficients for a sudden section expansion or contraction [38]. The acoustic velocity 145

u is evaluated from Euler’s equation: u(t) ' (p+(t) − p−(t))/(ρ0c0). Taking into account those losses

proportional to u2 yields the nonlinear scattering matrix for the thermoacoustic core

p̃+(x2)

p̃−(x1)

 = Snl
(
ω, T0(x), |ũ|2

)p̃+(x1)

p̃−(x2)

 . (5)

One should note that such a description is not intended to be accurate, but should give an order of

magnitude of the encountered losses in the TAC, allowing realistic levels of saturation. Besides, one of

the main effects induced by the other nonlinear effects described in Section 1 is heat convection away 150

from the TAC, thus limiting the efficiency of thermal-to-acoustic conversion by disturbing the temper-

ature distribution. However, the model used in this study is based on an imposed linear temperature

distribution in the thermoacoustic core. Therefore, there is no need to account for other nonlinear effects

in the present description of the propagation within the thermoacoustic core, whose effect would merely

translate into a variation of the temperature of the heat exchanger, which is in this model imposed. 155

2.3 Solving process

Equations (1) describing the nonlinear propagation of plane waves in a thermoviscous fluid do not have

any analytic solution. They are solved numerically in the frequency domain for the different sections

7
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of waveguide [0;x1] and [x2;L], coupled by the scattering matrix (5), and with boundary conditions

depending on the geometry of the engine. The solution is sought in the form of a harmonic series160

p̃ =

+∞∑
n=1

[an(σ) sinnθ + bn(σ) cosnθ] , (6)

the introduction of which in the lossy Burgers’ equation (1) and term-by-term equalization yields a set

of equations for the coefficients an and bn. This set is solved numerically following the steps stated here

after, which consist in an extension to self-sustained oscillations of the work of Menguy and Gilbert [26]

for forced oscillations.

• (i) The initial harmonic spectrum is defined with a fundamental frequency close to the resonant165

frequency of the engine (e.g., at the resonance frequency of the empty resonator) with an amplitude

of the fundamental of a few hundreds of Pa and 0 for all harmonics, at one extremity of the engine.

• (ii) The signal is propagated through the whole engine back to the starting point by applying a

backwards finite differences scheme on equations (1) in the resonator parts, and thanks to the

scattering matrix (5) through the TAC.170

• (iii) After one complete cycle, the amplitudes of each harmonic of the final spectrum are compared

element-wise to the amplitudes of the initial spectrum. In the same manner, the phase of the

fundamental component is compared between the initial φi and final states φf .

• (iv) If the phase difference between initial and final states of the fundamental is not zero (i.e, if

φf−φi 6= 0 mod [2nπ], with n depending on the working mode), the frequency of the fundamental175

is adjusted. Due to the nonlinear drift of the resonant frequency with the amplitude of the acoustic

pressure (sometimes called nonlinear detuning [8]), this correction has to be repeated at each

iteration of the solving process, contrarily to the case of forced oscillations where the frequency is

imposed by a driving source.

• (v) If the difference e of amplitudes (in the sense of the absolute deviations) between initial and final180

states is smaller than a predefined small threshold ε, the obtained solution is considered to be the

steady-state saturated spectrum and the search of a solution stops here. If e > ε, the steady-state

has not been reached yet. The spectrum obtained after this iteration is used to initiate the next

iteration and steps (ii) through (v) are repeated until a satisfying solution is found (see Ref. [26]

for a more detailed description of the procedure in the case of forced oscillations).185

The definition of the system is such here that it tends to the point where losses compensate the thermoa-

coustic amplification for all harmonics after a sufficient number of iterations, whatever the initial state

8
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Resonator Stack

L A 3.04 m ls 2.0 cm

B 0.84 m y0s A 0.47 mm

xs/L A1 0.14 B 0.75 mm

A2 0.22 φ A 0.88

R 2.05 mm B 0.74

Heat exchangers pores square

lh 1.0 cm TBT

y0h 0.5 mm lw A 30 cm

φh 0.66 B 3.2 cm

pores slits P0 air 100 hPa

Table 1: Engines parameters for numerical simulations. A1 and A2 are two configurations of the same standing wave
engine A [24]; B is a traveling wave engine [23]. Both engines are based on similar parts except for the stack geometry
(different porosity φ, and hydraulic radius y0) and work with air at ambient pressure.

provided. In practice, in order to reduce the computation time, the number of computed harmonics has

to be limited to a reasonable number. However, since the energy content of each harmonic decreases

with its rank due to volumetric losses proportional to ω2, the truncation error drops quickly when the 190

number of harmonics is increased over a few tens.

