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Robust Controller Design for Timed Event
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Mehdi Lhommeau, Laurent Hardouin, Bertrand Cottenceau,
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62, avenue Notre Dame du Lac, 49000 Angers (France)

Abstract

This paper deals with feedback controller synthesis for timed event graphs in dioids,
where the number of initial tokens and time delays are only known to belong to
intervals. We discuss here the existence and the computation of a robust controller
set for uncertain systems that can be described by parametric models, the unknown
parameters of which are assumed to vary between known bounds. Each controller
is computed in order to guarantee that the closed-loop system behavior is greater
than the lower bound of a reference model set and is lower than the upper bound
of this set. The synthesis presented here is mainly based on dioid, interval analysis
and residuation theory.
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analysis ; Residuation theory ; Feedback synthesis

1 Introduction

Discrete Event Systems (DES) appear in many applications in manufacturing
systems [1], computer and communication systems [5] and are often described
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by the Petri Net formalism. Timed-Event Graphs (TEG) are Timed Petri Nets
in which all places have single upstream and single downstream transitions and
appropriately model DES characterized by delay and synchronization phenom-
ena. TEG can be described by linear equations in the dioid algebra [2,7] and
this fact has permitted many important achievements on the control of DES
modelled by TEG [7,8,17,15]. TEG control problems are usually stated in a
Just-in-time context. The design goal is to achieve some performance while
minimizing internal stocks. In [2,17] an optimal open-loop control law is given.
In [8] linear closed-loop controllers synthesis are given in a model matching
objective, i.e., a given reference model describes the desired performance lim-
its, then the goal is to compute a feedback controller in order to obtain a
closed-loop behavior as close as possible to the reference model and to delay
as much as possible the inputs in the system.
This paper aims at designing robust feedback controller when the system in-
cludes some parametric uncertainties which can be described by intervals.
Intervals allow to describe TEG with number of tokens and/or time delays,
which are assumed to vary between known bounds. Assuming that there ex-
ists a lower and an upper bound to a specification set, the synthesis yields a
controller set which guarantees that the closed loop system behavior is both
greater than the lower bound of the specification set and lower than the up-
per bound of this same set 1 . Controller synthesis is obtained by considering
residuation theory which allows the inversion of mapping defined over ordered
sets, and interval analysis which is known to be efficient to characterize set of
robust controllers in a guaranteed way [12].
The next Section introduces algebraic tools on dioid and residuation theory.
Section 3 and 4 give the main results, dioid of interval I(D) is constructed and
mapping inversion over I(D) is addressed. The problem of robust controller
synthesis when the system includes interval parametric uncertainties is stated
and solved in Sections 5 and 6. Section 7 presents an illustrative example.

2 Dioids and Residuation

A dioid D is a set endowed with two internal operations denoted ⊕ (addition)
and ⊗ (multiplication), both associative and both having neutral elements
denoted ε and e respectively, such that ⊕ is also commutative and idempotent
(i.e. a ⊕ a = a). The ⊗ operation is distributive with respect to ⊕, and ε is
absorbing for the product (i.e. ε⊗a = a⊗ε = ε, ∀a). When ⊗ is commutative,
the dioid is said to be commutative. The symbol ⊗ is often omitted.
Dioids can be endowed with a natural order : a º b iff a = a ⊕ b. Then

1 From TEG point of view it is a set of robust controller which ensures that the
controlled system is both slower than a reference model (described as a TEG) and
faster than another one.
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they become sup-semilattices and a⊕ b is the least upper bound of a and b. A
dioid is complete if sums of infinite number of terms are always defined, and if
multiplication distributes over infinite sums too. In particular, the sum of all
elements of the dioid is defined and denoted ⊤ (for ’top’). A complete dioid
(sup-semilattice) becomes a lattice by constructing the greatest lower bound
of a and b, denoted a ∧ b, as the least upper bound of the (nonempty) subset
of all elements which are less than a and b (see [2, §4]).

