J. Andzelm and E. Wimmer, Density functional Gaussian???type???orbital approach to molecular geometries, vibrations, and reaction energies, The Journal of Chemical Physics, vol.96, issue.2, pp.1280-1303, 1992.
DOI : 10.1063/1.462165

V. Babin, C. Leforestier, and F. Paesani, Development of a ???First Principles??? Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient, Journal of Chemical Theory and Computation, vol.9, issue.12, pp.5395-5403, 2013.
DOI : 10.1021/ct400863t

URL : https://hal.archives-ouvertes.fr/hal-00921488

V. Babin, G. R. Medders, and F. Paesani, Toward a Universal Water Model: First Principles Simulations from the Dimer to the Liquid Phase, The Journal of Physical Chemistry Letters, vol.3, issue.24, pp.3765-3769, 2012.
DOI : 10.1021/jz3017733

V. Babin, G. R. Medders, and F. Paesani, Development of a ???First Principles??? Water Potential with Flexible Monomers. II: Trimer Potential Energy Surface, Third Virial Coefficient, and Small Clusters, Journal of Chemical Theory and Computation, vol.10, issue.4, pp.1599-1607, 2014.
DOI : 10.1021/ct500079y

URL : https://hal.archives-ouvertes.fr/hal-00921488

C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, The Journal of Physical Chemistry, vol.97, issue.40, pp.10269-10280, 1993.
DOI : 10.1021/j100142a004

A. D. Becke, A multicenter numerical integration scheme for polyatomic molecules, The Journal of Chemical Physics, vol.88, issue.4, pp.2547-2553, 1988.
DOI : 10.1063/1.454033

C. Böttcher, Theory of Electric Polarization Amster- dam), 1993.

S. F. Boys and I. Shavit, A Fundamental Calculation of the Energy Surface for the System of Three Hydrogen Atoms, 1959.

A. Buckingham, multipolar expansion, Phil. Trahs, Roy. Soc, vol.272, p.5, 1975.

D. A. Case, T. E. Cheatham, I. Darden, T. A. Gohlke, H. Luo et al., The Amber biomolecular simulation programs, Journal of Computational Chemistry, vol.124, issue.16, pp.1668-1688, 2005.
DOI : 10.1002/jcc.20290

M. Challacombe, E. Schwgler, and J. Almlöf, Modern Developments in Hartree-Fock Theory: Fast Methods for Computing the Coulomb Matrix, Computational Chemistry: Review of Current Trends, 1996.
DOI : 10.1142/9789812830364_0002

R. Chaudret, O. P. Nohad-gresh, T. A. Darden, G. A. Cisneros, and J. Piquemal, Towards improved treatment of metal cations in polarizable molecular mechanics using the hybrid gaussian electrostatics / distributed multipoles gem/sibfa approach, J. Chem. Theo. Comp, 2014.

G. A. Cisneros, Application of Gaussian Electrostatic Model (GEM) Distributed Multipoles in the AMOEBA Force Field, Journal of Chemical Theory and Computation, vol.8, issue.12, pp.5072-5080, 2012.
DOI : 10.1021/ct300630u

G. A. Cisneros, D. M. Elking, J. Piquemal, and T. A. Darden, Numerical Fitting of Molecular Properties to Hermite Gaussians, The Journal of Physical Chemistry A, vol.111, issue.47, pp.12049-12056, 2007.
DOI : 10.1021/jp074817r

G. A. Cisneros, J. P. Piquemal, and T. A. Darden, Intermolecular electrostatic energies using density fitting, The Journal of Chemical Physics, vol.123, issue.4, p.44109, 2005.
DOI : 10.1063/1.1947192

G. A. Cisneros, J. Piquemal, and T. A. Darden, Intermolecular electrostatic energies using density fitting, The Journal of Chemical Physics, vol.123, issue.4, p.44109, 2005.
DOI : 10.1063/1.1947192

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693352

G. A. Cisneros, J. Piquemal, and T. A. Darden, Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods, The Journal of Chemical Physics, vol.125, issue.18, p.184101, 2006.
DOI : 10.1063/1.2363374

G. A. Cisneros, J. P. Piquemal, and T. A. Darden, Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods, The Journal of Chemical Physics, vol.125, issue.18, p.184101, 2006.
DOI : 10.1063/1.2363374

G. A. Cisneros, S. N. Tholander, O. Parisel, T. A. Darden, D. Elking et al., Simple formulas for improved point-charge electrostatics in classical force fields and hybrid quantum mechanical/molecular mechanical embedding, International Journal of Quantum Chemistry, vol.110, issue.6, pp.1905-1912, 2008.
DOI : 10.1002/qua.21675

P. Coppens and A. Volkov, The interplay between experiment and theory in charge?density analysis, Acta Cryst, pp.357-364, 2004.

