Error estimate for finite volume approximate solutions of some oblique derivative boundary value problems

Abstract : This paper is an improvment of [BG 05], concerning the Laplace equation with an oblique boundary condition. When the boundary condition involves a regular coefficient, we present a weak formulation of the problem and we prove some existence and uniqueness results of the weak solution. We develop a finite volume scheme and we prove the convergence of the finite volume solution to the weak solution, when the mesh size goes to zero. We also present some partial results for the interesting case of a discontinuous coefficient in the boundary condition. In particular, we give a finite volume scheme, taking in consideration the discontinuities of this coefficient. Finally, we obtain some error estimates (in a convenient norm) of order √ h (where h is the mesh size), when the solution u is regular enough.
Type de document :
Article dans une revue
International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2006, 3 (2), pp.1-35
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01114201
Contributeur : Thierry Gallouet <>
Soumis le : lundi 9 février 2015 - 15:29:07
Dernière modification le : lundi 4 avril 2016 - 14:43:51
Document(s) archivé(s) le : mercredi 27 mai 2015 - 17:11:10

Fichier

bg-october.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01114201, version 1

Collections

Citation

Abdallah Bradji, Thierry Gallouet. Error estimate for finite volume approximate solutions of some oblique derivative boundary value problems. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2006, 3 (2), pp.1-35. 〈hal-01114201〉

Partager

Métriques

Consultations de
la notice

170

Téléchargements du document

69