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An Integrated Control Strategy in Disturbance Decoupling of Max-Plus Linear Systems
with Applications to a High Throughput Screening System in Drug Discovery

Ying Shang, Laurent Hardouin, Mehdi Lhommeau, and Carlos Andrey Maia

Abstract— This paper presents an integrated control strategy
solving disturbance decoupling of max-plus linear systems. The
classical disturbance decoupling problem (DDP) in geometric
control theory means that the controlled outputs will not be
changed by any disturbances. The new proposed modified
disturbance decoupling problem (MDDP) ensures that the
controlled output signals will not delayed more than the existing
delays caused by the disturbances in order to achieve the just-
in-time optimal control. Furthermore, this paper presents the
integration of state-feedback and open-loop control strategies to
solve the MDDP, as well as the DDP. If these controls can only
solve the MDDP, but not the DDP, an evaluation principle is
established to compare the distance between the output signals
generated by the controllers and the output signals generated by
the disturbances. The main results of this paper are illustrated
by a high throughput screening system in drug discovery.

I. INTRODUCTION

Max-plus linear systems ([1], [10]) are used to model
for timed discrete-event systems, which represent the system
operations as discrete sequences of events in time. The main
advantage of max-plus linear systems is incorporating the
traditional linear system theory for the nonlinear concurrent
behaviors in discrete-event systems. Over the past three
decades, many fundamental problems for max-plus linear
systems have been studied by researchers, for example,
controllability ([18]), observability ([7]), and model reference
control ([15]). However, the geometric theory for max-
plus linear systems introduced in ([4]) has not been well
established as the traditional linear systems ([2], [21]). Only
a few existing research results on generalizing fundamental
concepts and problems in the geometric control are gener-
alized to max-plus linear systems, such as computation of
different controlled invariant sets ([9], [14], [16]) and the
disturbance decoupling problem ([12]).

This paper reports upon further investigations on the
disturbance decoupling problem (DDP) for max-plus linear
systems, which means that the output signals remain un-
changed in the presence of the disturbances. For max-plus
linear systems, the controller can only increase the inputs;
i.e., to delay the input dates of tokens in the corresponding
timed-event graph (TEG), which is a subclass of timed
Petri net models for discrete-event systems in which all
places have a single transition upstream and a single one
downstream. For a manufacturing system, solving the DDP
means that the outputs will be delayed more than the delays
caused by the disturbances. From a practical point of view,
it would be interesting to ask the question as whether there
exists a controller such that the system is not disturbed more
than the delays caused by the disturbances. Therefore, the
modified disturbance decoupling problem (MDDP) in ([8],
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[20]) is to find controls such that the output signals generated
by the control will not be greater than the output signals
caused by the disturbances. This paper presents an integration
of the state-feedback controls and the open-loop controls
such that the MDDP can be solved. If these controls can
only solve the MDDP, but not the DDP, then an evaluation
principle is established to compare the distance, which is
interpreted as the event delays between the output signals
generated by the controllers and the output signals generated
by the disturbances. The main results are illustrated by a high
throughput screening system in drug discovery.

II. MATHEMATICAL PRELIMINARIES

Definition 1: A semiring is a set S, equipped with two
operations ⊕ and ⊗, such that (S,⊕) is a commutative
monoid (the zero element will be denoted ε), (S,⊗) is a
monoid (the unit element will be denoted e), operation ⊗ is
right and left distributive over ⊕, and ε is absorbing for the
product (i.e. ε⊗ a = a⊗ ε = ε,∀a).

A semiring S is idempotent if a ⊕ a = a for all a ∈ S .
In an idempotent semiring S, operation ⊕ induces a partial
order relation a ≽ b ⇐⇒ a = a ⊕ b, ∀a, b ∈ S . Then,
a ∨ b = a⊕ b. An idempotent semiring S is complete if the
sum of infinite numbers of terms is always defined, and if
multiplication distributes over infinite sums too. In particular,
the sum of all the elements of the idempotent semiring is
denoted ⊤ (for “top”). In this paper, we denote Zmax =
(Z ∪ {−∞,+∞},max,−∞,+, 0), where ε = −∞ is the
identity element to max and e = 0 is the identity element
to +. the integer max-plus semiring. A non empty subset B
of a semiring S is a subsemiring of S if for all a, b ∈ B we
have a⊕ b ∈ B and a⊗ b ∈ B.