T. A. Darden, Dual bases in crystallographic computing, International Tables of Chrystallography, 2007.

P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens et al., An effective fragment method for modeling solvent effects in quantum mechanical calculations, The Journal of Chemical Physics, vol.105, issue.5, pp.1968-1986, 1996.
DOI : 10.1063/1.472045

B. De-courcy, J. Piquemal, and N. Gresh, Energy Analysis of Zn Polycoordination in a Metalloprotein Environment and of the Role of a Neighboring Aromatic Residue. What Is the Impact of Polarization?, Journal of Chemical Theory and Computation, vol.4, issue.10, pp.1659-1668, 2008.
DOI : 10.1021/ct800200j

C. Domene, P. W. Fowler, M. Wilson, P. Madden, and R. J. Wheatley, Overlap-model and ab initio cluster calculations of ion properties in distorted environments, Chemical Physics Letters, vol.333, issue.5, pp.403-412, 2001.
DOI : 10.1016/S0009-2614(00)01389-0

R. E. Duke, O. N. Starovoytov, J. Piquemal, and G. A. Cisneros, GEM*: A Molecular Electronic Density-Based Force Field for Molecular Dynamics Simulations, Journal of Chemical Theory and Computation, vol.10, issue.4, pp.1361-1365, 2014.
DOI : 10.1021/ct500050p

URL : https://hal.archives-ouvertes.fr/hal-01287209

B. I. Dunlap, J. W. Connolly, and J. R. Sabin, On first-row diatomic molecules and local density models, The Journal of Chemical Physics, vol.71, issue.12, pp.4993-4999, 1979.
DOI : 10.1063/1.438313

C. J. Eckhardt and A. Gavezzotti, Computer Simulations and Analysis of Structural and Energetic Features of Some Crystalline Energetic Materials, The Journal of Physical Chemistry B, vol.111, issue.13, pp.3430-3437, 2007.
DOI : 10.1021/jp0669299

R. Eisenschitz and F. London, ???ber das Verh???ltnis der van der Waalsschen Kr???fte zu den hom???opolaren Bindungskr???ften, Zeitschrift f???r Physik, vol.60, issue.7-8, pp.491-527, 1930.
DOI : 10.1007/BF01341258

D. M. Elking, G. A. Cisneros, J. Piquemal, T. A. Darden, and L. G. Pedersen, Gaussian Multipole Model (GMM), Journal of Chemical Theory and Computation, vol.6, issue.1, pp.190-202, 2010.
DOI : 10.1021/ct900348b

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee et al., A smooth particle mesh Ewald method, The Journal of Chemical Physics, vol.103, issue.19, pp.8577-8593, 1995.
DOI : 10.1063/1.470117

P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Annalen der Physik, vol.54, issue.3, pp.253-287, 1921.
DOI : 10.1002/andp.19213690304

M. A. Freitag, M. S. Gordon, J. H. Jensen, and W. J. Stevens, Evaluation of charge penetration between distributed multipolar expansions, The Journal of Chemical Physics, vol.112, issue.17, pp.7300-7306, 2000.
DOI : 10.1063/1.481370

A. Gavezzotti, Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals, The Journal of Physical Chemistry B, vol.106, issue.16, 2002.
DOI : 10.1021/jp0144202

T. J. Giese, H. Chen, T. Dissanayake, G. M. Giambau, H. Heldenbrand et al., A Variational Linear-Scaling Framework to Build Practical, Efficient Next-Generation Orbital-Based Quantum Force Fields, Journal of Chemical Theory and Computation, vol.9, issue.3, pp.1417-1427, 2013.
DOI : 10.1021/ct3010134

T. J. Giese, H. Chen, M. Huang, and D. M. York, Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions, Journal of Chemical Theory and Computation, vol.10, issue.3, pp.1086-1098, 2014.
DOI : 10.1021/ct401035t

E. D. Glendening, Natural Energy Decomposition Analysis:?? Explicit Evaluation of Electrostatic and Polarization Effects with Application to Aqueous Clusters of Alkali Metal Cations and Neutrals, Journal of the American Chemical Society, vol.118, issue.10, pp.2473-2482, 1994.
DOI : 10.1021/ja951834y

E. D. Glendening and A. Streitwieser, Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor???acceptor interactions, The Journal of Chemical Physics, vol.100, issue.4, pp.2900-2909, 1994.
DOI : 10.1063/1.466432

N. Godbout and J. Andzelm, DGauss Version 2.0, 2.1, 2.3, 4.0: the file that contains the A1, A2 and P1 auxiliary basis sets can be obtained from the CCL WWW site at http://www.ccl, 1999.

