ABSTRACT
Fixing a software error requires understanding its root cause. In this paper, we introduce “causality traces”, crafted execution traces augmented with the information needed to reconstruct the causal chain from the root cause of a bug to an execution error. We propose an approach and a tool, called Casper, for dynamically constructing causality traces for null dereference errors. The core idea of Casper is to inject "ghosts", into the execution stream to construct the causality trace at runtime. We evaluate our contribution by providing and assessing the causality traces of 14 real null dereference bugs collected over six large, popular open-source projects. Over this data set, Casper builds a causality trace in less than 5 seconds.

1. INTRODUCTION
In isolation, software errors are often annoyances, perhaps costing one person a few hours of work when their accounting application crashes. Multiply this loss across millions of people and consider that even scientific progress is delayed or derailed by software error [8]: in aggregate, these errors are now costly to society as a whole.

Fixing these errors requires understanding their root cause, a process that we call causality analysis. Computers are mindless accountants of program execution, yet do not track the data needed for causality analysis. This work proposes to harness computers to this task. We introduce “causality traces”, execution traces augmented with the information needed to reconstruct a causal chain from a root cause to an execution error. We construct causality traces over “ghosts”, an abstract data type that can replace a programming language’s special values, like null or NaN. Ghosts track those operations on that value to analyze and discover its root cause. To demonstrate the feasibility and promise of causality traces, we have instantiated ghosts for providing developers with causality traces for null dereference errors, they are “null ghosts”.

Anecdotally, we all know that null dereferences are frequent runtime errors. Li et al. substantiated this experience, finding that 37.2% of all memory errors in Mozilla and Apache are null dereferences [7]. A null dereference runtime error occurs when a program tries to read memory using a field, parameter, or variable that points to nothing — “null” or “none”, depending on the language. For example, on October 22 2009, a developer working on the Apache Commons Math open source project encountered an null pointer exception and reported it as bug #305

In low-level, unmanaged runtime environments, like assembly or C/C++, null dereferences result in a dirty crash, e.g. a segmentation fault. In a high-level, managed runtime environment such as Java, .NET, etc., a null dereference triggers an exception. In Java, this exception is called a “null pointer exception”; in .NET, it is called a “null reference exception”. Programs often crash when they fail to handle null dereference exceptions properly [1].

When debugging a null dereference, the usual point of departure is a stack trace that contains all the methods in the execution stack at the point of the dereference. This stack trace is decorated with the line numbers where each method was called. Listing 1 gives an example of such a stack traces and shows that the null dereference happens at line 88 of BisectionSolver.

Unfortunately, this stack trace only contains a partial snapshot of the program execution when the null dereference occurs, and not its root cause. In Listing 1, the stack trace says that a variable is null at line 88, but not when and what assigned “null” to the variable. Indeed, there may be a real gap between the symptom of a null dereference and its root cause [1]. In our evaluation, we present 7 cases where the patch for fixing the root cause of a null dereference error is not in any of the stack trace’s method. This gap exactly is an instance of Eisenstadt’s cause/effect chasm [4] for a specific defect class: null dereference errors.

This “null dereference cause/effect chasm” has two dimensions. The first is temporal: the symptom may happen an arbitrarily long time after its root cause, e.g. the dereference...
may happen ten minutes and one million method executions after the assignment to null. In this case, the stack trace is a snapshot of the execution at the time of the symptom, not at the time of the root cause. The second is spatial: the location of the symptom may be arbitrarily far from the location of the root cause. For example, the null dereference may be in package foo and class A while the root cause may be in package bar and class B). The process of debugging null dereferences consists of tracing the link in space and time between the symptom and the root cause. This paper eases the debugging of null dereference errors by automatically bridging the null dereference cause/effect chasm with causality traces.

A causality trace captures the complete history of the propagation of a null value that is incorrectly dereferenced. Listing 2 contains such a causality trace. In comparison to Listing 1, it contains three additional pieces of information. First, it gives the exact name, here f, and kind, here parameter (local variable or field are other possibilities), of the null variable. Second, it explains the origin of the parameter, the call to solve at line 66 with field f2 passed as parameter. Third, it gives the root cause of the null dereference: the assignment of null to the field f2 at line 55 of class UnivariateRealSolverImpl. Our causality traces contain several kinds of trace elements, of which Listing 2 shows only three: the name of the wrongly dereferenced variable, the flow of nulls through parameter bindings, and null assignment. Section 2 details the rest.

An instrumented version of the program under debug collects a null causality trace; it replaces nulls with “ghosts” that track causal information during execution. We have named our tool Casper, since it injects “friendly” ghosts into buggy programs. To instrument a program, Casper applies a set of 11 source code transformations tailored for building causal connections. For instance, \(\text{of} \) is transformed into \(\text{o = NullDetector.check(externalCall ())} \), where the method check stores causality elements in a null ghost (Section 2.2) and assigns it to o if externalCall returns null. Section 2.3 details these transformations.

We evaluate our contribution Casper by providing and assessing the causality traces of 14 real null dereference bugs collected over six large, popular open-source projects. We collected these bugs from these project’s bug reports, retaining those we were able to reproduce. Casper constructs the complete causality trace for 13 of these 14 bugs. For 11 out of these 13 bugs, the causality trace contains the location of the actual fix made by the developer.