Example 1 (Zmax dioid) The set Z = Z ∪ {−∞, +∞} endowed with the
max operator as sum and the classical sum + as product is a complete dioid,
usually denoted by Zmax, of which ε = −∞ and e = 0.

Definition 2 (Subdioid) A subset C of a dioid is called a subdioid of D if

• ε ∈ C and e ∈ C ;
• C is closed for ⊕ and ⊗.

The second statement means, ∀a, b ∈ C, a ⊕ b ∈ C and a ⊗ b ∈ C.

Remark 3 Obviously a subdioid of a complete dioid may be not complete.

Theorem 4 Over a complete dioid D, the implicit equation x = ax⊕b admits
x = a∗b as least solution, where a∗ =

⊕

i∈N ai (Kleene star operator) with
a0 = e.

The Kleene star operator, over a complete dioid D, will be sometimes repre-
sented by the following mapping K : D → D, x 7→ x∗.

Theorem 5 ([8]) Let D be a complete dioid and a, b ∈ D.

a(ba)∗ = (ab)∗a, (1)

(a∗)∗ = a∗ (2)

2.1 Residuation theory

The residuation theory provides, under some assumptions, optimal solutions
to inequalities such as f(x) ¹ b where f is an isotone mapping (f s.t. a ¹
b ⇒ f(a) ¹ f(b)) defined over ordered sets. Some theoretical results are
summarized below. Basic references are [4] and [2, §4.4.2].

Definition 6 (Residual and residuated mapping) An isotone mapping f :
D → E, where D and E are ordered sets, is a residuated mapping if for all
y ∈ E, the least upper bound of the subset {x|f(x) ¹ y} exists and belongs to
this subset. It is then denoted f ♯(y). Mapping f ♯ is called the residual of f .
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When f is residuated, f ♯ is the unique isotone mapping such that

f ◦ f ♯ ¹ IdE and f ♯ ◦ f º IdD, (3)

where Id is the identity mapping respectively on D and E.

Property 7 Let f : D → E be a residuated mapping, then

y ∈ f(D) ⇔ f(f ♯(y)) = y.

Property 8 ([2, Th. 4.56]) If h : D → C and f : C → B are residuated
mapping, then f ◦ h is also residuated and

(f ◦ h)♯ = h♯ ◦ f ♯. (4)

Theorem 9 ([2, §4.4.2]) Consider the mapping f : E → F where E and F
are complete dioids of which the bottom elements are, respectively, denoted by
εE and εF . Then, f is residuated iff f(εE) = εF and f(

⊕

x∈G x) =
⊕

x∈G f(x)
for each G ⊆ E (i.e f is lower-semicontinuous abbreviated l.s.c.).

Corollary 10 The mappings La : x 7→ ax and Ra : x 7→ xa defined over a
complete dioid D are both residuated. 2 Their residuals are usually denoted,
respectively, L♯

a(x) = a◦\x and R♯
a(x) = x◦/a in (max, +) literature. 3

Theorem 11 ([2, §4.4.4]) The mappings x 7→ a◦\x and x 7→ x◦/a verify the
following properties :

(ab)◦\x = b◦\(a◦\x) x◦/(ba) = (x◦/a)◦/b, (5)

a∗x = a∗◦\(a∗x) xa∗ = (xa∗)◦/a∗, (6)

a◦\(x ∧ y) = a◦\x ∧ a◦\y (x ∧ y)◦/a = x◦/a ∧ y◦/a. (7)

Theorem 12 ([18]) Let D be a complete dioid and A ∈ Dp×n be a matrix
with entries in D. Then, A◦\A is a matrix in Dn×n which verifies

A◦\A = (A◦\A)∗ (8)

2.2 Mapping restriction

In this subsection, the problem of mapping restriction and its connection with
the residuation theory is addressed. In particular the Kleene star mapping,

2 This property concerns as well a matrix dioid product, for instance X 7→ AX
where A, X ∈ Dn×n. See [2] for the computation of A ◦\B and B◦/A.
3 a ◦\b is the greatest solution of ax ¹ b.
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becomes residuated as soon as its codomain is restricted to its image.