. Anisotropic, polarizable molecular mechanics studies of inter?, intra?molecular interactios, and ligand?macromolecule complexes. a bottom?up strategy, J. Chem. Theo. Comp, vol.3, pp.1960-1986

N. Gresh, P. Claverie, and A. Pullman, Sibfa, Int. J. Quantum Chem, pp.253-264, 1979.
URL : https://hal.archives-ouvertes.fr/hal-00904630

N. Gresh, C. Policar, and C. Giessner-prettre, Modeling Copper(I) Complexes:?? SIBFA Molecular Mechanics versus ab Initio Energetics and Geometrical Arrangements, The Journal of Physical Chemistry A, vol.106, issue.23, pp.5660-5670, 2002.
DOI : 10.1021/jp0106146

C. M. Handley and P. L. Popelier, Potential Energy Surfaces Fitted by Artificial Neural Networks, The Journal of Physical Chemistry A, vol.114, issue.10, pp.3371-338310, 2010.
DOI : 10.1021/jp9105585

J. M. Hermida-ramón, S. Brdarski, G. Karlström, and U. Berg, Inter- and intramolecular potential for the N-formylglycinamide-water system. A comparison between theoretical modeling and empirical force fields, Journal of Computational Chemistry, vol.107, issue.2, pp.161-176, 2003.
DOI : 10.1002/jcc.10159

A. Heßelmann, G. Jansen, and M. Schütz, Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies, The Journal of Chemical Physics, vol.122, issue.1, pp.14103-14120, 2005.
DOI : 10.1063/1.1824898

J. O. Hirshfelder, Perturbation theory for exchange forces, I, Chemical Physics Letters, vol.1, issue.8, pp.325-329, 1967.
DOI : 10.1016/0009-2614(67)80007-1

J. O. Hirshfelder, Perturbation theory for exchange forces, II, Chemical Physics Letters, vol.1, issue.9, pp.363-368, 1967.
DOI : 10.1016/0009-2614(67)80036-8

H. Hu, Z. Lu, and W. Yang, Fitting Molecular Electrostatic Potentials from Quantum Mechanical Calculations, Journal of Chemical Theory and Computation, vol.3, issue.3, pp.1004-1013, 2007.
DOI : 10.1021/ct600295n

B. Jeziorski, R. Moszynski, and K. Szalewicz, Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes, Chemical Reviews, vol.94, issue.7, pp.1887-1930, 1994.
DOI : 10.1021/cr00031a008

Y. Jung, A. Sodt, P. M. Gill, and M. Head-gordon, Auxiliary basis expansions for large-scale electronic structure calculations, Proc. Natl. Acad. Sci. 102, pp.6692-6697, 2005.
DOI : 10.1073/pnas.0408475102

V. Kairys and J. H. Jensen, Evaluation of the charge penetration energy between non-orthogonal molecular orbitals using the Spherical Gaussian Overlap approximation, Chemical Physics Letters, vol.315, issue.1-2, pp.1-2, 1999.
DOI : 10.1016/S0009-2614(99)01187-2

R. Z. Khaliullin, M. Head-gordon, and A. T. Bell, An efficient self-consistent field method for large systems of weakly interacting components, The Journal of Chemical Physics, vol.124, issue.20, 2006.
DOI : 10.1063/1.2191500

K. Kitaura and K. Morokuma, A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation, International Journal of Quantum Chemistry, vol.97, issue.2, pp.325-340, 1976.
DOI : 10.1002/qua.560100211

D. S. Kosov and P. L. Popelier, Atomic Partitioning of Molecular Electrostatic Potentials, The Journal of Physical Chemistry A, vol.104, issue.31, pp.7339-7345, 2000.
DOI : 10.1021/jp0003407

A. M. Köster, Efficient recursive computation of molecular integrals for density functional methods, The Journal of Chemical Physics, vol.104, issue.11, pp.4114-4124, 1996.
DOI : 10.1063/1.471224

A. M. Köster, P. Calaminici, Z. Gómez, and U. Reveles, DENSITY FUNCTIONAL THEORY CALCULATION OF TRANSITION METAL CLUSTERS, Reviews of Modern Quantum Chemistry, A Celebration of the Contribution of, 2002.
DOI : 10.1142/9789812775702_0048

F. Lipparini, L. Lagardère, B. Stamm, E. Cancès, M. Schnieders et al., Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations, Journal of Chemical Theory and Computation, vol.10, issue.4, pp.1638-1651, 2014.
DOI : 10.1021/ct401096t