Definition 2: A mapping f : S → S, where S is a
complete idempotent semiring, is residuated if and only if
f(ε) = ε and f is lower-semicontinuous, that is,

f

(⊕
i∈I

ai

)
=
⊕
i∈I

f (ai) ,

for any (finite or infinite) set I . The mapping f is said to be
residuated and f ♯ is called its residual. When f is residuated,
f ♯ is the unique order preserving mapping such that

f ◦ f ♯ ≼ Id f ♯ ◦ f ≽ Id, (1)

where Id is the identity mapping from S to S.
It is straightforward that : La : S → S, x 7→ ax and

Ra : S → S, x 7→ xa are lower semi-continuous. Therefore
these mappings are both residuated i.e., La(x) ≼ b (resp.
Ra(x) ≼ b) admits a greatest solution, then the following
notations are considered :

L♯
a(b) = a ◦\b =

⊕
{x|ax ≼ b} and

R♯
a(b) = b◦/a =

⊕
{x|xa ≼ b} , ∀a, b ∈ S.

All these results admit a natural extension to the matrix case,
where the sum and product of matrices are defined with the
same rules than in classical theory (see [1]). Over a complete
max-plus algebra, the implicit equation x = ax ⊕ b admits
x = a∗b as the least solution, where a∗ = ⊕i∈Nai (Kleene
star operator) with a0 = e.



III. DISTURBANCE DECOUPLING IN MAX-PLUS LINEAR
SYSTEMS

A max-plus linear system can be described the following

x(k) = Ax(k − 1) ⊕Bu(k)⊕ Sq(k),

y(k) = Cx(k), (2)

where the state is x(k) ∈ X ∼= Zn
max, the input is u(k) ∈ U ∼=

Zp
max, the disturbance is q(k) ∈ Q ∼= Zr

max, and the output is
y(k) ∈ Y ∼= Zq

max, for k ∈ Z. This kind of system makes it
possible to describe the behaviors of TEGs, by associating
to each transition xi a firing date sequence xi(k) ∈ Zmax,
and predict the system evolution thanks to Eq. (2).

Definition 3: System (2) is called disturbance decoupled
by a state-feedback controller u(k) = Fx(k − 1) ⊕ v(k))(or
an open-loop controller u(k) = Pv(k) if and only if any
disturbance signal will not affect the system output y(k) for
all k ∈ Z, that is, the output signals y(k) remain the same as
the output signals of the undisturbed system, for all k ∈ Z.

In manufacturing systems, for example, when the system
breaks down for one hour, the control will delay the system
operation more than one hour in order to achieve the DDP.
In practical scenarios, production lines need to resume as
soon as the system breakdown is fixed. Hence, a modified
DDP in the next subsection is introduced in order to find the
optimal just-in-time controls such that the system will start
running as soon as possible once the system breakdown is
recovered.

Definition 4: The max-plus linear system described in Eq.
(2) is called modified disturbance decoupled by a state
feedback control u(k) = Fx(k − 1) ⊕ v(k) (or an open-loop
control u(k) = Pv(k)) if and only if the system output signals
generated by the controls will not be greater than the output
signals generated by only the disturbances.

The MDDP means that, for manufacturing systems, the
controls will delay the starting dates of the process such
that the finishing date of the output parts would be sooner
than the finishing dates after the system breakdown. The next
section will present the event-domain approach to solve both
the DDP and the MDDP.

IV. SOLVING DDP AND MDDP USING EVENT-DOMAIN
APPROACH

A. Event-Domain Representation
For a state equation in Eq. (2), each increasing sequence

{x(k)}, it is possible to define the transformation X(γ) =⊕
k∈Z

x(k)γk where γ is a backward shift operator in event

domain (i.e., Y (γ) = γX(γ) ⇐⇒ {y(k)} = {x(k − 1)},
(see [1], p. 228). This transformation is analogous to the z-
transform used in discrete-time classical control theory and
the formal series X(γ) is a synthetic representation of the
trajectory x(k). The set of the formal power series in γ is
denoted by Zmax[[γ]] and constitutes an idempotent semiring.
Therefore, the state equation in Eq. (2) becomes a polynomial
equation or a event-domain representation,

X(γ) = AX(γ)⊕BU(γ)⊕ SQ(γ), where A = γA,

Y (γ) = CX(γ), (3)

where the state X(γ) ∈
(
Zmax[[γ]]

)n
, the output Y (γ) ∈(

Zmax[[γ]]
)q

, the input U(γ) ∈
(
Zmax[[γ]]

