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Abstract

Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and
they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it
is possible to predict not only someone’s location from their friends’ locations but also friendship from spatial and temporal
co-occurrence. While several models have been developed to separately describe mobility and the evolution of social
networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges
this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online
social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and
physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i) the total
size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the
reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical
simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated
by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding
that a balance between friend visits and long-range random connections is essential to reproduce the geographical features
of the empirical networks.
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Introduction

The advent of the big data revolution has opened the door to

the analysis of massive datasets on all aspects of society. New

technologies have made possible the access to unprecedented

amount of information on human behavior generated unobtru-

sively whenever people interact with or through modern

technologies such as cell phones, online services, mobile applica-

tions, etc. This fact is facilitating the pursuit of a computational

approach to the study of problems traditionally associated with

social sciences [1]. Over the course of the last few years, it has

allowed for the development of greater insights, for instance, into

human mobility [2–4], structure of online social networks [5,6],

cognitive limitations [7,8], information diffusion and social

contagion [9–13], the importance of social groups [13–15] or

even how political movements raise and develop [16–18].

The relation between physical location and social interactions

can be also explored with the new available data. In general,

people tend to interact and maintain relations with geographically

close peers. A tendency that gets reflected in a decay of the social

interaction probability with the physical distance. This effect has

been observed, for example, in phone call records [19–21] and in

online friendships [22]. Furthermore, it has been shown that

online [23] social links can be inferred from user co-occurrences in

space and time and, likewise, that the location of a person can be

predicted from the geographic positions of his or her online friends

[25]. Some further aspects of the relation between geography and

online social contacts have been studied such as the probability

that a link at a given distance closes a triangle [19,22,26], the

connections between users in different countries [27], the social

interactions and mobility in emergency situations [28] or the

overlap between users’ ego networks and how it decays with the

distance [29]. Multi-parametric inference methods have been

applied to empirical data with the aim of predicting link presence

and users’ locations [30–32]. These works show that the accuracy

of link prediction is considerably improved by taking into account

the geographical information, and that the accuracy of location

prediction is enhanced when the online social links are provided.

The availability of geo-localized information has also allowed

for a detailed exploration of human mobility [2,3,21,33–36]. The

length of displacements between locations was found to follow a

broad distribution, well fitted by a power-law decaying function

[2,3]. The asymmetry of the travels was studied by considering

ellipsoidal boundaries to the average individual displacements and

analyzing the scaling of the radius of gyration. Memory effects

in the individual displacements was also analyzed, finding that

individuals’ home and workplace have a considerable impact

on their mobility patterns [4]. These results motivated the
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introduction of several mobility models with the aim of explaining

the features observed in the data [4,36–39]. Despite the supporting

evidence [21], most of these models lack a connection between

mobility and social interactions [40].

In this work, we lay a bridge between these two worlds by

introducing a model coupling social tie formation and spatial

mobility. Preceding models considering network structure and

geography are uncoupled [24,41]. Our model simulates the

movement of individuals and creates links between them when

they are physically close mimicking the effect of face-to-face

interactions. We study the model both numerically and analyti-

cally and confront its results with empirical data obtained from

three online social networks. We show that the model generates

more realistic networks than uncoupled models.

Materials and Methods

The Datasets
We have collected data from online social networks containing

both social links and information about the users’ physical

positions. The first dataset was obtained from Twitter by means

of its API [42]. We identify over 714,000 single users, who tweeted

using a GPS enabled mobile device during the month of August

2011 [43]. If those users reported various locations in different

tweets, the most recent one is taken for the purpose of the study.

The other two datasets contain information referring to the users’

location check-ins and the social networks of Gowalla and

Brightkite [31]. Both were location-based online social networks,

in which users can check-in at their current locations and receive

information about services in the area as well as about their

friends’ positions. Gowalla and Brightkite are no longer active but

their data is available online [44]. The main statistical features of

our three datasets are displayed in Table 1.

Social interactions across country borders have particular

properties and are affected by political, linguistic or cultural

factors. We overcome this difficulty by restricting our analysis to

the networks within each country. Intra-country mobility and

social contacts account for the large majority of a user activity

[45,46]. For simplicity, we focus on the three major countries with

more than one thousand users in each of our datasets: the United

States (US), the United Kingdom (UK) and Germany (DE). We

have analyzed and modeled other countries and found similar

results to the ones presented in this manuscript.