Furthermore, we check that our 11 source code transformations do not change the semantics of the program relative to the program’s test suite, by running the program against that test suite after transformation and confirming that it stills passes. The limitations of our approach are discussed in Section 2.5 and its overhead in Section 3.3.4.

To sum up, our contributions are:

- The definition of causality traces for null dereference errors
- A set of source code transformations designed and tailored for collecting the causality traces.
- Casper, an implementation in Java of our technique.
- An evaluation of our technique on real null dereference bugs collected over 6 large open-source projects.

Casper and our dataset can be downloaded from http://sacharproject.gforge.inria.fr/casper.

2. Debugging Approach

Casper tracks the propagation of nulls used during application execution in a causality trace. A null dereference causality trace is the sequence of language constructs traversed during execution from the source of the null to its erroneous dereference. This trace speeds the localization of the root cause of null dereferences errors.

Our idea is to replace nulls with forged objects whose behavior, from the application’s point of view, is same as a null, except that they store a causality trace, defined in Section 2.1. We called these forged objects null ghosts and detail them in Section 2.2. Casper rewrites the program under debug to use null ghosts and to store a null’s causality trace in those null ghosts, Section 2.3. Casper’s rewriting must preserve the application’s semantics; Section 2.4 describes how we use testing to validate our transformations. Finally, we discuss Casper’s realization in Section 2.5. We instantiated Casper in Java and therefore tailored our presentation in this section to Java.

2.1 Null Dereference Causality Trace

To debug a complex null dereference, the developer has to understand the history of a guilty null from its creation to its problematic dereference. She has to know the details of the null’s propagation, i.e., why and when each variable became null at a particular location. We call this history the “null causality trace” of the null dereference.

Definition 2.1. A null dereference causality trace is the temporal sequence of language constructs traversed by a dereferenced null.

Developers read and write source code. Thus, source code is the natural medium in which developers reason about programs for debugging. In particular, a null propagates through moves or copies, which are realized via constructs like assignments and parameter binding in Java. This is why Casper defines causal links in a null causality trace in terms of traversed language constructs. Table 1 depicts language constructs through which nulls originate, propagate, disappear, and trigger null pointer exceptions. Therefore, nulls can originate in hard-coded null literals (L), whether explicit or implicit, and external library return (P) or callbacks (P). In our causality abstraction, these links are the root causes of a null dereference. Recall that Java forbids pointer arithmetic, so we do not consider this case.
null at entry

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>null literal</td>
<td>x = null;</td>
</tr>
<tr>
<td>P<sub>e</sub></td>
<td>null at entry</td>
<td>void foo(int x)</td>
</tr>
<tr>
<td>P<sub>i</sub></td>
<td>null at invocation</td>
<td>foo(isnull?(e))</td>
</tr>
<tr>
<td>R</td>
<td>null return</td>
<td>x = foo()</td>
</tr>
<tr>
<td>U</td>
<td>unboxed null</td>
<td>Integer x = e;</td>
</tr>
<tr>
<td>A</td>
<td>null assignment</td>
<td>x = e;</td>
</tr>
<tr>
<td>D</td>
<td>dereference</td>
<td>x.foo()</td>
</tr>
<tr>
<td>X</td>
<td>external call</td>
<td>lib.foo(e)</td>
</tr>
</tbody>
</table>

A null propagates through parameters — null parameters checked at function entry (P_i) and null parameters bound at a call site (P_e), returns (R), and unboxing (U). With the least specificity, a null can propagate through source level assignment (A). D denotes the erroneous dereference of a null.

Casper relies on code rewriting, as Section 2.4 describes. This has two consequences: Casper a) cannot trace nulls into an external library (it is impossible to rewrite external libraries by definition) and b) must instrument method calls in two locations: at the call site and at method entry. In the former case, Casper terminates a null causality trace upon encountering an external call. X denotes this occurrence in a trace. We can detect null bound to parameters in two locations: at the call site and at method entry. In the absence of external libraries, either would be sufficient alone; in the presence of external libraries, we need to track both links and create a method invocation link when invoking an external method and a method entry to detect library callbacks of application methods.

Let us consider the snippet “x = foo(bar());...x.field” and assume that x.field throws an NPE. The resulting null causality trace is R-R-A-D (return return assignment dereference). Here, the root cause is the return of the method bar². The trace of Listing 2, discussed in introduction, is L-A-P_i-P_e-D. L and A are redundant in this case, since a single assignment statement directly assigns a null to the field f2; P_i and P_e are also redundant since no library call is involved. Trivial post-processing removes such redundancy in a causality trace before Casper presents the trace to a user.

Casper decorates the L, A, P_i, and U “links” of a null dereference causality chain with the target variable name and the signature of the expression assigned to the target, where we treat variables as nullary functions whose signature is their name and type. For each causal link, Casper also collects the location of the language constructs (file, line) the name, and the stack of the current thread. Consequently, a causality trace contains a temporally ordered set of information and not just the stack at the point in time of the null dereference. In other words, a causality trace contains a null’s root cause and not only the stack trace of the symptom.