3 Results and discussion

Two classical engines are modeled for this study. The configurations are chosen to describe actual engines

for which experimental results showing shock wave formation are available [23, 24]. The first one (A) is

a standing wave engine closed at both ends [24]. The second one (B) is a quasi-traveling wave engine 195

with a looped resonator, using a core of similar construction, but with a stack with slightly different

specifications [23]. The dimensions of both engines are provided in Table 1. The length lw of the TBT

is not defined in either reference, because no secondary heat exchanger is used to constrain the cold

temperature in the resonators. In the quasi-traveling wave engine (B), the amplification of the TAC

can be highly sensitive to the temperature distribution [36]. Assuming a linear temperature distribution 200

T0(x), lw is then defined to match the given experimental onset threshold of the experimental apparatus.

In the standing wave engine however, the sensitivity to the temperature distribution appears to be much

less important. The TBT is chosen to be short enough to allow the placement of the core close to the

extremity of the engine.

It is to be noted that, though the data provided in Ref. [23, 24] is admittedly sufficient for the 205

description of the linear behavior of the engines (i.e., their onset threshold), it is not enough for a precise

rendering of their operation above threshold. Some parameters are not provided in the description of

the experimental configurations, either because they were not relevant in the frame of the presented

work or because they were not available to the authors (e.g., the temperature distribution in the whole

9
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TAC); these parameters are nonetheless important to describe theoretically the steady-state operation210

above threshold. These above-mentioned experimental configurations are however used as reference for

this study, still allowing for a qualitative comparison. The description of the nonlinear effects controlling

the amplitude of saturation in the model presented in this paper provides only an estimate of their

amplitude, and therefore does not allow for a quantitative comparison.

The computed periodic steady state waveform in a thermoacoustic engine described with the previous215

tools is the result of the balance of the phenomena taking place in the two sections of the engine. On one

hand, the nonlinear propagation of high amplitude acoustic waves induces the cascade of energy from

the fundamental frequency of the periodic oscillation regime to its higher harmonics. This phenomenon

prevails in the temperature homogeneous resonant parts of the engine. With the generation of higher

harmonics also comes additional thermal and viscous dissipation, increasing with frequency. These220

losses are the main source of saturation of the amplitude, together with the minor losses in the TAC.

On the other hand, from the linear theory of thermoacoustics, a thermoacoustic core with a given set of

parameters (geometry, temperature distribution T0(x), position in the resonator xs/L, etc.) can be seen

either as a source or a sink of volume flow rate [6]. Its amplification gain (resp. positive or negative) is

dependent on the acoustic impedance within the stack [39], and therefore is different for each harmonic of225

a wave. Indeed, the acoustic impedance is dictated by geometrical considerations, including the boundary

conditions at the extremities of the engine.

To favor the wavefront deformation and possibly lead to the formation of a shock wave, balance has

to be achieved for each harmonic between the possible amplification from the core and the increase of

energy caused by the cascade from the lower harmonics on one hand, and the losses, the decrease of230

energy due to the cascade to higher harmonics and the possible attenuation from the core on the other

hand.

3.1 Quasi-standing wave engine

Figure 3 shows the progressive deformation of the steady-state wavefront with the increase of the imposed

temperature difference ∆T = Th − Th,o above the onset threshold for two different positions of the core235

in the resonator of the standing wave engine (configuration (A) of Fig 1). In configuration (A1) the core

is placed close to the extremity (xs/L = 0.14) (which corresponds to the final experimental configuration

of Ref. [24]), whereas in configuration (A2) the core is closer to the center (xs/L = 0.22). At first glance,

one can see that in both cases the wavefront distorts progressively as the imposed temperature difference

increases. However for an amplitude of the pressure oscillations corresponding to a drive ratio (that is240

ratio of the peak-to-peak amplitude of pressure oscillations to the static pressure) of 10 %, configuration

10
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Figure 3: Computed deformation of the wavefront for two different positions xs/L of the core in the resonator of the
standing wave engine (configuration (A) of Fig. 1) for increasing temperature differences beyond threshold from 5 K to
50 K with a step of 5 K. (A1): xs/L = 0.14, (A2): xs/L = 0.22. The case highlighted in black is for the same drive ratio
of 10 %. Dashed lines stand for maximum slope in each case, showing that a shock is formed in the upper case (infinite
slope), and not in the lower one (finite slope).