Definition 13 (Restricted mapping) Let f : E → F be a mapping and
A ⊆ E. We will denote 4 f|A : A → F the mapping defined by f|A = f ◦ Id|A

where Id|A : A → E, x 7→ x is the canonical injection. Identically, let B ⊆ F
with Imf ⊆ B. Mapping B|f : E → B is defined by f = Id|B ◦ B|f , where
Id|B : B → F , x 7→ x is the canonical injection.

Proposition 14 (Canonical injection) Let Id|Dsub
: Dsub → D be the canon-

ical injection from a complete subdioid into a complete dioid. The injection
Id|Dsub

is residuated and its residual will be denoted

(

Id|Dsub

)♯
= Prsub.

Remark 15 (Constrained Residuation) The residuation theory provides
the greatest solution of f(x) ¹ b, where f : D → E is an isotone mapping.
The constrained residuation means that we look for the ’approximate’ solution
not in whole D but only in a subdioid Dsub of D.

Theorem 16 ([6, §1.3]) Let Id|Dsub
the canonical injection from Dsub to D.

Solving f(x) ¹ b amounts to solving

f ◦ Id|Dsub
(x) ¹ b

for the greatest solution in Dsub. If Dsub is a complete subdioid, then Id|Dsub
is

residuated and the answer is

(

f ◦ Id|Dsub

)♯
(b) = (Id|Dsub

)♯ ◦ f ♯(b) (thanks to Property 8).

Definition 17 (Closure mapping) An isotone mapping f : E → E defined
on an ordered set E is a closure mapping if f º IdE and f ◦ f = f .

Proposition 18 ([8]) Let f : E → E be a closure mapping. A closure map-
ping restricted to its image Imf |f is a residuated mapping whose residual is the
canonical injection Id|Imf : Imf → E, x 7→ x.

Corollary 19 The mapping ImK|K is a residuated mapping whose residual is
(

ImK|K
)♯

= Id|ImK.
This means that x = a∗ is the greatest solution to inequality x∗ ¹ a∗. Actually,
the greatest solution achieves equality.

Proposition 20 Let Ma : x 7→ (ax)∗a be a mapping defined over a complete
dioid. Consider g ∈ D and d ∈ D. Let us consider the following sets :

4 These notations are borrowed from classical linear system theory see [20].
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G1 = {g | ∃d s.t. g = d∗a}, (9)

G2 = {g | ∃d s.t. g = ad∗}. (10)

ImMa ⊆ (G1 ∩ G2) and the mappings G1|Ma and G1|Ma are both residuated.

Their residuals are such that
(

G1|Ma

)♯
(x) =

(

G2|Ma

)♯
(x) = a◦\x◦/a.

PROOF. Equation (1) leads to (ax)∗a = a(xa)∗, then by choosing d = ax
or d = xa, it comes ImMa ⊆ (G1 ∩ G2) . According to Definition 6, we remark
that the following assertions are equivalent :

• G1|Ma is residuated.
• ∀d ∈ D, (ax)∗a ¹ d∗a admits a greatest solution.

So, we can concentrate on the second point. Since the mapping La is residuated
(cf. Corollary 10) and according to (1), we have

(ax)∗a = a(xa)∗ ¹ d∗a ⇔ (xa)∗ ¹ a◦\(d∗a).

According to (6) and (5), we can rewrite a◦\(d∗a) = a◦\(d∗◦\(d∗a)) = (d∗a)◦\(d∗a).
According to (8), this last expression shows that a◦\(d∗a) belongs to the image
of K. Since ImK|K is residuated (cf. Corollary 19), there is also the following
equivalence:

(xa)∗ ¹ a◦\(d∗a) ⇔ xa ¹ a◦\(d∗a).