URL : https://hal.archives-ouvertes.fr/hal-01090942

Z. Lu, N. Zhou, Q. Wu, and Y. Zhang, Directional Dependence of Hydrogen Bonds: A Density-Based Energy Decomposition Analysis and Its Implications on Force Field Development, Journal of Chemical Theory and Computation, vol.7, issue.12, pp.12-4038, 2011.
DOI : 10.1021/ct2003226

J. G. Mcdaniel and J. R. Schmidt, First-Principles Many-Body Force Fields from the Gas Phase to Liquid: A ???Universal??? Approach, The Journal of Physical Chemistry B, vol.118, issue.28, 2014.
DOI : 10.1021/jp501128w

L. Mcmurchie and E. Davidson, One- and two-electron integrals over cartesian gaussian functions, Journal of Computational Physics, vol.26, issue.2, pp.218-231, 1978.
DOI : 10.1016/0021-9991(78)90092-X

M. Mills and P. Popelier, Polarisable multipolar electrostatics from the machine learning method kriging: an application to alanine, Theo. Chem. Acc, vol.131, issue.3, pp.1-16, 2012.

A. J. Misquitta and A. J. Stone, Distributed polarizabilities obtained using a constrained density-fitting algorithm, The Journal of Chemical Physics, vol.124, issue.2, p.24111, 2006.
DOI : 10.1063/1.2150828

Y. Mo, J. Gao, and S. D. Peyerimhoff, Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach, The Journal of Chemical Physics, vol.112, issue.13, pp.5530-5538, 2000.
DOI : 10.1063/1.481185

J. N. Murrel and G. Shaw, Intermolecular Forces in the Region of Small Orbital Overlap, The Journal of Chemical Physics, vol.46, issue.5, pp.1768-1772, 1967.
DOI : 10.1063/1.1840933

P. Paricaud, M. Predota, A. A. Chialvo, and P. T. Cummings, From dimer to condensed phases at extreme conditions: Accurate predictions of the properties of water by a Gaussian charge polarizable model, The Journal of Chemical Physics, vol.122, issue.24, p.244511, 2005.
DOI : 10.1063/1.1940033

URL : https://hal.archives-ouvertes.fr/hal-01153443

J. P. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, and T. A. Darden, Towards a force field based on density fitting, The Journal of Chemical Physics, vol.124, issue.10, p.104101, 2006.
DOI : 10.1063/1.2173256

URL : https://hal.archives-ouvertes.fr/hal-00494627

J. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, and T. A. Darden, Towards a force field based on density fitting, The Journal of Chemical Physics, vol.124, issue.10, p.104101, 2006.
DOI : 10.1063/1.2173256

URL : https://hal.archives-ouvertes.fr/hal-00494627

J. Piquemal, N. Gresh, and C. Giessner-prettre, Improved Formulas for the Calculation of the Electrostatic Contribution to the Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution, The Journal of Physical Chemistry A, vol.107, issue.48, pp.10353-10359, 2003.
DOI : 10.1021/jp035748t

J. Piquemal, A. Marquez, O. Parisel, and C. Giessner-prettre, A CSOV study of the difference between HF and DFT intermolecular interaction energy values: The importance of the charge transfer contribution, Journal of Computational Chemistry, vol.229, issue.10, pp.1052-1062, 2005.
DOI : 10.1002/jcc.20242

R. Podeszwa, R. Bukowski, and K. Szalewicz, Density-Fitting Method in Symmetry-Adapted Perturbation Theory Based on Kohn???Sham Description of Monomers, Journal of Chemical Theory and Computation, vol.2, issue.2, pp.400-412, 2006.
DOI : 10.1021/ct050304h

J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera et al., Current Status of the AMOEBA Polarizable Force Field, The Journal of Physical Chemistry B, vol.114, issue.8, pp.2549-2564, 2010.
DOI : 10.1021/jp910674d

P. Popelier, Atoms in molecules, 2000.
DOI : 10.1039/9781847553317-00143

P. Popelier, A generic force field based on quantum chemical topology Modern Charge- Density Analysis, pp.505-526, 2012.

P. L. Popelier, L. Joubert, and D. S. Kosov, Convergence of the Electrostatic Interaction Based on Topological Atoms, The Journal of Physical Chemistry A, vol.105, issue.35, pp.8254-8261, 2001.
DOI : 10.1021/jp011511q

P. L. Popelier, L. Joubert, and D. S. Kosov, Convergence of the Electrostatic Interaction Based on Topological Atoms, The Journal of Physical Chemistry A, vol.105, issue.35, pp.8524-8261, 2001.
DOI : 10.1021/jp011511q

P. L. Popelier and D. S. Kosov, Atom???atom partitioning of intramolecular and intermolecular Coulomb energy, The Journal of Chemical Physics, vol.114, issue.15, pp.6539-6547, 2001.
DOI : 10.1063/1.1356013

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in fortran77; the art of scientific computing, 1992.