The Travel and Friend (TF) Model
The model structure is illustrated in Figure 1. The initial

condition is a set of individuals located in the last known positions

of the online network users as extracted from the data. At each

step of the model, a randomly chosen agent performs actions in

two stages:

1. Travel

(a) Visit a randomly selected friend at his current location with

probability pv.

(b) Otherwise, travel to a new location. The distance of travel is

obtained from a distribution of jump lengths, while the

direction is chosen proportionally to the population density

at the target distance.

2. Friendship

(a) With probability p, create directed links to agents within a

neighborhood of size d6d.

(b) With probability pc, create a directed connection to a

randomly chosen agent anywhere in the system.

The acronym of the TF model comes from the initials of these

two stages. The model is iterated until the number of created

connections is equal to the number of links measured in the

empirical networks. Despite its simplicity, the model incorporates

several major features of human behavior. The Travel stage

accounts for both recurring visits to the same location and

exploration of new places and the Friendship component generates

both face-to-face contacts and online acquaintances independent

of the geography. Note that in the Friendship phase both of two

possible actions happen concurrently with the respective proba-

bilities. The effect of each of the underlying assumptions is

systematically explored through analysis of model variants in

Appendix S1.

The model has four input parameters: pv, p, pc and d, besides the

distribution of jump lengths. Following the empirical findings of

Ref. [4], we take a power-law distribution for the jump lengths

with an exponent 21.55 for the main simulations shown in this

work. Still, other functional shapes for the jump distribution are

also discussed in the following section. The direction of the jump is

chosen proportionally to the population density at the target

distance using the gridded population estimates of the world for

2005 with the cell size 2.59 [47]. The values of the probability

p = 0.1 and the box size d~0:001
0

are fixed to match the relation

between the probability of friendship and the number of daily

spatiotemporal coincidences measured in [23]. (To this end, we

assume that one time step of the model corresponds roughly to one

day. Most of our simulations finish in less than a 1,000 time steps,

corresponding to a few years, which is of the order of magnitude of

users’ lifetime, given that Twitter was founded in 2005 and our

dataset is from 2011.) Furthermore, we tested different values of d
and p and did not observe strong deviations in the model results.

This leaves us only with pv and pc as free model parameters, we will

systematically explore in the coming sections the impact of these

parameters on the model results, since, as it will be shown, they are

Table 1. Datasets.

TOTAL(6103) US(6103) UK(6103) DE(6103)

N L N L N L N L

Twitter 714 15000 132 1100 28 117 3.8 8.5

Gowalla 196 950 46 350 5.2 20 5.2 30

Brightkite 58 214 27 167 3.1 10 1.3 7.2

Number of users (nodes) N and of links L of the networks obtained from the different geo-localized datasets for the United States (US), the United Kingdom (UK) and
Germany (DE).
doi:10.1371/journal.pone.0092196.t001
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essential for generating network comparable with the empirical

ones.

Geo-social Properties of the Networks
We start by establishing a set of metrics in order to characterize

networks structure and its relation to geography. First, we measure

the probability of two users to have a link at a certain distance

Pl(d). It is defined as the ratio between the number of existing

links at distance d and the total number of users pairs separated by

d, and thus it is constrained to the interval 0,1½ �. Pl(d) decays

slowly with the distance for empirical networks, essentially as a

power-law with exponent {0:7, which is followed by a plateau for

very large distances (see Figure 2A). This functional shape remains

identical for all the countries and all the datasets considered. It

matches, besides, the behavior reported in the literature for online

social systems [22,26].

A second metric that we consider is the degree distribution of

the social networks (see Figure 2B for the empirical networks). For

Twitter, which has a directed social network, we consider the

degrees of its symmetrized version. The distribution P kð Þ displays

heavy tail in all the datasets, even though there are slight

differences between them.

Connections in Twitter are directed: one user follows the

messages emitted by another. Reciprocated connections indicate

mutual interest between the two users and a closer type of social

relation [8,14]. To assess how geography and reciprocity correlate,

we measure the probability R dð Þ of reciprocation conditional on a

link at a distance d (Figure 2C). We find that the reciprocity

decreases with the distance in all the countries analyzed. This

trend is consistent with the idea that stronger relations occur close

to where users spend most of their time, with some longer

connections composed of friends who moved, former residences,

online acquaintances, etc. Furthermore, long not-reciprocated

connections may include users following public figures or

celebrities.