)p
, and the disturbance

Q(γ) ∈
(
Zmax[[γ]]

)r
, and matrices A , γA ∈

(
Zmax[[γ]]

)n×n
,

B ∈
(
Zmax[[γ]]

)n×p
, C ∈

(
Zmax[[γ]]

)q×n
and S ∈

(
Zmax[[γ]]

)n×r

represent the link between transitions. According to the state
equation (3), the evolution of the system is

X(γ) = A
∗
BU(γ)⊕A

∗
SQ(γ)

Y (γ) = CA
∗
BU(γ)⊕ CA

∗
SQ(γ). (4)

The trajectories U(γ) and Y (γ) can be related ([1], p.
243) by the equation Y (γ) = H(γ)U(γ), where H(γ) =

CA
∗
B ∈

(
Zmax[[γ]]

)q×p is called the transfer matrix of
the TEG. Entries of matrix H are periodic series ([1], p.
260) in the idempotent semiring, usually represented by
p(γ)⊕ q(γ)(τγν)∗, where p(γ) is a polynomial representing
the transient behavior, q(γ) is a polynomial corresponding
to a pattern which is repeated periodically, the period being
given by the monomial (τγν). The disturbances are uncon-
trollable inputs acting on the system internal’s state, which
model events that block the system, e.g. machine breakdown,
uncontrollable component supply through matrix S, and
CA

∗
S ∈

(
Zmax[[γ]]

)q×r is the transfer function between the
disturbances and outputs.

B. Formulation of DDP and MDDP in Event-Domain
The objective of the MDDP is to find the greatest open-

loop or state-feedback control U(γ) such that the output
trajectories will not be disturbed more than the disturbance
signals have acted on the system. For example, if a manufac-
turing system encounters a service breakdown, the control
U(γ) will delay the input of parts as much as possible to
avoid congestion inside of the system, while the system
outputs will remain the same as before. Formally, according
to Definition 4, this means to find the greatest control, U(γ),
such that the following equation holds,

CA
∗
BU(γ)⊕ CA

∗
SQ(γ) = CA

∗
SQ(γ) (5)

⇐⇒ CA
∗
BU(γ) ≼ CA

∗
SQ(γ). (6)

According to Definition 3, solving the DDP in event-domain
means that the control U(γ) has to achieve

CA
∗
BU(γ)⊕ CA

∗
SQ(γ) = CA

∗
BU(γ) (7)

⇐⇒ CA
∗
SQ(γ) ≼ CA

∗
BU(γ). (8)

In this paper, the disturbance is assumed to be measurable
and the control architecture is given in Fig. 1. The goal is to
find U(γ) = FX(γ)⊕ V (γ) such that the MDDP is solved,
where F = γF if u(k) = Fx(k−1)⊕v(k) and such an F can
be generalized to a general feedback matrix F (γ) consisting
γd with d ≥ 1.

Mathematically, the state and output signals in the event
γ-domain are represented as follows:

X(γ) = (A⊕BF )∗BV (γ)⊕ (A⊕BF )∗SQ(γ)

= (A⊕BF )∗ [B | S]
(
V (γ)
Q(γ)

)
= (A⊕BF )∗B̃

(
V (γ)
Q(γ)

)
, where B̃ = [B | S] ,

Y (γ) = CX(γ) = C(A⊕BF )∗B̃

(
V (γ)
Q(γ)

)
. (9)

Fig. 1: The controller structure for DDP and MDDP.



Based on Definition 3, solving the DDP in event-domain
means that the state feedback controller has to achieve the
following equality:

C(A⊕BF )∗B̃

(
V (γ)
Q(γ)

)
= C(A⊕BF )∗BV (γ). (10)

Based on Definition 4, solving the MDDP in event-domain
means that the state feedback controller has to achieve
another equality:

C(A⊕BF )∗B̃

(
V (γ)
Q(γ)

)
= C(A⊕BF )∗SQ(γ). (11)

Equations (10) and (11) each have three variables, the state
feedback structure F , the open-loop controller V (γ), as well
as the disturbance input Q(γ). If we need the pair of F and
V (γ) to solve the MDDP and the DDP for any arbitrary
disturbances, then we can proceed by fixing the open-loop
control first and then find state feedback control, or vice
versa.