S. Price, Toward More Accurate Model Intermolecular Potentials for Organic Molecules, Reviews in Computational Chemistry, pp.225-289, 1999.
DOI : 10.1002/9780470125915.ch4

A. Raval, S. Piana, M. P. Eastwood, R. O. Dror, and D. E. Shaw, Refinement of protein structure homology models via long, all-atom molecular dynamics simulations, Proteins: Structure, Function, and Bioinformatics, vol.5, issue.Suppl 1, pp.2071-2079, 2012.
DOI : 10.1002/prot.24098

P. Ren and J. W. Ponder, Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations, Journal of Computational Chemistry, vol.105, issue.16, pp.1497-1506, 2002.
DOI : 10.1002/jcc.10127

P. Ren and J. W. Ponder, Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, The Journal of Physical Chemistry B, vol.107, issue.24, pp.5933-5947, 2003.
DOI : 10.1021/jp027815+

P. Ren, C. Wu, and J. W. Ponder, Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules, Journal of Chemical Theory and Computation, vol.7, issue.10, pp.3143-316110, 2011.
DOI : 10.1021/ct200304d

C. Sagui, L. G. Pedersen, and T. A. Darden, Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations, The Journal of Chemical Physics, vol.120, issue.1, pp.73-87, 2004.
DOI : 10.1063/1.1630791

K. Schulten, J. C. Phillips, L. V. Kale, and A. Bhatele, Biomolecular modeling in the era of petascale computing, Petascale Computing: Algorithms and Applications, pp.165-181, 2008.

D. E. Shaw, P. Maragakis, K. Lindorff-larsen, S. Piana, R. O. Dror et al., Atomic-Level Characterization of the Structural Dynamics of Proteins, Science, vol.330, issue.6002, pp.341-346, 2010.
DOI : 10.1126/science.1187409

W. J. Stevens and W. H. Fink, Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer, Chemical Physics Letters, vol.139, issue.1, pp.15-22, 1987.
DOI : 10.1016/0009-2614(87)80143-4

A. J. Stone, The theory of intermolecular forces, 2000.
DOI : 10.1093/acprof:oso/9780199672394.001.0001

A. J. Stone, Distributed Multipole Analysis:?? Stability for Large Basis Sets, Journal of Chemical Theory and Computation, vol.1, issue.6, pp.1128-1132, 2005.
DOI : 10.1021/ct050190+

A. J. Stone, Electrostatic Damping Functions and the Penetration Energy, The Journal of Physical Chemistry A, vol.115, issue.25, pp.7017-7027, 2011.
DOI : 10.1021/jp112251z

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco et al., Accelerating molecular modeling applications with graphics processors, Journal of Computational Chemistry, vol.13, issue.16, pp.16-2618, 2007.
DOI : 10.1002/jcc.20829

URL : http://cacs.usc.edu/education/cs653/Stone-MDGPU-JCC07.pdf

B. Temelso, K. A. Archer, and G. C. Shields, Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections, The Journal of Physical Chemistry A, vol.115, issue.43, pp.12034-12046, 2011.
DOI : 10.1021/jp2069489

A. Toukmaji, C. Sagui, J. A. Board, and T. Darden, Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions, The Journal of Chemical Physics, vol.113, issue.24, pp.10913-10927, 2000.
DOI : 10.1063/1.1324708

A. Volkov and P. Coppens, Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning, Journal of Computational Chemistry, vol.36, issue.7, pp.921-934, 2004.
DOI : 10.1002/jcc.20023

B. Wang and D. G. Truhlar, Including Charge Penetration Effects in Molecular Modeling, Journal of Chemical Theory and Computation, vol.6, issue.11, pp.3330-3342, 2010.
DOI : 10.1021/ct1003862

R. Wheatley, Gaussian multipole functions for describing molecular charge distributions, Molecular Physics, vol.79, issue.3, pp.761-777, 2011.
DOI : 10.1080/00268979000102551

R. J. Wheatley and S. L. Price, An overlap model for estimating the anisotropy of repulsion, Molecular Physics, vol.33, issue.3, pp.507-533, 1990.
DOI : 10.1080/08927028808080938

Q. Wu, P. W. Ayers, and Y. Zhang, Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies, The Journal of Chemical Physics, vol.131, issue.16, p.164112, 2009.
DOI : 10.1063/1.3253797