With the aim of quantifying social closeness between users, we

define the social overlap Jf of two connected users i and j as

Jf ~
Ki\Kj

�� ��
Ki|Kj

�� ��{2
ð1Þ

where Ki represents the set of friends of user i. Jf is inspired by the

Jaccard index but is modified to ensure that it takes a value of 1 if i

and j share all their friends, and 0 if they have no common friends.

In Figure 2D, the average of the social overlap Jf dð Þ over all pairs

of connected users is plotted as a function of the distance between

them. The social overlap decreases with the distance. The

functional shape of the curves is similar for all the datasets, even

though the overlap level is different for each of them. For Twitter,

we use the symmetrized version of the network to study social

overlap and clustering.

Another well known phenomenon in social networks is triadic

closure. As one individual has a close relation with other two

persons, there are high chances that these two individuals end up

creating a social relation between themselves. In network analysis,

a magnitude that quantifies this effect is the average clustering

coefficient C. It is defined as the ratio between the number of

closed triads and the total number of triads in the network. A triad

is a sequence of 3 nodes i,j,k such that the central node j is

connected to both extreme nodes i and k. A closed triad is a triad

Figure 1. Schematic of the TF model. The central node is the filled red circle and its neighbors are marked in blue. Directionality of links is
neglected in this schematic to maintain simplicity.
doi:10.1371/journal.pone.0092196.g001

Coupling Mobility and Interactions in Social Media

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e92196



that has also an edge between i and k, forming a triangle. Note that

a triangle consists of 3 triads centered on different nodes. The

effect of the distance on the clustering coefficient can be

incorporated by measuring the distances from each central node

j to two neighbors i and k forming a triad, d~dijzdjk, and

calculating the network clustering restricted to triads with distance

d. This new function C(d) is the probability of closing a triangle

given the distance d in a triad

C(d)~
D(d)

L(d)
, ð2Þ

where (d) and (d) are the numbers of triads and closed triads

for the distance d, respectively. The value of the global clustering

coefficient C can be recovered by averaging C(d) over d. In the

datasets, we observe a drop in C(d) followed by a plateau, which is

best visible for the US networks (Figure 2E).

Given a triangle, several configurations are possible if there is

diversity in the edge lengths. The triangle can be equilateral if all

the edges have the same length, isosceles if two have the same

length and the other is smaller, etc. We estimate the dominant

shapes of the triangles in the network by measuring the disparity D

defined as:

D~6
d2

1 zd2
2 zd2

3

(d1zd2zd3)2
{

1

3

� �
, ð3Þ

where d1, d2 and d3 are the geographical distances between the

locations of the users forming the triangle. The disparity takes

values between 0 and 1 as the shape of the triangle passes from

equilateral to isosceles, where one edge is much smaller than the

other two. D shows a distribution with two maxima in the online

social networks (Figure 2F), for low and high values. The two most

common geometries of the triangles are: i) all 3 users are at a

similar distance, ii) 2 users are close to each other, while the third

one is distant. Since most edges correspond to small distances, this

means that most triangles are constituted by three users that are all

close to each other geographically. However, the stretched

isosceles configuration is also relatively common.

Summarizing, we have defined the following metrics in order to

characterize the networks structure and its relation to geographical

distance:

N P1(d): Probability of linking at a distance d (Figure 2A).

N P(k): Degree distribution (Figure 2B).

N R(d): The probability of reciprocation conditional on a link at a

distance (Figure 2C).

N Jf(d): Average overlap as a function of the distance (Figure 2D).

N C(d): Clustering coefficient as a function of the triad distance

(Figure 2E).

N P(D): Distribution of distance disparity for the triangles’ edges

(Figure 2F).

We will use these metrics in the coming sections to estimate the

ability of model to produce social networks comparable with those

obtained from the empirical datasets.