Finally, since Ra is residuated too (cf. Corollary 10), we verify that x =
a◦\(d∗a)◦/a is the greatest solution of (ax)∗a ¹ d∗a, ∀d ∈ D. That amounts
to saying that G1|Ma is residuated. We would show that G2|Ma is residuated
with analog steps. ✷

Corollary 21 If g ∈ ImMa, then x = a◦\g◦/a is the greatest solution to the
equation (ax)∗a = g.

PROOF. First ImMa ⊆ (G1 ∩ G2), thus ImMa|Ma is residuated. Furthermore,
∀y ∈ ImMa, Ma(x) = y admits a solution, i.e., ImMa|Ma is surjective, then
(ImMa|Ma)

♯ provides the greatest solution (see Property 7).
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3 Dioid C(D)

Consider the set of pairs (x′, x′′) with x′ ∈ D and x′′ ∈ D endowed with two
coordinate-wise algebraic operations :

(x′, x′′)
∼
⊕ (y′, y′′) = (x′ ⊕ y′, x′′ ⊕ y′′),

(x′, x′′)
∼
⊗ (y′, y′′) = (x′ ⊗ y′, x′′ ⊗ y′′),

This set is a dioid denoted C(D) with (ε, ε) as the zero element and (e, e) as
the identity element.

Remark 22 The operation
∼
⊕ generates the corresponding canonical partial

order ¹C in C(D) :

(x′, x′′)
∼
⊕ (y′, y′′) = (y′, y′′) ⇔ (x′, x′′) ¹C (y′, y′′) ⇔ x′ ¹D y′ and x′′ ¹D y′′

where ¹D is the order relation in D.

Proposition 23 ([13]) If the dioid D is complete, then the dioid C(D) is
complete.

Proposition 24 An isotone mapping f defined over D has a natural exten-
sion in C(D) , f(x′, x′′) = (f(x′), f(x′′)).

Example 25 The Kleene star operation in C(D) is defined by K(x′, x′′) =
(K(x′),K(x′′)) = (x′∗, x′′∗).

Now we consider the following mappings over C(D) :

L(a′,a′′) : (x′, x′′) 7→ (a′, a′′)
∼
⊗ (x′, x′′) (left multiplication by (a′, a′′));

R(a′,a′′) : (x′, x′′) 7→ (x′, x′′)
∼
⊗ (a′, a′′) (right multiplication by (a′, a′′)).

Proposition 26 The mappings L(a′,a′′) and R(a′,a′′) defined over C(D) are

both residuated. Their residuals are equal to L♯
(a′,a′′)(b

′, b′′) = (a′, a′′)◦\(b′, b′′) =

(a′◦\b′, a′′◦\b′′) and R♯
(a′,a′′)(b

′, b′′) = (b′, b′′)◦/(a′, a′′) = (b′◦/a′, b′′◦/a′′).

PROOF. Observe that L(a′,a′′)

(

⊕

(x′,x′′)∈X(x′, x′′)
)

=
⊕

(x′,x′′)∈X L(a′,a′′) (x′, x′′),

(for every subset X of C(D)), moreover L(a′,a′′)(ε, ε) = (a′ε, a′′ε) = (ε, ε).
Then L(a′,a′′) is residuated (thanks to Theorem 9). Therefore, we have to
find, for given (b′, b′′) and (a′, a′′), the greatest solution (x′, x′′) for inequal-

ity (a′, a′′)
∼
⊗ (x′, x′′) ¹C (b′, b′′) ⇔ (a′ ⊗ x′, a′′ ⊗ x′′) ¹C (b′, b′′), moreover

according to Remark 22 on the order relation induced by ⊕ on C(D) we have,

a′ ⊗ x′ ¹D b′ and a′′ ⊗ x′′ ¹D b′′.
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Since the mappings x′ 7→ a′ ⊗ x′ and x′′ 7→ a′′ ⊗ x′′ are residuated over D
(cf. Corollary 10), we have x′ ¹D a′◦\b′ and x′′ ¹D a′′◦\b′′. Then, we obtain
L♯