A causality trace is any chain of these causal links. A trace a) starts with a L or, in the presence of an external library, with R or P_i; b) may not end with a dereference (if the null pointer exception is caught, the null can continue to propagate); and c) may contain a return, not preceded by a method parameter link, when a void external method returns null. A causality trace can be arbitrarily long.

2.2 Null Ghosts

The special value null is the unique bottom element of Java’s nonprimitive type lattice. Redefining null to trace the propagation of nulls during a program’s execution, while elegant, is infeasible, since it would require the definition and implementation of a new language, with all the deployment and breakage of legacy applications that entails.

For sake of applicability, we leave our host language, here Java, untouched and use rewriting to create a null ghost to “haunt” each class defined in a codebase. A null ghost is an object that 1) contains a null causality trace and 2) has the same observable behavior as a null value. To this end, a ghost class contains a queue and overrules all methods of the class it haunts to throw null pointer exceptions.

Listing 3 illustrates this idea. Casper creates the ghost class MyGhostClass that extends the application class MyClass. All methods defined in the application type are overridden in the new type (e.g., sampleMethod) as well as all other methods from the old class, including final classes (See Section 2.5). The new methods completely replace the normal behavior and have the same new behavior. First, the call to computeNullUsage enriches the causality trace with a causal element of type D by stating that this null ghost was dereferenced. Then, it acts as if one has dereferenced a null value: it throws a CasperNullPointerException (a special version of the Java error thrown when one calls a method on a null value called NullPointerException), which is discussed next. In other words, a null ghost is an object that is both an instance of the domain class and an instance of the marker interface NullGhost. This marker interface will be used later to keep the same execution semantics between real null and null ghosts.

2.3 Casper’s Transformations

Casper’s transformations instrument the program under debug to detect nulls and construct null dereference causality traces dynamically, while preserving its semantics.

2.3.1 Overview

Equation 1 and Equation 2 define Casper’s local transfor-
null returns, the former focuses on expressions while the latter on
statements: in the figures, e and e1 are Java expressions, s is a
statement For brevity, Figure 2 introduces \textit{(method_decl)} for a
method declaration. The variable \(\{\textit{stmts}\}\) is a state-
ment list. Since version 5.0, Java automatically boxes and
unboxes primitives to and from object wrappers, \textit{unbox(e1)}
denotes this operation. To apply Equation 1 and Equation 2
to an entire program, \textsc{Casper} also has a global contextual
rewriting rule \(T_\langle C[n]\rangle = C[T_\langle n\rangle]\), where \(T\) applies either
\(T_e\) or \(T_s\), \(n\) denotes an expression or statement and \(C[]\)
denotes a program context. Equations 1a–1c, in Figure 1,
define our semantics-preserving expression transformations.
Section 2.4 discusses them.

The equations show the injection of the following func-
tions into the program under debug: \textit{nullDeref}, \textit{nullParam},
\textit{nullPassed}, \textit{nullAssign}, and \textit{nullReturn}. These functions all
check their argument for nullity. If their argument is \textit{null},
they create a null ghost and add the causality link built into
their name, i.e. \textit{nullAssign} adds A. If their argument is a
null ghost, they simply add the appropriate causality link.

2.3.2 Detection of \textit{nulls}

To provide the origin and the causality of null derefer-
cences, one has to detect null values \textit{before} they become harm-
ful, i.e. before they are dereferenced. This section describes
how \textsc{Casper}'s transformations inject helper methods that
detect and capture \textit{nulls}.

In Java, as with all languages that prevent pointer arith-
etic, \textit{nulls} originate in explicit or implicit literals within
the application under debug or in return from or callbacks
by an external library. L in Table 1 lists four examples of
the former case. \textsc{Casper} statically detects \textit{nulls} appearing
in each of these contexts. For explicit \textit{null} assignment, as in
\(x = \textit{null}\), it applies its Equation 2a; for implicit, \textit{Object}
\(o\), it applies Equation 2b. Both of these rewritings inject
\textit{nullAssign}, which instantiates a null ghost and starts its
causality trace with L–A. Equation 2d injects \textit{nullReturn}
to handle \textit{return null}, collecting R, and Equation 1f injects
\textit{nullParam} to handle \textit{foo(null)} and collect \(P_r\).

Not all \textit{nulls} can be statically detected: a library can
produce them. We do not assume a closed world; we do
not require the source of all the libraries used by the appli-
cation under debug, thus, our tool also inspects and
transforms all external library calls. An application uses a
value from an external library, which could be \textit{null}, in four
cases: 1. assignments whose right hand side involves an exter-
nal call; 2. method invocations one of whose parameter
expressions involves an external call; 3. boolean or arith-
etic expressions involving external calls; and 4. callbacks
from an external library into the program under debug.

Equation 2a handles the assignment case, injecting the
\textit{nullAssign} method to collect the causality links R, A.
Equation 1c wraps the parameters of internal method calls with
\textit{nullParam}, which handles external calls in a parameter list
and adds the R and \(P_r\) links to a null ghost. Equation 1d
handles boolean or arithmetic expressions. It injects the
\textit{nullUnbox} method to check nullity and create a null ghost
or update an existing one’s trace with R and U. Finally,
Equation 2c handles library callbacks. A library call back
happens when the application under debug provides an
object to the library and the library invokes a method of this
object, as in the “Listener” design pattern. In this case, the
library can bind \textit{null} to one of the method’s parameters.