Model Calibration
Next, we will find a compromise between the different metrics

and search for the parameter values for which a given model best

fits simultaneously the various statistical properties. To do so, we

define an overall error Err to quantify the difference between the

networks generated with the model and the empirical ones. The

parameters of the model are then explored to find the values that

minimize Err. We measure the error Err X½ � for each property X

and take the average over all the properties

Figure 2. Network geo-social properties. Various statistical network properties are plotted for the data obtained from Twitter (red squares),
Gowalla (blue diamonds), Brightkite (green triangles) and the null models (dashed lines), for the US (for the UK and Germany, see Figures S1 and S2).
The spatial model (magenta), based on geography, matches well the data in Pl(d), but yields near-zero values for R(d), Jf (d) and C(d). The linking
model (cyan), based on triadic closure, produces enough clustering, but it does not reproduce the distance dependencies of Pl(d), R(d), Jf (d) and
C(d).
doi:10.1371/journal.pone.0092196.g002
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Err~
1

8
fErr Pl dð Þ½ �zErr P kð Þ½ �zErr R dð Þ½ �zErr Jf dð Þ½ �

zErr C dð Þ½ �zErr P Dð Þ½ �zErr Nc½ �zErr Cavg

� �
g,

ð4Þ

where Nc is the total number of nodes in connected components of

the network and Cavg is the undirected local clustering coefficient

averaged over the Nc connected nodes. The local clustering

coefficient of a node i is defined as the ratio between number of

closed triads centered on node i and the total number of triads

centered on that node.

The properties X integrating Err can be scalars, functions or

distributions and encompass different orders of magnitude. We

define the error of a property X as

Err X½ �~
Pn

i~1 yX
i {f X

i

�� ��Pn
i~1 yX

i

�� �� , ð5Þ

where yX
i is the i-th observed value of the property X , f X

i is the

corresponding i-th value of the property obtained by the model. In

the case of a distribution, i runs over the n measured bins, while for

a scalar (such as the number of nodes or the clustering coefficient)

the sum has only one term.

We perform a Latin square sampling of the parameter space of

pv and pc as shown in Figure 3 in order to find the minimum value

of Err. The parameter space is covered uniformly in a linear scale

for pv and in a logarithmic one for pc. For all the countries, the

minimum value of the error is obtained for pv in the interval

0:05,0:3ð Þ and pc in the range (5:10{3,5:10{2). The values of Err

found at the minimum are 0:30 for the US, 0:18 for the UK and

0:39 for Germany. For simplicity, we focus on the Twitter

networks only, although similar results are obtained for the other

datasets.

Results

Simulations for the Optimal Parameters
An example with the displacements between the consecutive

locations and the ego networks for a sample of individuals, as

generated by the TF model, are displayed in Figure 4. The

parameters of the model are set to the ones that correspond to the

minimum of the error Err. As shown, the agents tend to stay close

to their original positions. Occasional long jumps occur due to

friend visits that live far apart. In this range of parameters and

simulation times, the main mechanism for generating long distance

connections is random linking (controlled by pc). Agents typically

return back to their original positions because this is where most of

their contacts live. The frequency of the long distance jumps and

connections varies for the three countries due to the different

spatial distribution of the user populations. In the ego networks,

the presence of multiple triangles with long distance edges can be

observed.

The geo-social properties of the networks generated by the TF

model are shown in Figure 5 for the US and in Figures S3 and S4

for the UK and Germany, respectively. Additionally, we show how

each of the introduced properties contributes to the total error of

the model in Table S1. The model is able to reproduce the trends

in the probability Pl dð Þ, the reciprocity R dð Þ, the social overlap

Jf dð Þ and the disparity distribution P Dð Þ with good accuracy. The

difficulties encountered with the degree distribution P kð Þ and the

clustering as a function of the distance C dð Þ are not unexpected

since the model does not incorporate mechanisms to explicitly

enhance the heterogeneity in the agents’ contacts nor favor any

specific dependence of the clustering on the distance. We have

tested variants of the TF model in which connections are created

using the preferential attachment rule. The overall fitting error for

these variants of the model is not lower than for the basic TF

model, as we show in Appendix S1.

Insights of the TF Model
In this section we explore two null models uncoupling mobility

and social interactions to help us interpret the mechanisms acting

in the TF model. The first null model, the spatial model (S model),

is based solely on the geography and consists of randomly

connecting pair of users with a probability depending on the

distance, but does not take network structure into account. The

second null model, the linking model (L model), in contrast, is

based only on random linking and triadic closure, and it is

equivalent to the TF model without the mobility. We consider the

two uncoupled null models and compare their results with those of

the TF model. In this way, we demonstrate the importance of the

coupling through a realistic mobility mechanism to reproduce the

empirical networks.