(a′,a′′)(b
′, b′′) = (a′◦\b′, a′′◦\b′′). ✷

4 Dioid and Interval Mathematics

Interval mathematics was pioneered by Ramon E. Moore as a tool for bound-
ing rounding and truncation errors in computer programs. Since then, interval
mathematics had been developed into a general methodology for investigating
numerical uncertainty in numerous problems and algorithms, and is a powerful
numerical tool for calculating guaranteed bounds on functions using comput-
ers.
In [13] the problem of interval mathematics in dioids is addressed. The authors
give a weak interval extensions of dioids and show that idempotent interval
mathematics appears to be remarkably simpler than its traditional analog. For
example, in the traditional interval arithmetic, multiplication of intervals is
not distributive with respect to addition of intervals, while idempotent inter-
val arithmetic keeps this distributivity. Below, we state that residuated theory
has a natural extension in dioid of intervals.

4.1 Interval arithmetic in dioid

A (closed) interval in dioid D is a set of the form x = [x, x] = {t ∈ D|x ¹ t ¹
x}, where (x, x) ∈ C(D), x (respectively, x) is said to be lower (respectively,
upper) bound of the interval x. In [13] the authors define dioid I(D) endowed
with two coordinate-wise algebraic operations :

x
−
⊕ y = [x ⊕ y, x ⊕ y] (11)

x
−
⊗ y = [x ⊗ y, x ⊗ y] (12)

where the interval εεε = [ε, ε] (respectively, e = [e, e]) is zero (respectively, unit)
element of I(D).

Since x ⊕ y ¹ x ⊕ y and x ⊗ y ¹ x ⊗ y whenever x ¹ x and y ¹ y, then

I(D) is closed with respect to the operations
−
⊕,

−
⊗, furthermore zero element

and unit element of C(D) are in I(D) ; hence I(D) is a subdioid of C(D) (see
Definition 2). I(D) may be not complete, but can be completed by consider-
ing the following definition (see [13], [10] and [3] for an ordered set topology
introduction).
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Definition 27 Let {xα} be an infinite subset of I(D), the infinite sum of
elements of this subset is :

⊕

α

xα = [
⊕

α

xα,
⊕

α

xα]

Remark 28 Note that if x and y are intervals in I(D), then x ⊂ y iff y ¹
x ¹ x ¹ y. In particular, x = y iff x = y and x = y.

Remark 29 An interval for which x = x is called degenerate. Degenerate in-
tervals allow to represent numbers without uncertainty. In this case we identify
x with its element by writing x ≡ x.

4.2 Residuation of interval linear inequations

Proposition 30 The canonical injection Id|I(D) : I(D) → C(D) is residuated.
Its residual will be denoted PrI , i.e.

(

Id|I(D)

)♯
= PrI. (13)

PROOF. It is a direct application of Theorem 16, since I(D) is a subdioid of
C(D). The practical computation of PrI is obtained as follows. Let (x′, x′′) ∈
C(D), PrI(x

′, x′′) = [x, x] = [x′ ∧ x′′, x′′], which is the greatest interval such
that :

x ¹ x′, x ¹ x′′ and x ¹ x. ✷

Proposition 31 Mapping La : I(D) → I(D),x 7→ a
−
⊗ x is residuated. Its

residual is equal to L♯
a
(b) = a◦\b = [a◦\b ∧ a◦\b, a◦\b].