Because we cannot know which method may be involved in

Listing 3: For each class of the program under debug, \textsc{Casper} generates a null ghost class to replace
\textit{nulls}.
During the execution of a program that uses libraries, one may pass `null` as a parameter to a library call. For instance, `o` could be `null` when `lib.m(o)` executes. After `Casper`'s transformation, `o` may be bound to a null ghost. In this case, if the library checks whether its parameters are null, using `x == null` or `x instanceof SomeClass`, a null ghost could change the behavior of the library and consequently of the program. Thus, for any method whose source we lack, we modify its calls to “unbox the null ghost”, using Equation 1c. In our example, `lib.m(o)` becomes `lib.m(exorcise(o))`. When passed a null ghost, the method `exorcise` returns the `null` that the ghost wraps.

Emulating Null Dereferences.
When dereferencing a `null`, Java throws an exception `NullPointerException`. When dereferencing a null ghost, the execution must also result in throwing the same exception. In Listing 3, a null ghost throws the exception `CasperNullPointerException`, which extends Java's exception `NullPointerException`. The `Casper`'s specific exception contains the dereferenced null ghost and overrides the usual exception reporting methods, namely the `getCause`, `toString`, and `printStackTrace` methods, to display the ghost’s causality trace.

Java throws a `NullPointerException` in three cases: `a` a method call on `null`; `b` a field access on `null`; or `c` unboxing a `null` from a primitive type’s object wrapper. `Casper` trivially emulates method calls on a `null`: it defines each method in a ghost to throw `CasperNullPointerException`, which extends Java’s exception `NullPointerException`. The `Casper`'s specific exception contains the dereferenced null ghost and overrides the usual exception reporting methods, namely the `getCause`, `toString`, and `printStackTrace` methods, to display the ghost’s causality trace.

Java throws a `NullPointerException` in three cases: `a` a method call on `null`; `b` a field access on `null`; or `c` unboxing a `null` from a primitive type’s object wrapper. `Casper` trivially emulates method calls on a `null`: it defines each method in a ghost to throw `CasperNullPointerException`, which extends Java’s exception `NullPointerException`. The `Casper`'s specific exception contains the dereferenced null ghost and overrides the usual exception reporting methods, namely the `getCause`, `toString`, and `printStackTrace` methods, to display the ghost’s causality trace.

Java throws a `NullPointerException` in three cases: `a` a method call on `null`; `b` a field access on `null`; or `c` unboxing a `null` from a primitive type’s object wrapper. `Casper` trivially emulates method calls on a `null`: it defines each method in a ghost to throw `CasperNullPointerException`, which extends Java’s exception `NullPointerException`. The `Casper`'s specific exception contains the dereferenced null ghost and overrides the usual exception reporting methods, namely the `getCause`, `toString`, and `printStackTrace` methods, to display the ghost’s causality trace.

Java throws a `NullPointerException` in three cases: `a` a method call on `null`; `b` a field access on `null`; or `c` unboxing a `null` from a primitive type’s object wrapper. `Casper` trivially emulates method calls on a `null`: it defines each method in a ghost to throw `CasperNullPointerException`, which extends Java’s exception `NullPointerException`. The `Casper`'s specific exception contains the dereferenced null ghost and overrides the usual exception reporting methods, namely the `getCause`, `toString`, and `printStackTrace` methods, to display the ghost’s causality trace.

Java throws a `NullPointerException` in three cases: `a` a method call on `null`; `b` a field access on `null`; or `c` unboxing a `null` from a primitive type’s object wrapper. `Casper` trivially emulates method calls on a `null`: it defines each method in a ghost to throw `CasperNullPointerException`, which extends Java’s exception `NullPointerException`. The `Casper`'s specific exception contains the dereferenced null ghost and overrides the usual exception reporting methods, namely the `getCause`, `toString`, and `printStackTrace` methods, to display the ghost’s causality trace.

2.4 Semantics Preservation
Using null ghosts instead of `nulls` must not modify program execution. `Casper` therefore defines the three transformations in Equations 1a–1c, whose aim is to preserve semantics. We evaluate the degree to which our transformations preserve application semantics in Section 3.

Comparison Operators.
Consider “`o == null`”. When `o` is `null`, `==` evaluates to true. If, however, `o` points to a null ghost, the expression evaluates to false. Equation 1a preserves the original behavior by rewriting expressions, to include the conjunct “`!o instanceof NullGhost`”. Our example “`o == null`” becomes the expression “`o == null & & !o instanceof NullGhost`”. Here, `NullGhost` is a marker interface that all null ghosts implement. The rewritten expression is equivalent to the original, over all operand, notably including null ghosts.

Java developers can write “`o instanceof MyClass`” to check the compatibility of a variable and a type. Under Java’s semantics, if `o` is `null`, no error is thrown and the expression returns false. When `o` is a null ghost, however, the expression returns true. Equation 1b solves this problem. To preserve behavior, it rewrites appearances of the `instanceof` operator, e.g., replacing “`o instanceof MyClass`” with “`o instanceof MyClass & & !o instanceof NullGhost`”.

Usage of Libraries.
is loaded. For example, when MyClass must be “haunted”, the class loader rewrites MyClass.class to MyGhostClass.class on the fly. MyGhostClass.class is modified, at the bytecode level, just as it would have been at the source level, had it not contained final. We perform binary code analysis and modification using ASM\(^3\).