The spatial model (S model) consists of randomly connecting

pair of users with a probability that decays as power-law of the

distance between them (suggested in [41]). The exponent of the

power-law is fixed at {0:7 following Figure 2A. The results of

the S model are shown in the panels of Figure 2. While it is set to

match Pl dð Þ, other properties such as P(k), R dð Þ, Jf dð Þ, C dð Þ or

P Dð Þ are not well reproduced. The S model fails to account for the

high level of clustering and reciprocity in the empirical networks

Figure 3. Fitting the TF model. Values of the error Err when pv and pc are changed. The minimum error for each of the plots is marked with a red
rectangle.
doi:10.1371/journal.pone.0092196.g003
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and for their dependence on the distance. The error Err of this

null model is between 0:66–0:76 for the three countries, around

twice the error of the TF model (see Figure 6).

The linking model (L model) is a simplified version of the TF

model, without random mobility and the box size d?0. Agents

move to visit their contacts with probability pv, whereas with

probability 1{pv they do not perform any action. In this version

of the model, users can connect only by random connections or

when two of them coincide, visiting a common friend, which leads

to triadic closure. These two processes do not depend on the

distances between the users. A thorough description can be

obtained with a mean-field approach (see the corresponding

section). The results of the L model are shown in Figure 2. Due to

the triangle closing mechanism, this null model creates networks

with a considerable level of clustering. However, it does not

reproduce the distance dependencies of Pl(d), R(d), Jf (d) and

C(d). The error Err of the L model is also around twice higher

than the error of the TF model (see Figure 6).

The geography and the structure are coupled in the TF model

through the random mobility. Changes in the underlying mobility

mechanism affect the quality of the results. The lowest Err values

are obtained with the power-law distribution in the jump lengths,

while normal or uniformly distributed jumps yield worse results

(e.g., for the US the TF model has Err lower by 0:5 and 1:5 than

the TF-normal and the TF-uniform models, respectively, as shown

in Figure 6).

Simplified models that neglect either geography or network

structure perform considerably worse than the TF model in

reproducing the properties of real networks. Likewise, non-realistic

assumptions on human mobility mechanism yield worse results

than the default TF model. To conclude, the coupling of

geography and structure through a realistic mobility mechanism

produces networks with significantly more realistic geographic and

structural properties.

Sensitivity of the TF Model to the Parameters and its
Modifications

The results presented so far have been obtained at the optimal

values of pv and pc. The question remains, however, of how robust

these results are to changes in the values of the parameters. In

Figure 7, we report the effect of varying pv while pc is maintained

constant in its optimal value. The linking probability Pl dð Þ loses its

power-law shape for very low values of pv, marking the limit in

which random mobility is the main mechanism for the agents’

traveling in detriment of friend visits. In this case, most of the links

are created due to encounters occurring in nearby locations or are

Figure 4. Simulation results: mobility and social networks. Mobility (upper row) and ego networks (lower row) of 20 random users (different
colors) for the instances of the TF model yielding the lowest error Err (see Figure 3). Mobility network shows mobility patterns of individual users
throughout entire simulation. Ego network shows the social connections at the end of the simulation.
doi:10.1371/journal.pone.0092196.g004
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random connections, and so the distribution of triangles disparity

P Dð Þ loses its bimodal shape. Furthermore, the friend visits

provide opportunities to reciprocate the connections. This is why

for extremely low values of pv, the reciprocity R dð Þ is close to zero.

Towards the other limit, i.e., pv?1 the social overlap Jf (d) and the

triangle-closing probability C dð Þ steadily increase. In this limit, the

linking probability Pl dð Þ, the reciprocity R dð Þ and the distribution

of triangles disparity P Dð Þ recuperate their shapes of the optimum.

Figure 8 explores the impact of varying pc while pv is fixed to its

optimal value. The effect of pc on Jf (d) and C(d) is the opposite to

that of pv: these metrics decrease at all distances with increasing pc.

The reason for this is that visits to friends are the main forces

behind the creation of new triads and the subsequent closure of

triangles. Note that the more connections are created randomly

(higher pc), the less links will be a result of friend visits. We will

expose and describe in detail the interplay between these two

mechanisms in the mean-field calculations.