PROOF. Observe that La is l.s.c., i.e. La

(

−
⊕

x∈X x
)

=
−
⊕

x∈X La (x), (for

every subset X of I(D)), moreover La(εεε) = La([ε, ε]) = [aε, aε] = [ε, ε] = εεε.
Then La is residuated (see Theorem 9). By considering result about con-
strained residuation (Theorem 16) and since the canonical injection is residu-
ated (Proposition 30), we have

(

L(a′,a′′) ◦ Id|I(D)

)♯
=

(

Id|I(D)

)♯
◦

(

L(a′,a′′)

)♯
= PrI ◦

(

L(a′,a′′)

)♯
. (14)

Then by considering b ∈ I(D) ⊂ C(D) the greatest solution in I(D) of A
−
⊗

x ¹ b is x = A◦\b = [x, x] = [A◦\b ∧ A◦\b, A◦\b]. ✷

9



Remark 32 We would show in the same manner that mapping Ra : I(D) →

I(D),x 7→ x
−
⊗ a is residuated.

Remark 33 We have seen that it is possible to extend the Kleene star operator
over I(D) (see Example 25). Then ImK|K is also a residuated mapping (see

Corollary 19) whose residual is
(

ImK|K
)♯

= Id|ImK. This means that x = a∗ is

the greatest solution to inequality x∗ = [x∗, x∗] ¹ a∗ = [a∗, a∗].

5 Interval arithmetic and Timed Event Graphs

It is well known that the behavior of a TEG can be expressed by linear state
equations over some dioids, e.g., over dioid of formal power series with coeffi-
cients in Zmax and exponents in Z namely Zmax[[γ]].

X = AX ⊕ BU (15)

Y = CX (16)

Where X ∈ (Zmax[[γ]])n represents the internal transitions behavior, U ∈
(Zmax[[γ]])p represents the input transitions behavior , and Y ∈ (Zmax[[γ]])q

represents the output transitions behavior, and A ∈ (Zmax[[γ]])n×n , B ∈
(Zmax[[γ]])n×p and C ∈ (Zmax[[γ]])q×n represent the link between transitions.
We refer the reader to [7] for a complete presentation.

The class of uncertain systems, which will be considered, are TEG where the
number of tokens and time delays are only known to belong to intervals. There-
fore uncertainties can be described by intervals with known lower and upper
bounds and the matrices of Equations (15) and (16) are such that A ∈ A ∈

I
(

Zmax[[γ]]
)n×n

, B ∈ B ∈ I
(

Zmax[[γ]]
)n×p

and C ∈ C ∈ I
(

Zmax[[γ]]
)q×n

, each

entry of matrices A, B, C are intervals with bounds in dioid Zmax[[γ]] with only
non-negative exponents and coefficients integer values. By Theorem 4, Equa-
tion (15) has the minimum solution X = A∗BU . Therefore, Y = CA∗BU
and the transfer function of the system is H = CA∗B ∈ H = CA∗B ∈

I
(

Zmax[[γ]]
)q×p

, where H represents the interval in which the transfer function
will be lie for all the variations of the parameters .

Figure 1 shows a TEG with 2 inputs and 1 output, which may represent a
manufacturing system with 3 machines. Machines M1 and M2 produce parts
assembled on machine M3. A token in dotted lines means that the resource
can or not to be available to manufacture part. Durations in bracket gives
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the minimal and maximal time spent in the place before contributing to the
enabling of the downstream transition.
For instance, machine M2 can manufacture 2 or 3 parts and each processing
time will last 3 time units. Each manufactured part will spend between 2 and
6 time units in the downstream place before contributing to the enabling of
transition x3. Entries A2,2 = [3γ3, 3γ2] and A3,2 = [2, 6] describe the intervals
in which these parameters evolve. Therefore, we obtain the following interval
matrices,

A =















[2γ2, 5γ] [ε, ε] [ε, ε]

[ε, ε] [3γ3, 3γ2] [ε, ε]

[3γ, 4γ] [2, 6] [2γ3, 3γ]















B =















[e, e] [ε, ε]

[ε, ε] [e, e]

[ε, ε] [ε, ε]















C =
(

[ε, ε] [ε, ε] [e, e]

)

.