Limitations.

CASPER cannot identify the root cause of a null pointer dereference in two cases. The first is when the root cause is in external library code that we cannot rewrite. This is the price we pay to avoid assuming a closed world, where all classes are known and manipulatable. The second is specific to the fact that we implemented CASPER in Java: our class-loader technique for overriding final classes and methods does not work for JDK classes, because most of these classes are loaded before the invocation of application-specific class loaders. One consequence is that our implementation of CASPER cannot provide causality traces for Java strings.

3. **EMPIRICAL EVALUATION**

We now evaluate the capability of our approach to build correct causality traces of real errors from large-scale open-source projects. The evaluation answers the following research questions:

- **RQ1**: Does our approach provide the correct causality trace?
- **RQ2**: Do the code transformations preserve the semantics of the application?
- **RQ3**: Is the approach useful with respect to the fixing process?

RQ1 and RQ2 concern correctness. In the context of null dereference analysis, RQ1 focuses one one kind of correctness defined as the capability to provide the root cause of the null dereference. In other words, the causality trace has to connect the error to its root cause. RQ2 assesses that the behavior of the application under study does not vary after applying massive code transformations. RQ3 studies the extent to which causality traces help a developer to fix null dereference bugs.

3.1 **Dataset**

We built a dataset of real life null dereference bugs. There are two inclusion criteria. First, the bug must be a real bug reported on a publicly-available forum (e.g. a bug repository). Second, the bug must be reproducible.\(^4\)

We formed our data set in two ways. First, we tried to replicate results over a published data set as described below. Second, we selected a set of popular projects from github (or whatever source) using github’s popularity measures, and generated the following list of projects. For each project, we used a bag of words over their bugzilla to identify an under approximate set of NPEs. We then faced the difficult challenge of reproducing these bugs, as bug reports rarely specify the bug-triggering inputs. Are final data set then is conditioned on reproducibility. We do not, however, have any reason to believe that any bias that may exist in our data set would impact Casper general applicability.

Let us dwell on bug reproducibility. Since our approach is dynamic, we must be able to compile and run the software in its faulty version. First, we need the source code of the software at the corresponding buggy version. Second, we must be able to compile the software. Third, we need to be able to run the buggy case.

Under these constraints, we want to assess how our approach compares to the closest related work \cite{Bond2017}. Their dataset dates back to 2008. In terms of bug reproduction 6 years later, this dataset is hard to replicate. For 3 of the 12 bugs in this work, we cannot find any description or bug report. For 4 of the remaining 9, we cannot build the software because the versions of the libraries are not given or no longer available. 3 of the remaining 5 do not give the error-triggering inputs, or they do not produce an error. Consequently, we were only able to reproduce 3 null dereference bugs from Bond et al.’s dataset.

We collected 7 other bugs. The collection methodology follows. First, we look for bugs in the Apache Commons set of libraries (e.g. Apache Commons Lang). The reasons are the following. First, it is a well-known and well-used set of libraries. Second, Apache commons bug repositories are public, easy to access and to be searched. Finally, thanks to the strong software engineering discipline of the Apache foundation, a failing test case is often provided in the bug report.

To select the real bugs to be added to our dataset we proceed as follows. We took all the bugs from the Apache bug repository\(^5\). We then select 3 projects that are well used and well known (Collections, Lang and Math). We add the condition that those bug reports must have “NullPointerException” (or “NPE”) in their title. Then we filter them to keep only those which have been fixed and which are closed (our experimentation needs the patch). Those filters let us have 19 bug reports 6. Sadly, on those 19 bug reports, 8 are not relevant for our experimentation: 3 are too olds and no commit is attached (COLL-4, LANG-42 and Lang-144), 2 concern Javadoc (COLL-516 and MATH-466), 2 of them are not bugs at all (LANG-87 and MATH-467), 1 concerns a VM problem. Finally, we add the 11 remaining cases to our dataset.

Consequently, the dataset contains the 3 cases from \cite{Bond2017} (Mckoi, freemarker and jfreechart) and 11 cases from Apache Commons (1 from collections, 3 from lang and 7 from math). In total, the bugs come from 6 different projects, which is good for assessing the external validity of our evaluation. This makes a total of 14 real life null dereferences bugs in the dataset. Table 2 shows the name of the applications, the number of the bug Id (if existing), a summary of the NPE cause and a summary of the chosen fix. We put only one line for 7 of them because they use the same simple fix (i.e. adding a check not null before the faulty line).

This dataset only contains real null dereference bugs and no artificial or toy bugs. To reassure the reader about cherry-picking, we have considered all null dereferenced bugs of the 3 selected projects. We have not rejected a single null dereference that CASPER fails to handle.

\(^3\)<https://asm.ow2.org/>

\(^4\)Indeed, it is really hard to reproduce real bugs in general and null dereferences in particular. Often, the actual input data or input sequence triggering the bug is not given, or the exact buggy version is not specified, or the buggy version can no longer be compiled and executed.