C. Finding the Integrated Control Strategy by Residuation
This subsection will find the pre-filter matrix P first, and

then find the state feedback matrix F by residuation. By
considering F = ε and by the residuation theory(see [20]),
we showed that the MDDP is solved if and only if the
equation CA

∗
BU(γ) ⊕ CA

∗
SQ(γ) = CA

∗
SQ(γ) holds and

the greatest solution solving the equation above is

Popt ,
(
CA

∗
B
)

◦\
(
CA

∗
S
)

=
⊕

P∈Zmax[[γ]]p×r

{CA
∗
BP ≼ CA

∗
S}, (12)

i.e. such a Popt solves the MDDP for any disturbance Q(γ).
Once the open-loop control V (γ) is fixed, then we can

obtain the state feedback F in equations (10) and (11) in
order to solve the MDDP and the DDP. The goal is to find a
state feedback control U(γ) = FX(γ)⊕ V (γ) , such that the
output signals are the same as the output signals controlled
by any open-loop controller V (γ). In summary, that is, the
following equality holds

C(A⊕B F )∗B̃

(
V (γ)
Q(γ)

)
= CA

∗
B̃

(
V (γ)
Q(γ)

)
. (13)

Proposition 1: ([11], [13]) The greatest controller F opt is
given by

F opt =
(
CA

∗
B
)

◦\
(
CA

∗
B̃
)

◦/
(
A

∗
B̃
)
, (14)

such that the output trajectories generated by the state
feedback controller are the same as the output trajecto-
ries generated by the open-loop controller, i.e. the equality
C
(
A⊕B F opt

)∗
B̃ = CA

∗
B̃ holds.

Proposition 2: The integrated control law U(γ) =
F optX(γ) ⊕ PoptQ(γ) solves the MDDP of the max-plus
linear system in Eq. (3), where the open-loop control is
V (γ) = PoptQ(γ) =

(
CA

∗
B
)

◦\
(
CA

∗
S
)
Q(γ) and the feed-

back control matrix is F opt =
(
CA

∗
B
)

◦\
(
CA

∗
B̃
)

◦/
(
A

∗
B̃
)

.
Proof: If we apply the integrated control law U(γ) =

F optX(γ) ⊕ PoptQ(γ) to the max-plus linear system in Eq.
(3), the following inequalities hold:

C(A⊕B F opt)
∗B̃

(
V (γ)
Q(γ)

)
= CA

∗
BV (γ)⊕ CA

∗
SQ(γ)

= CA
∗
BPoptQ(γ)⊕ CA

∗
SQ(γ) ≼ CA

∗
SQ(γ)

≼ C(A⊕B F opt)
∗SQ(γ). (15)

Clearly, the last term is less than the first term in the
equation above. Hence, we can achieve the following equality

C(A⊕B F opt)
∗BV (γ)⊕ C(A⊕B F opt)

∗SQ(γ) =

C(A⊕B F opt)
∗SQ(γ).

Therefore, such an integrated control U(γ) solves the
MDDP. �.

Theorem 1 ([20]): The optimal pre-filter V (γ) =
PoptQ(γ), which solves the MDDP, also solves the DDP for
the max-plus linear systems described in Eq. (3) if and only
if Im CA

∗
S ⊂ Im CA

∗
B.

Proposition 3: The integrated control law U(γ) =
F optX(γ) ⊕ PoptQ(γ) solves the DDP of the max-plus
linear system in Eq. (3) if and only if Im CA

∗
S ⊂

Im CA
∗
B, where the open-loop control is V (γ) = PoptQ(γ) =(

CA
∗
B
)

◦\
(
CA

∗
S
)
Q(γ) and the feedback control matrix is

F opt =
(
CA

∗
B
)

◦\
(
CA

∗
B̃
)

◦/
(
A

∗
B̃
)

.
Proof: ”=⇒ Sufficiency:” Based on Theorem 1, if

Im CA
∗
S ⊂ Im CA

∗
B, then CA

∗
BPoptQ(γ) = CA

∗
SQ(γ)

for any Q(γ). In other words, Eq. (13) becomes

C(A⊕B F opt)
∗B̃

(
V (γ)
Q(γ)

)
= CA

∗
BV (γ)⊕ CA

∗
SQ(γ),

= CA
∗
BPoptQ(γ)⊕ CA

∗
SQ(γ) = CA

∗
BPoptQ(γ)

= C(A⊕B F opt)
∗BPoptQ(γ) = C(A⊕B F opt)

∗BV (γ). (16)

Hence, we can achieve the following equality

C(A⊕B F opt)
∗BV (γ)⊕ C(A⊕B F opt)

∗SQ(γ)

= C(A⊕B F opt)
∗BV (γ).