(17)

and thanks to theorem 3, the transfer function H belongs to the interval matrix
H given below. It characterizes the whole transfer functions coming from (17):

H = CA∗B =
(

[3γ(2γ2)∗, 4γ(5γ)∗] [2(3γ3)∗, 6(3γ)∗]

)

. (18)

6 Robust feedback controller synthesis

We consider the behavior of a p-input q-output TEG by a state representation
such as (15) and (16), we focus here on output feedback controller synthesis
denoted F , added between the output Y and the input U of the system (see
Figure 2). Therefore the process input verifies U = V ⊕ FY , and the output
is described by Y = H(V ⊕ FY ). According to Theorem 4, the closed-loop
transfer relation (depending on F ) is then equal to

Y = (HF )∗HV. (19)

where H ∈ H is the uncertain system transfer.

The objective of the robust feedback synthesis is to compute a controller F
which imposes a desired behavior (a specification) to the uncertain system.

11



The problem addressed here, consists in computing the greatest interval (in
the sense of the order relation ¹I(Zmax[[γ]])), denoted F̂ , which guarantees that

the behavior of the closed loop system is lower than Gref ∈ I
(

Zmax[[γ]]
)q×p

(a specification defined as an interval) for all H ∈ H. Formally the problem
consists in computing the upper bound of the following set

{F ∈ I
(

Zmax[[γ]]
)p×q

| (HF)∗H ¹ Gref} (20)

Proposition 34 shows that this problem admits a solution for some reference
models.

Proposition 34 Let MH : I
(

Zmax[[γ]]
)p×q

→ I
(

Zmax[[γ]]
)q×p

,F 7→ (HF)∗H
be a mapping. Let us consider the following sets :

G1 =
{

G ∈ I
(

Zmax[[γ]]
)q×p

| ∃D ∈ I
(

Zmax[[γ]]
)q×q

s.t. G = D∗H
}

,

G2 =
{

G ∈ I
(

Zmax[[γ]]
)q×p

| ∃D ∈ I
(

Zmax[[γ]]
)p×p

s.t. G = HD∗

}

.

If Gref ∈ G1 ∪ G2, there exists a greatest F such that MH(F) ¹ Gref , given
by

F̂ =
⊕

{F∈ I(Zmax[[γ]])
p×q

| (HF)∗H¹Gref}

F = H◦\Gref ◦/H (21)

PROOF. Direct from Proposition 20. ✷

Below, we consider the robust controllers set, denoted F , such that the transfer
of the closed loop system be in Gref for all H ∈ H

F = {F ∈ Zmax[[γ]]p×q | (HF )∗H ⊂ Gref}

Corollary 35 If Gref ∈ ImMH, then F̂ ⊂ F .

PROOF. If Gref ∈ ImMH, then MH(F̂) = Gref thanks to Corollary 21, thus

(HF̂)∗H ⊂ Gref . Obviously, this is equivalent to ∀F ∈ F̂, (HF )∗H ⊂ Gref ,
which leads to the result. ✷

Corollary 35 shows that if Gref ∈ ImMH each feedback controller F ∈ F̂ is
also in F . From a practical point of view this means that for all number of
tokens and holding time belonging to the given interval the closed loop system
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will be in the specification interval.

Corollary 36 If Gref ∈ ImMH, then the upper bound of the interval F̂, de-

noted F̂ , is the upper bound of the set F .

PROOF. Corollary 35 yields (HF̂)∗H = Gref , i.e., [(HF̂ )∗H, (HF̂ )∗H] =
[Gref , Gref ]. Furthermore Gref ∈ ImMH implies that there exists F such

that Gref = (HF )∗H, i.e., Gref ∈ ImMH then thanks to corollary 21 F̂ =

H◦\Gref ◦/H is the greatest feedback such that Gref = (HF̂ )∗H, thus the great-
est feedback in F .