(A1) clearly exhibits formed shocks – the maximum slope shown by the vertical dashed line tends to

infinity – when configuration (A2) does not – the maximum slope is finite –, as one can see for the cases

in bold black on Figure 3. Configuration (A1) appears more suitable for shock formation.

Figure 4.(a) shows the saturated waveforms for higher temperature differences in the configuration 245

(A1) where the shock forms more easily (i.e. when the thermoacoustic core is closer to the extremity,

xs/l = 0.14). Once the shock is formed, its amplitude continues to increase. The peak amplitude however

grows more slowly as more energy is dissipated by the shock for higher ∆T . At high amplitudes, one

should note the presence of irregularities in the waveform. The large sharp accidents (circled on Fig. 4.(a))

are not numerical artifacts. They remain present no matter how many harmonics are taken into account 250

in the computation and are independent of the spatial discretization of the problem; they are more likely

due to the multiple reflections caused by the presence of the steep temperature gradient and the porous

elements interfaces in the TAC. One can also distinguish small “high frequency” oscillations (emphasized

by the zoomed portion on Fig. 4.(a)). They are the result of the harmonic series truncation; the energy

carried by the truncated part of the spectrum is rejected on the last computed harmonics. Figure 4.(b) 255

illustrates the temporal evolution of the saturated shock wave at regularly spaced points in the engine.

The spatio-temporal evolution of the shock in the quasi-standing wave engine is the result of the two

counterpropagating waves of equivalent amplitudes propagating back and forth, being reflected on its

rigid terminations. The propagation of the shock in the engine is highlighted by the arrows. One acoustic

period last for one round trip of the shock in the engine, showing that the engine works on its first mode 260

11



Pre
-pr

int
sub

mi
tte
d t

o

Ac
ta
Ac
ust

ica

un
ite
d w

ith
Ac
ust

ica
0 1 2 3 4 5

−5

0

5

10

+5 to +100K

at x = 0(a)

time [ms]

p
re
ss
u
re

[k
P
a
]

0 5 10 15

2
0
k
P
a

(b)

time [ms]

0

0.5

1

x
s
/
L

0 1 2 3 4 5

−5

0

5

10

+5 to +100K

at x = 0(a)

time [ms]

p
re
ss
u
re

[k
P
a
]

0 5 10 15

2
0
k
P
a

(b)

time [ms]

0

0.5

1

x
s
/
L

Figure 4: (a): Acoustic pressure waveform computed in the standing wave engine (A1) when the TAC is placed at position
xs/L = 0.14, for increasing temperature differences beyond threshold from 5 to 100 K with a step of 5 K up to 50 K, then
10 K, shown at position x = 0.
(b): Spatio-temporal evolution of a quasi-standing shock wave computed for ∆T = 100 K in the engine configuration (A1).
One can clearly see a shock wave going back and forth in the engine as emphasized by the arrows.
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Figure 5: (a): Acoustic pressure waveform computed in the quasi-standing wave engine (B) for increasing temperature
differences from 5 to 100 K beyond threshold at position x = 0.
(b): Spatio-temporal evolution of a quasi-traveling shock wave computed for ∆T = ∆To +100 K in the engine configuration
(B) of Fig. 1. One can clearly see a shock wave traveling clockwise in the engine (black arrow) as represented in Fig. 1.
One can also distinguish a wavefront propagating counterclockwise (gray arrow).

– the half-wavelength mode. This results are to be compared with those obtained experimentally by

Biwa et al. [24]. The computed waveforms present a similar temporal evolution, and amplitude of the

same order of magnitude to the measured ones; the model seems to have captured the nonlinear behavior

of the wave propagation.

3.2 Quasi-traveling wave engine 265

Figure 5 shows in the same fashion the numerical results for the configuration of quasi-traveling wave

engine (B). In this case however, it is worth mentioning that the engine is spatially translation invariant;

that is, the position of the core is not relevant to describe the behavior of the engine. Fig. 5.(a) shows the

progressive formation and growth of the shock with the increase of the imposed temperature difference

above threshold ∆T . Fig. 5.(b) shows a formed traveling shock wave going around the looped engine 270

as emphasized by the black arrow, operating one rotation around the engine per period because the

engine is working on its first mode – the one-wavelength mode. Signals at positions 0 and 1 are identical.