Therefore, such an integrated control U(γ) solves the DDP.
”=⇒ Necessity:” If the integrated control law U(γ) =

F optX(γ) ⊕ PoptQ(γ) solves the DDP, then the following
equality holds

C(A⊕B F opt)
∗BV (γ)⊕ C(A⊕B F opt)

∗SQ(γ)

= C(A⊕B F opt)
∗BV (γ),

for an arbitrary disturbance Q(γ) and an arbitrary control
V (γ). Because the feedback control F opt preserves the open-
loop behaviors, the equality above implies

CA
∗
BV (γ)⊕ CA

∗
SQ(γ) = CA

∗
BV (γ),

for V (γ) = PoptQ(γ) to solve the DDP, i.e.

CA
∗
BPoptQ(γ)⊕ CA

∗
SQ(γ) = CA

∗
BPoptQ(γ).

Based on Theorem 1, we have Im CA
∗
S ⊂ Im CA

∗
B. �

V. EVALUATING THE DISTANCE BETWEEN SOLUTIONS
TO DDP AND MDDP IN THE EVENT-DOMAIN

If the condition Im CA
∗
S ⊂ Im CA

∗
B in Theorem 1

is not satisfied, we can study the differences between the
output trajectories produced by controls solving the MDDP
and the output trajectories produced by the disturbances. The
differences will give us an evaluation of how much more
delays or tokens needed for the controller to the MDDP in
order to solve the DDP.

Definition 5: ([17]) Let X(γ) and Y (γ) be two vector γ-
series with dimensions n and q associate to dater function
k 7→ x(k) and k 7→ y(k). The residuation

X(γ)◦/Y (γ) =
⊕

U(γ)∈Zmax[[γ]]

{U(γ)|U(γ)Y (γ) ≼ X(γ)} ,



is named as the correlation matrix of X(γ) over Y (γ). if
X(γ) = Y (γ), then the residuation X(γ)◦/Y (γ) is called the
autocorrelation matrix of X(γ).

The residuation X(γ)◦/Y (γ) allows us to evaluate the
distances between trajectories X(γ) and Y (γ) in the event-
domain, or in the time-domain if we consider the second
order theory in ([17]).

Definition 6: ([19]) Let x(γ) = ⊕k∈Zx(k)γ
k and y(γ) =

⊕k∈Zy(k)γ
k be two scalar γ-series associate to dater function

k 7→ x(k) and k 7→ y(k). We denote Cx(t) and Cy(t) as the
counter function associated to x(γ) and y(γ), i.e. x(γ) =
⊕t∈Ztγ

Cx(t), and y(γ) = ⊕t∈Ztγ
Cy(t). Distance in the event-

domain is defined by

∆XY = max{|Cx(t)− Cy(t)|s.t. t ∈ Z} (17)
= C

(x∧y)◦/(x⊕y)
(0). (18)

The last term C
(x∧y)◦/(x⊕y)

(0) is the tightest constant upper
bound for the tokens in the timed-event graphs.

Proposition 4: Let x1(γ) = s1(γ)u(γ) and x2(γ) =
s2(γ)u(γ) two scalar γ-series describing the behaviors of
two states for max-plus linear systems. The distance between
these two trajectories in the event-domain is bounded by the
distance between the two transfer function series, that is,

∆x1x2 = C
(x1∧x2)◦/(x1⊕x2)

(0) (19)

≤ ∆s1s2 = C
(s1∧s2)◦/(s1⊕s2)

(0), (20)

for any input u(γ).
Proof: Based on the residuation theory in [1] as well as

Appendix, we have the following derivations:

(s1u ∧ s2u)◦/(s1u⊕ s2u)

= [(s1u ∧ s2u)◦/s1u] ∧ [(s1u ∧ s2u)◦/s2u]

(due to (f.18))

= [(s1u◦/s1u) ∧ (s2u◦/s1u)] ∧ [(s1u◦/s2u) ∧ (s2u◦/s2u)] ,

(due to (f.17))

= [((s1u◦/u)◦/s1) ∧
((s2u◦/u)◦/s1)] ∧ [((s1u◦/u)◦/s2) ∧ ((s2u◦/u)◦/s2)]

(due to (f.19))

≽ [(s1◦/s1) ∧ (s2◦/s1)] ∧ [(s1◦/s2) ∧ (s2◦/s2)]

(due to (f.15))

= [(s1 ∧ s2)◦/s1] ∧ [(s1 ∧ s2)◦/s2]

(due to (f.17))

= (s1 ∧ s2)◦/(s1 ⊕ s2), (due to (f.18)).