Remark 37 From a computational point of view we have

F̂ = H ◦\Gref ◦/H = [H, H] ◦\[Gref , Gref ]◦/[H, H] = [H ◦\Gref ∧ H ◦\Gref , H ◦\Gref ]◦/[H, H]

= [(H ◦\Gref ∧ H ◦\Gref )◦/H ∧ H ◦\Gref ◦/H, H ◦\Gref ◦/H]

= [H ◦\Gref ◦/H ∧ H ◦\Gref ◦/H ∧ H ◦\Gref ◦/H, H ◦\Gref ◦/H]thanks to (7).

The last equation may be simplified, indeed (H◦\Gref )◦/H º (H◦\Gref )◦/H thanks
to the antitony of mapping a◦/x (i.e., x1 º x2 ⇒ a◦/x1 ¹ a◦/x2), then H◦\Gref ◦/H∧
H◦\Gref ◦/H = H◦\Gref ◦/H. Therefore

F̂ = H◦\Gref ◦/H = [H◦\Gref ◦/H ∧ H◦\Gref ◦/H,H◦\Gref ◦/H]. (22)

7 Example : Output Feedback synthesis

We describe a complete synthesis of a controller for the uncertain TEG de-
picted with solid black lines in Fig. 1. The reference model chosen is

Gref =

(

H

(

γ2

γ2

))

∗

H

=

(

[3γ ⊕ 5γ3(1γ)∗, 4γ(5γ)∗] [2 ⊕ (4γ2)(1γ)∗, 6 ⊕ 9γ ⊕ 12γ2 ⊕ 15γ3 ⊕ 18γ4 ⊕ 21γ5 ⊕ 25γ6(5γ)∗]

)

.

This specification means that not more than two tokens can input in the
TEG at the same moment. We refer the reader to [8,?] for a discussion about
reference model choice. We aim to compute the greatest interval of robust
controllers which keep the same objective.
According to Proposition 34 and solution (21), the controller is obtained by
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computing H◦\Gref ◦/H. Therefore we obtain

F̂ =







[−3γ−1 ⊕−1γ(1γ)∗,−15γ−1(5γ)∗]

[−2 ⊕ γ2(1γ)∗,−6 ⊕−3γ ⊕ γ2 ⊕ 3γ3 ⊕ 6γ4 ⊕ 9γ5 ⊕ 13γ6(5γ)∗]







For the realization of that controller it is necessary to choose one feedback in
the set F̂. Here we choose the lower bound of this set, i.e.,

F̂ =
(

−3γ−1 ⊕−1γ(1γ)∗ − 2 ⊕ γ2(1γ)∗
)t

This feedback is not causal because there are negative coefficients in matrix
entries meaning negative date for the transition firings (see [2] for a strict
definition of causality in dioid). The canonical injection from the set of causal

elements of Zmax[[γ]] (denoted Z
+

max[[γ]]) in Zmax[[γ]] is also residuated (see [8]
for details). Its residual is denoted Pr+, therefore the greatest causal feedback
is

F̂+ = Pr+(F̂ ) =







γ2(1γ)∗

γ2(1γ)∗





 . (23)

Figure 1 shows one realization of the controller (bold dotted lines).

Remark 38 The reader can find software tools in order to handle periodic
series and solve the illustration (see [19]).

8 Conclusion

In this paper we have supposed that the TEG includes some parametric un-
certainties in a bounded context. We have given a robust feedback controller
synthesis which ensures that the closed-loop system transfer is in a given in-
terval for all feasible values for the parameters. The next step is to extend this
work to other control structure such as the one given in [16]. The traditional
interval theory is very effective for parameter estimation, it would be interest-
ing to apply the results of this paper to the TEG parameter estimation such
as intended in [11].
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Fig. 1. A uncertain TEG with a controller (bold dotted lines)
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Fig. 2. An uncertain system with a feedback controller
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