Since the wave is not purely traveling [40], a small counterpropagating wavefront can also be observed,

emphasized by the gray line. These results are to be compared with those obtained experimentally by

Biwa et al. for a similar configuration [23], where a good qualitative agreement is observed. 275
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Figure 6: Amplification rate α of the three first modes of the engines versus the temperature gradient imposed for the
three configurations (A1), (A2), and (B). Modes 4 to 6 are also given in gray. A positive amplification rate means that
a wave at the frequency of the corresponding mode will be amplified by the TAC. α = 0 for mode 1 represents the onset
threshold, for which Th − Tc = ∆To.

3.3 A linear interpretation

To attempt an interpretation of the results presented above, one can rely – at least partially and cautiously

– on a linear analysis of the amplification of the thermoacoustic engines. To this end, we will rely on the

method presented in Ref. [41]: the amplification rate α is given by the imaginary part of the complex

frequency obtained from the linear transfer matrix of the thermoacoustic engine. Figure 6 shows the280

amplification rate α for the first modes of the three different configurations of engines. If α > 0, the mode

is amplified by the thermoacoustic core; that is the core acts as a source of energy at that frequency.

If α < 0, the thermoacoustic core behaves as an energy sink and the wave is attenuated. Though the

frequencies of the higher modes do not correspond strictly to those of the harmonics of the working mode

– mainly because of inharmonicity induced by the presence of the temperature gradient –, they are still285

close enough for a qualitative analysis of the behavior of the harmonics in the engine.

One can notice that the first modes are more amplified with the increase of the imposed temperature

difference along the stack in both cases (A1) and (B), corresponding respectively to the standing wave

engine with the core close to the extremity and the traveling wave engine. This means that the greater

the temperature difference is, the less the energy cascaded from the fundamental frequency will be290

attenuated in the TAC, thus facilitating the wavefront deformation. Case (A2) however shows a different

behavior: though the fundamental frequency of the working mode seems more easily amplified in this

configuration, the second and third harmonics are always (linearly) attenuated. The energy cascaded
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from the fundamental frequency will then be dissipated in the thermoacoustic core, limiting its transit

to the superior harmonics and consequently prevent the deformation of the wavefront. Finally, the shock 295

wave generation in a thermoacoustic engine appears to be related to the attenuation or amplification in

its core of the higher harmonics produced by the energy cascade from the fundamental frequency. In

cases (A1) and (B), the thermoacoustic core acts as an amplifier for the higher harmonics, supporting

the wavefront deformation, whereas in case (A2), it behaves as an energy sink, creating a barrier for

energy cascade impeding the deformation. Because such an interpretation is based on observing the 300

variations of an amplification rate defined in the frame of a linear theory, it has to be considered with

caution. Nevertheless, this interpretation is also the one supported by Biwa et al. [23, 24] from the

measurements of intensity at both side of the TAC. This work furthermore brings a numerical approach

that successfully renders the nonlinear behavior of the studied engines, as well as an a priori reading of

the linear model of the acoustic propagation to support this interpretation. 305

4 Conclusion

In this paper, a numerical simulation of the nonlinear propagation in thermoacoustic engines of basic

geometry is presented. It uses the formalism of generalized Burgers’ equations for nonlinear propagation

in the temperature homogeneous waveguide sections and the linearized equations of thermoacoustics in

the engine’s core, solved numerically to obtain the periodic steady-state regime of auto-oscillation. This 310

expressions proved to be sufficient for a qualitative description of the wave steepening in thermoacoustic

engines of simple geometry, for both standing and quasi-traveling wave configurations. Numerical results

show good qualitative agreement with experimental results obtained in [23, 24].

Furthermore, a more accurate description of the thermoacoustic core should help to obtain a better

quantitative match. Notably, using a nonlinear profile temperature, both in the stack and the TBT, will 315

influence the amplification rate of the core, particularly in the quasi-traveling wave engine. Besides, the

description of minor losses is quite rough in this work, only aiming at getting an order of magnitude of

the losses. A more accurate description is important for the prediction of the levels of saturation, and

should be accompanied by more exhaustive evaluation of the thermophysical parameters in the experi-

mental configuration, such as the presence of acoustically induced streaming or the spatial distribution 320

of temperature in the different elements composing the core. A qualitative comparison would be possible

only under these conditions.
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