Hence, ∀u(γ), the following inequality holds:

(s1u ∧ s2u)◦/(s1u⊕ s2u) ≽ (s1 ∧ s2)◦/(s1 ⊕ s2),

which implies directly:

C
(x1∧x2)◦/(x1⊕x2)

(0) ≤ C
(s1∧s2)◦/(s1⊕s2)

(0),

for any input u(γ). �
Theorem 2: ([17] Increasing Correlation Principle) Let

X1(γ) = S(γ)U(γ) and X2(γ) = S(γ)V (γ) be the output
vectors corresponding to input vectors U(γ) and V (γ), then

X1◦/X2 ≽ (V ◦\U)(S◦/S), (21)
X1 ◦\X2 ≽ (U ◦\V )Tr∧(S◦/S), (22)

where for any matrix A, the dual trace Tr∧(A) is defined as
Tr∧(A) =

∧
i(A)ii.

We can use the Increasing Correlation Principle to gener-
ate the preceding results to matrix forms of transfer series.

Theorem 3: Let X1(γ) = S1(γ)U(γ) and X2(γ) =
S2(γ)U(γ) be the output vectors corresponding to the same
input vector U(γ), then

X1◦/X2 ≽ S1◦/S2, (23)
X1 ◦\X2 ≽ Tr∧(S2◦/S1), (24)

where Tr∧(S2◦/S1) =
∧

i(S2◦/S1)ii.
Proof: Based on the residuation theory in ([1]), we have

the following derivations:

X1◦/X2 = (S1U)◦/(S2U)

= ((S1U)◦/U)◦/S2, due to (f.19)

≽ S1◦/S2, due to (f.15)

and
X1 ◦\X2 = (S1U) ◦\(S2U)

= U ◦\(S1 ◦\(S2U)), due to (f.11)

≽ U ◦\((S1 ◦\S2)U), due to (f.13)

≽ U ◦\
[
(Tr∧(S2◦/S1))U

]
,

due to Tr∧(S2◦/S1) = S1 ◦\S2,

≽ (U ◦\U)Tr∧(S2◦/S1),

due to Tr∧(S2◦/S1) is scalar,

≽ Tr∧(S2◦/S1)

due to U ◦\U ≽ Id. �
In the remaining section, we will apply the preceding

results in order to compare the difference between the output
trajectories induced by controls and by disturbances, i.e, the
distance between Y1 = CA

∗
BPoptQ(γ), and Y2 = CA

∗
SQ(γ).

The two output trajectories are obviously ordered because
Popt =

(
CA

∗
B
)

◦\
(
CA

∗
S
)

, i.e. Y1 ≼ Y2, which solves for
the MDDP. On the other hand, if Y1 = Y2, then the DDP is
solved. The question is that, if Y1 ̸= Y2, then how much is
the distance between the two output trajectories.

Proposition 5: Let Y1(γ) = CA
∗
BPoptQ(γ) and Y2(γ) =

CA
∗
SQ(γ) two γ-series describing the output behaviors

of the max-plus linear systems in Eq. (3), where Popt =(
CA

∗
B
)

◦\
(
CA

∗
S
)

. The distance between these two output
trajectories in the event domain is bounded by the distance
between the two transfer function series, that is,

∆Y1Y2 = C
Y1◦/Y2

(0) ≤ C
(CA

∗
BPopt)◦/(CA

∗
S)
(0), (25)

for any distance input Q(γ).
Proof: Using Eq. (23) in Theorem 3, we can obtain that

Y1◦/Y2 = (CA
∗
BPoptQ)◦/(CA

∗
SQ) ≽ (CA

∗
BPopt)◦/(CA

∗
S).