\(^5\)<https://issues.apache.org/jira/issues

\(^6\)The link to automatically set those filters is given in <http://sachaproject.gforge.inria.fr/casper>
<table>
<thead>
<tr>
<th># Bug Id</th>
<th>Problem summary</th>
<th>Fix summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>McKoi</td>
<td>new JDBCDatabaseInterface with null param -> field -> deref</td>
<td>Not fixed (Artificial bug by [1])</td>
</tr>
<tr>
<td>Freemarker #101</td>
<td>circular initialization makes a field null in WrappingTemplateModel -> deref</td>
<td>not manually fixed. could be fixed manually by adding hard-code value. no longer a problem with java 7.</td>
</tr>
<tr>
<td>JFreeChart #687</td>
<td>no axis given while creating a plot</td>
<td>can no longer create a plot without axis modifying constructor for fast failure with error message</td>
</tr>
<tr>
<td>collection #331</td>
<td>no error message set in a thrown NPE</td>
<td>add a check not null before the throw + manual throwing of NPE</td>
</tr>
<tr>
<td>math #290</td>
<td>NPE instead of a domain exception when a null List provided</td>
<td>normalize the list to use empty list instead of null</td>
</tr>
<tr>
<td>math #305</td>
<td>bad type usage (int instead of double). Math.sqrt() call on an negative int -> return null. should be a positive double</td>
<td>change the type</td>
</tr>
<tr>
<td>math #1117</td>
<td>Object created with too small values, after multiple iterations of a call on this object, it returns null</td>
<td>create a default object to replace the wrong valued one</td>
</tr>
<tr>
<td>7 other bugs</td>
<td></td>
<td>add a nullness check</td>
</tr>
</tbody>
</table>

Table 2: A dataset of 14 real null dereference errors from large scale open-source projects. The dataset is made publicly available for future replications and research on this problem.

3.2 Methodology

3.2.1 Correctness

RQ1: Does our approach provide the correct causality trace?
To assert that the provided element is the one responsible of the null dereference we perform a manual analysis on the cases under study. We manually compare the result provided by our technique with those coming from a manual debugging process that is performed using the debug mode of Eclipse.

RQ2: Do the code transformations preserve the semantics of the application?
To assert that our approach does not modify the behavior of the application, we use two different strategies.
First, we assess that the result of the whole test suite has not been modified. In other words, if a test case passes before applying our code transformations, it must pass after. However, this only addresses the correctness of the externally observable behavior of the program under debug.

Second, to assess that our approach does not modify the internal behavior, we compare the execution traces of the original program (prior to code transformation) and the program after transformation. Here, an “execution trace” corresponds to the ordered list of all method calls and of all returned values while executing the whole test suite. This trace is obtained by two small code changes. The first one adds a log line at the beginning of each method (of the form package.class#method(arg.toString ...)). The second one adds a log line before each return (of the form package.class#method():returnedValue.toString). Those two different logs are written in one single file. There are two log files for each case: one for the nominal execution, the other for the execution using our approach.

To assess that the internal behavior has not been modified, we then compare the two generated files. We perform a preprocessing of the trace after transformation because it contains all calls to our own debug framework. To do this, we remove all the lines of those calls before the comparison (the filter is done by checking the package names). Thus we are able to compare the corresponding of the calls coming from the application in the two versions. The two traces must be identical.

To assess that those two strategies are relevant, we also check the coverage of those test suites using Cobertura7. The application coverage of the test suites under study are greater than 90% for the 3 Apache common projects (11 out of the 14 cases). For the 3 cases from [1] (Mckoi, freemarker and jfreechart), we do not have access to the full test suites. We still perform those two strategies on those 3 cases, but they may not be considered as representative. However, this is not related with the results of this paper, it only concerns the fact that our approach does not modify the behavior of the application. Those 11 test suites with more than 90% coverage may be considered as the dataset used to assess this behavior equivalence.

3.2.2 Effectiveness

RQ3: Is the approach useful with respect to the fixing process?
To assert that our additional data is useful, we look at whether the location of the real fix is given in the causality trace. If the location of the actual fix is provided in the causality trace, it would have helped the developer by reducing the search space of possible solutions. Note that in 7/14 cases of our dataset, the fix location already appears in the original stack trace. Those are the 7 simple cases where a check not null is sufficient to prevent the error. Those cases are valuable in the context of our evaluation to check that: 1) the variable name is given (as opposed to only the line number of a standard stack trace), 2) the causality trace is correct (although the fix location appears in the original stack trace, it does not prevent a real causality trace with several causal connections).

3.3 Results

3.3.1 RQ1

7 other bugs

Table 3: Evaluation of Casper: in 13/14 cases, a causality trace is given, in 11/13 the causality trace contains the location where the actual fix was made.

