Support indices: Measuring the effect of input variables over their supports

Abstract : Two new sensitivity indices are presented which give an original solution to the question in sensitivity analysis of how to determine regions within the input space for which the model variation is high. The indices, as functions over the input domain, give insight into the local in uence of input variables over the whole domain when the other variables lie in the global domain. They can serve as an informative extension to a standard analysis and in addition are especially helpful in the specification of the input domain, a critical, but often vaguely handled issue in sensitivity analysis. In the usual framework of independent continuous input variables, we present theoretical results that show an asymptotic connection between the presented indices and Sobol' indices, valid for general probability distribution functions. Finally, we show how the indices can be successfully applied on analytical examples and on a real application.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger
Contributeur : Jana Fruth <>
Soumis le : mercredi 26 septembre 2018 - 09:46:25
Dernière modification le : mardi 23 octobre 2018 - 14:36:09
Document(s) archivé(s) le : jeudi 27 décembre 2018 - 18:47:06


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01113555, version 4



J Fruth, O Roustant, S Kuhnt. Support indices: Measuring the effect of input variables over their supports. 2018. 〈hal-01113555v4〉



Consultations de la notice


Téléchargements de fichiers