Therefore, the distance between these two output trajectories
in the event-domain satisfies the following equality

∆Y1Y2 = C
Y1◦/Y2

(0) ≤ C
(CA

∗
BPopt)◦/(CA

∗
S)
(0). �

VI. APPLICATION TO A HIGH THROUGHPUT SCREENING
SYSTEM IN DRUG DISCOVERY

High throughput screening (HTS) is a standard technology
in drug discovery. In HTS systems, optimal scheduling is
required to finish the screening in the shortest time, as well
as to preserve the consistent time spending on each activity.
This section is using a HTS system to illustrate the main
results in this paper. This HTS system, adapted from [3],
has three nested activities running on three different single-
capacity resources: pipettor (activity 1), reader (activity 2),
and incubator (activity 3). The Gantt chart for this HTS
system is shown in Fig. 2. One cycle of events is shown as
follows: first, the pipettor drops the DNA/RNA compounds
into the microplate, then the microplate is transferred to the
reader to be scanned, and then the microplate is transferred
to the incubator to develop. After the first cycle of events, the



second cycle of event will start. Moreover, the three activities
are overlapping during the transition time, for instance, the
reader starts scanning 3 time units before the pipettor finishes
its task, and finishes scanning 7 units after incubator starts
the task, as shown in Fig. 2.

Fig. 2: The Gantt chart of one cycle of activities.

Fig. 3: The TEG model for the HTS system.

If we are interested in the start and release event time
of each activity, we can model the HTS system as a TEG
model, shown in Fig. 3, in which x1 and x2 denote the start
and release time of the activity 1 on the pipettor, x3 and
x4 denote the start and release time of the activity 2 on the
reader, and x5 and x6 denote the start and release time of
the activity 3 on the incubator. The input u is the starting
time of the pipettor which users can decide when to load the
chemical compounds. The disturbance q is the starting time
of the incubator, such as transition time delay from the reader
to the incubator due to system malfunction. The output y is
the release time of the incubator. The cycles represent places
and the bars represent the transitions xi. The tokens in the
places represent that the transitions are ready to be fired,
i.e. the activity is ready to start. For the TEG model of a
HTS system shown in Fig. 3, the system over the max-plus
algebra Zmax[[γ]] is described as the following:

X(γ) = AX(γ)⊕BU(γ)⊕ SQ(γ)

Y (γ) = CX(γ), where

A =


ε γ ε ε ε γ
12 ε 3 ε ε ε
9 ε ε γ ε ε
ε ε 14 ε 7 ε
ε ε 7 ε ε γ
ε ε ε ε 62 ε

 ,

BT = [ e ε ε ε ε ε ] ,

ST = [ ε ε ε ε e ε ] , and

C = [ ε ε ε ε ε e ] .

The example has been computed by using toolbox
MinMaxGD, a C++ library allowing to handle periodic series
as introduced in ([5]), and it can be noted that this library
is also interfaced with Scilab and MATLAB. We obtain The

transfer function between the output Y (γ) and disturbance
U(γ) and the input Q(γ), respectively, as

CA
∗
B = 78(78γ)∗ = 78⊕ 156γ ⊕ 234γ2 · · · ,

CA
∗
S = 62(78γ)∗ = 62⊕ 140γ ⊕ 218γ2 · · · ,

in which each component of these matrices is a periodic
series. Essentially, the γ-periodic series represent the output
sequence when an infinity of inputs is put in the system at
time 0 (impulse input). For instance, CA

∗
B represents the

impulse response of the incubator as y(0) = 78, y(1) = 156,
y(2) = 234, etc.

The non-causal filter Popt is
(
CA

∗
B
)

◦\
(
CA

∗
S
)

=

−16(78γ)∗. In this example, we have Im CA
∗
S0 ⊂ Im CA

∗
B0,

hence, this non-causal prefilter solves the MDDP and the
DDP at the same time due to CA

∗
BPopt = CA

∗
S. This

prefilter Popt is not causal because there are negative co-
efficients in the matrix. The canonical injection from the
causal elements of Zmax[[γ]] (denoted Zmax[[γ]]

+) in Zmax[[γ]]
is also residuated (see [6] for details). Its residual is given
by Pr

(⊕
k∈Z s(k)γ

k
)
=
⊕

k∈Z s+(k)γ
k where

s+(k) =
{

s(k) if (k, s(k)) ≥ (0, 0),
ε otherwise.

If we take the canonical injection from the causal elements
of Zmax[[γ]], then the greatest causal prefilter is

Popt+ = Pr(Popt) = 62γ(78γ)∗.

The causal filter Popt+ for the MDDP does not solve DDP
because

CA
∗
BPopt+ = 140γ(78γ)∗ ≺ CA

∗
S.

Using Proposition 5, we can evaluate the difference between
the output trajectories produced by the pre-filter Popt+ and
by the disturbances only. The distance is

(CA
∗
BPopt+)◦/(CA

∗
S) = 78γ(78γ)∗

∆Y1Y2 ≤ C
(CA

∗
BPopt+)◦/(CA

∗
S)
(0) = 1.