<table>
<thead>
<tr>
<th># Bug Id</th>
<th>Fix location</th>
<th>Fix location in the standard stack trace</th>
<th>Addressed by</th>
<th>Fix location in Casper’s causality trace</th>
<th>Causality Trace</th>
<th>Exec. time instrumented (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McKoi</td>
<td>Not fixed</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>L-A-R-A-D</td>
<td>852</td>
</tr>
<tr>
<td>Freemarker</td>
<td>Not fixed</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>L-A-D</td>
<td>691</td>
</tr>
<tr>
<td>#107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JFreechart</td>
<td>FastScatterPlot</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>L-P_1-P_2-D</td>
<td>222</td>
</tr>
<tr>
<td>collection</td>
<td>CollatingIterator</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>L-A-D</td>
<td>81</td>
</tr>
<tr>
<td>math #290</td>
<td>SimplexTableau</td>
<td>106/125/197</td>
<td>No</td>
<td>No</td>
<td>D</td>
<td>107</td>
</tr>
<tr>
<td>math #305</td>
<td>MathUtils</td>
<td>1624</td>
<td>No</td>
<td>No</td>
<td>L-R-A-R-D</td>
<td>68</td>
</tr>
<tr>
<td>math #1117</td>
<td>PolygonSet</td>
<td>230</td>
<td>No</td>
<td>No</td>
<td>L-A-R-A-D</td>
<td>191</td>
</tr>
<tr>
<td>7 simple cases</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>L-A-D (xb)</td>
<td>147 (average)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>L-A-U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 / 14</td>
<td>8/14</td>
<td>11/14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After verification by manual debugging, in all the cases under study, the element identified by our approach is the one responsible for the error. This result can be replicated since our dataset and our prototype software are made publicly available.

3.3.2 RQ2

All the test suites have the same external behavior with and without our modifications according to our two behavior preservation criteria. First, the test suite after transformation still passes. Second, for each run of the test suite, the order of method calls is the same and the return values are the same. In short, our massive code transformations do not modify the behavior of the program under study and provide the actual causality relationships.

3.3.3 RQ3

We now perform two comparisons. First, we look at whether the fix locations appear in the standard stack traces. Second, we compare the standard stack trace and causality trace to see whether the additional information corresponds to the fix.

Table 3 presents the fix locations (class and line number) (second column) and whether: this location is provided in the basic stack trace (third column); 2) the location is provided by previous work [1] (fourth column); 3) it is in the causality trace (last column). The first column, “# Bug Id”, gives the id of the bug in the bug tracker of the project (same as Table 2).

In 7 out of 14 cases (the 7 simple cases), the fix location is in the original stack trace. For those 7 cases, the causality trace is correct and also points to the fix location. In comparison to the original stack trace, it provides the name of the root cause variable.

In the remaining 7 cases, the fix location is not in the original stack trace. This means that in 50% of our cases, there is indeed a cause/effect chasm, that is hard to debug [4], because no root cause information is provided to the developer by the error message. We now explain in more details those 7 interesting cases.

The related work [1] would provide the root cause in only 1 out of those 7 cases (according to an analysis, since their implementation is not executable). In comparison, our approach provides the root cause in 4 out of those 7 cases. This supports the claim that our approach is able to better help the developers in pinpointing the root cause compared to the basic stack trace or the related work.

3.3.4 Detailed Analysis

Case Studies.

There are two different reasons why our approach does not provide the fix location: First, for one case, our approach is not able to provide a causality trace. Second, for two cases, the root cause of the null dereference is not the root cause of the bug.

In the case of Math #290, our approach is not able to provide the causality trace. This happens because the null value is stored in an Integer, which is a final type coming from the jdk. Indeed, java.lang.Integer is a native Java type and our approach cannot modify them (see Section 2.5).

In the case of Math #305, the root cause of the null dereference is not the root cause of the bug. The root cause of this null dereference is initialized on line 4, the method call `distanceFrom` on line 6 return `NaN`, due to this `NaN`, the condition on line 7 fails, and the null value is returned (line 9). Here, the cause of the dereference is that a null value is returned by this method. Hence, this is not the root cause of the bug. The root cause of the null dereference is not the root cause of the null value.

In the case of Math #1117, the root cause of the null dereference is not the root cause of the bug. The root cause of this

null dereference is shown in Listing 6. The null responsible of the dereference is the one passed as second parameter of the constructor call on line 10. This null value is stored in the field of this SplitSubHyperplane. Here, the cause of the dereference is that a null value is set in a field of the object returned by this method. Once again, this is the root cause of the null but this is not the root cause of the bug. The root cause of the bug is the root cause of the failing condition global < -1.0e−10. Indeed, according to the explanation and the fix given by the developer the Hyperplane passed as method parameter should not exist if its two lines are too close from each other. Here, this Hyperplane comes from a field of a PolygonSet. On the constructor of this PolygonSet they pass a null value as a parameter instead of this “irregular” object. To do that, they add a condition based on a previously existing parameter called tolerance, if the distance of the two lines are lower than this tolerance, it returns a null value. (It is interesting that the fix of a null dereference is to return a null value elsewhere.)

Size of the Traces.

There are mainly two kind of traces encountered in our experiment. First, the one of size 3 and of kind L-A-D type. The 7 obvious cases (were the fix location is in the stack trace) contains 6 traces of this kind. In all those cases encountered in our experiment, the null literal has been assigned to a field. This means that a field has not been initialized (or initialized to null) during the instance creation, hence, this field is dereferenced latter. This kind of trace is pretty short so one may think that this case is obvious. However, all of those fields are initialized long ago the dereference. In other words, when the dereference occurs, the stack has changed and no longer contains the information of the initialization location.

Second, the one of size >= 4 where the null is stored in a variable then passed as argument in one or multiple methods. In all those case, the null value is either returned by a method at least once or passed as a parameter.

Execution Time.

To debug a null dereference error, CASPER requires to instrument the code and to run the instrumented version. In all the cases, the instrumentation time is less 30 seconds. At runtime, CASPER finds the causality trace of the failing input in less than 1 second (last column of Table 3). This seems reasonable from the developer viewpoint: she obtain the causality trace in less than 30 seconds. We have also measured the overhead with respect the original test case triggering the error: it’s a 7x increase. This clearly prevents the technique to be used in production. This is also a limitation for using our technique to debug null dereference errors in concurrent code because the overhead is likely to change the scheduling, mask the error or trigger new so-called “Heisenbugs”.

3.4 Causality Trace and Patch

Once the causality trace of a null dereference is known, the developer can fix the dereference. There are two basic dimensions for fixing null references based on the causality trace.

First, the developer has to decide whether there should be an object instead of null or whether the code should be able to gracefully handle the null value. In the first case, the developer fixes the bug by providing an appropriate object instead of the null value. In the second case, she adds a null check in the program to allow a null value.

3.5 Threats to Validity

The internal validity of our approach and implementation has been assessed through RQ1 and RQ2: the causality trace of the 14 analyzed errors is correct after manual analysis. The threat to the external validity lies in the dataset composition: does the dataset reflect the complexity of null dereference errors in the field? To adress this threat, we took a special care in designing the methodology to build the dataset. It ensures that the considered bugs apply to all dimensions for fixing null references based on the causality trace. It may be more appropriate to patch the code elsewhere, in the middle of the propagation between the first occurrence of the null and the dereference error.

Second, the developer has to decide whether there should be an object instead of null or whether the code should be able to gracefully handle the null value. In the first case, the developer fixes the bug by providing an appropriate object instead of the null value. In the second case, she adds a null check in the program to allow a null value.

4. RELATED WORK

There are several static techniques to find possible null dereference bugs. Bush et al. [2] sets up a specific static analysis for C code that detects some null pointer dereferen-
ences. Hovemeyer et al. [5] use byte-code analysis to provide possible locations where null dereference may happen. Sinha et al. [12] use source code path finding to find the locations where a bug may happen and apply the technique to localize Java null pointer exceptions symptom location. Compared to these works, our approach is dynamic and instead of predicting potential future bugs that may never happen in production, it gives the root cause of actual ones for which the developer has to find a fix.

Dobolyi [3] present a technique to tolerate null dereferences based on the insertion of well-typed default values to replace the null value which is going to be dereferenced. Kent [6] goes further and, proposes two other ways to tolerate a null dereference: skipping the failing instruction or returning a well-typed object to the caller of the method. In the opposite, our work is not on tolerating runtime null dereference but on giving advanced debugging information to the developer to find a patch.

The idea of identifying the root cause inca effect chaine has been explored by Zeller [14]. In this paper, he compares the memory graph from the execution of two versions of a same program (one faulty and one not faulty) to extract the instructions and the memory values which differ and presumably hadlead to the error. Our problem statement is different, Zeller finds the root cause of regression problems and takes as input two versions of the program, incl. a correct version. We tackle the root cause analysis of null dereferences that are not due to regression.

The Linux kernel employs special values, called poison pointers, to transform certain latent null errors into fail-fast errors [11]. They share with null ghosts the idea of injecting special values into the execution stream to aid debugging and, by failing fast, to reduce the width of the cause/effect chasm. However, poison values only provide fail-fast behavior and do not provide causality traces or even a causal relationship as we do.

Romano et al. [10] find possible locations of null dereferences by running a genetic algorithm to exercise the software. If one is found, a test case that demonstrate the null dereference is provided. Their technique does not ensure that the null dereferences found are realistic and represent production problem. On the contrary, we tackle null dereferences for which the programmer has to find a fix.

Bond et al. [1] presents an approach to dynamically provide informations about the root cause of a null dereference (i.e. the line of the first null assignment). The key difference is that we provide the complete causality trace of the error and not only the first element of the causality trace. As discussed in the evaluation (Section 3), the actual fix of many null dereference bugs is not necessary done at the root cause, but somehow up in the causality trace.

Like null ghosts, the null object pattern replaces nulls with objects whose interface matches that of the null-bound variable’s type [13]. Unlike null ghosts, the methods of an instance of the null object pattern are empty. Essentially, the null object pattern turns method NPEs into NOPs. They do not handle NPE due to field access and, what is more fundamental, they mask, rather than solve the problem. In contrast, null ghosts collect null dereference causality traces that allow a developer to localize and resolve an NPE.

5. CONCLUSION

In this paper, we have presented CASPER, a novel approach for debugging null dereference errors. The key idea of our technique is to inject special values, called “null ghosts” into the execution stream to aid debugging. The null ghosts collects the history of the null value propagation between its first detection and the problematic dereference, we call this history the ‘causality trace’. We define 11 code transformations responsible for 1) detecting null values at runtime, 2) collect causal relations and enrich the causality traces; 3) preserve the execution semantics when null ghosts flow during program execution. The evaluation of our technique on 14 real-world null dereference bugs from large-scale open-source projects shows that CASPER is able to provide a valuable causality trace. Our future work consists in further exploring the idea of “ghost” for debugging other kinds of runtime errors such as arithmetic overflows.

6. REFERENCES