This distance indicates that there is one event delay between
output trajectories produced by the pre-filter Popt+ and by
the disturbances only.

According to Proposition 1 and Eq. (14), the greatest
feedback controller preserving the open-loop behaviors is
obtained as follows:

F opt =
(
CA

∗
B
)

◦\
(
CA

∗
B
)

◦/
(
A

∗
B
)

= [(78γ)∗,−12(78γ)∗,−9(78γ)∗,

−23(78γ)∗,−16(78γ)∗,−78(78γ)∗].

The greatest causal feedback is

F opt+ = Pr(F opt) = [(78γ)∗, 66γ(78γ)∗, 69γ(78γ)∗,

55γ(78γ)∗, 62γ(78γ)∗, γ(78γ)∗].

The TEG model of the HTS system with open-loop and
state feedback controllers are shown in Fig. 4.

In Fig. 4, the causal pre-filter Popt+ = 62γ(78γ)∗ is
represented by a cyclic transition due to (78γ)∗, where γ
indicates one token inside of the place and 78 units are
the holding time of the token, and 62γ is represented by
an additional transition with one token and 62 units holding
time. Same analogy works for the feedback F opt+ : X → U .

When we apply the integrated control law U(γ) =
F opt+X(γ) ⊕ PoptQ(γ) to the system, we can solve the
MDDP and the DDP because
C(A⊕B F opt+)

∗BPopt = C(A⊕B F opt+)
∗S = CA

∗
S,



Fig. 4: The TEG model of the HTS system with controllers.

i,e, equations (10) and (11) are both satisfied. On the
other hand, when When we apply the integrated control law
U(γ) = F opt+X(γ) ⊕ Popt+Q(γ) to the system instead, we
can only solve the MDDP, but not for the DDP because

C(A⊕B F opt+)
∗BPopt+ = 140γ(78γ)∗ ≺ C(A⊕B F opt+)

∗S,

i.e. only Eq. (11) is satisfied, but Eq. (10) is not. In this
case, we can evaluate the distance between the two output
trajectories of the state-feedback controlled system and of
the uncontrolled system. Using Proposition 5, we obtain that

(C(A⊕B F opt+)
∗BPopt+)◦/(C(A⊕B F opt+)

∗S) = 78γ(78γ)∗

∆Y1Y2 ≤ C
(C(A⊕B Fopt+)∗BPopt+)◦/(C(A⊕B Fopt+)∗S)

(0) = 1.

VII. CONCLUSIONS

This paper presents the integration of the state-feedback
controls and the open-loop controls to solve the MDDP, as
well as the DDP. If these controls can only solve the MDDP,
not the DDP, an evaluation principle is established such that
the performance of the controls solving the MDDP can be
evaluated. Future research can be extended to other geomet-
ric control problems, such as block decoupling problem and
non-interacting control problem in max-plus linear systems.
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VIII. APPENDIX

A. Formulas of Star Operations

a∗(ba∗)∗ = (a⊕ b)∗ = (a∗b)∗a∗ (f.1)
(a∗)∗ = a∗ (f.2)

(ab)∗a = a(ba)∗ (f.3)
a∗a∗ = a∗ (f.4)
aa∗ = a∗a (f.5)

B. Formulas of Left Residuations

a(a ◦\x) ≼ x (f.6)
a ◦\(ax) ≽ x (f.7)

a(a ◦\(ax)) = ax (f.8)
a ◦\(x ∧ y) = a ◦\x ∧ a ◦\y (f.9)
(a⊕ b) ◦\x = a ◦\x ∧ b ◦\x (f.10)

(ab) ◦\x = b ◦\(a ◦\x) (f.11)
b(a ◦\x) ≼ (a◦/b) ◦\x (f.12)
(a ◦\x)b ≼ a ◦\(xb) (f.13)

C. Formulas of Right Residuations

(x◦/a)a ≼ x (f.14)
(xa)◦/a ≽ x (f.15)

((xa)◦/a)a = xa (f.16)
(x ∧ y)◦/a = x◦/a ∧ y◦/a (f.17)
x◦/(a⊕ b) = x◦/a ∧ x◦/b (f.18)

x◦/(ba) = (x◦/a)◦/b (f.19)
(x◦/a)b ≼ x ◦\(b◦/a) (f.20)
b(x◦/a) ≼ (bx)◦/a (f.21)