A possible variation of the TF model consists of eliminating

friend visits or random connections (i.e., setting pv or pc to 0). This

prevents the model from producing networks with characteristics

comparable to the real ones in all the cases, leading to increase in

Err of around 0.5. Interestingly, the model results are quite robust

to variations in the update rules, the random connection

mechanism, the connecting rules in each agent neighborhood

and the variants in the way users visit friends. These variations

lead to changes in Err smaller than 0.1. A detailed discussion of

the results with different model variants is included in Appendix

S1.

Mean-field Approach
In this section, we consider the L model, introduced earlier in

this section, to gain some analytical insights on the mechanisms

ruling the final network structure. Although this model is a

simplified version of the TF model, the results of the simulations

yield a relatively low value of Err (Figures 6, and Figures S9 and

S10 in Appendix S1). We write the equations for the time

evolution of the properties of the network and solve them

numerically. Among all the properties, we focus on the average

Figure 6. Comparison of different models. The minimal values of the error Err for the TF model, the two null models: spatial (S model) or linking
(L model), and the TF model with normally or uniformly distributed travel distances.
doi:10.1371/journal.pone.0092196.g006

Figure 5. Geo-social properties of the model networks. Various statistical properties are plotted for the networks obtained from Twitter data
(red squares) and from simulation of the TF model (black line) for the US. Corresponding results for the UK and Germany can be found in Figures S3
and S4.
doi:10.1371/journal.pone.0092196.g005
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clustering coefficient C, the overall reciprocity R and the degree

distribution P(k).

The clustering coefficient is defined as a ratio of all the closed

triads to all triads existing in the network, i.e., C~D= .

The number of triads can be calculated knowing the degree

distribution. The number of closed triads D in the L model grows

with time mostly due to the friend visits mechanism. A triangle is

formed every time two friends of the same hosting agent meet in

the host’s place and decide to connect. Note that an undirected

triangle corresponds to 3 undirected closed triads. Assuming that

Figure 7. Impact of pv on the TF model. We change the value of pv while keeping pc fixed to the optimal value. Note that this corresponds to an
exploration of the parameter space along the vertical line crossing the minimum of Err as plotted in Figure 3 for the US. Corresponding results for the
UK and Germany can be found in Figures S5 and S6.
doi:10.1371/journal.pone.0092196.g007

Figure 8. Impact of pc on the TF model. We change the value of pc while keeping pv fixed to its optimal value. Note that this corresponds to an
exploration of the parameter space along the horizontal line crossing the minimum of Err as plotted in Figure 3 for the US. Corresponding results for
the UK and Germany can be found in Figure S7 and S8.
doi:10.1371/journal.pone.0092196.g008
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the contribution of random links is negligible, the evolution of the

number of closed triads is described by

dD

dt
~3N kw0ð Þ 1{ 1{pð Þ2

� �
1{Cð ÞM S, ð6Þ

where k~ kinzkout
	 


=2, meaning that we do not distinguish

between in-degree and out-degree; N kw0ð Þ represents the

number of nodes with the degree higher than 0, i.e., the number

of potential hosts, M is an estimate of the lower bound

for the number of triangles closed by one closing link

M~1zC2 2
1zR

k{2
� �

. Finally, S is the expected number of

encounters per host, which can be calculated as

S~
X?
k~2

N kð Þ
N

|
Xk

i~2

pv

SkT

� �i

1{
pv

SkT

� �k{i k

i

 !
i

2

 !
,

ð7Þ

where N(k) is the number of nodes with a given degree k in the

network. Finally, note that the above definition of degree and the

one obtained from symmetrizing directed networks (used in

previous sections) are related by a proportionality factor

k~ksym(1zR)=2.

The reciprocity of connections R can be expressed as

R~Lp=(Lpz2Ls), where Lp is the number of reciprocated

links, Ls is the number of non-reciprocated links and the

total number of links L~LszLp. The numbers of links evolve

as

dLp

dt
~2N(kw0)fpreczp2 (1{C)Szp (1{R)C Sg, ð8Þ

dLs

dt
~pc Nz

1

3M

dD

dt
{

1

2

dLp

dt
, ð9Þ

where prec~ppv 1{pvð Þ 1{Rð Þ corresponds to the probability

that an agent visiting a neighbor gets her connection reciprocated

(their connection is initially single directional). As can be seen, D,

Lp and Ls are mutually dependent.

To calculate the degree distribution P kð Þ, we estimate the

probability pcon of a node to increase its degree by one unit in the

current time step due to multiple encounters with friends of her

friends

pcon ~
X?
k0~2

k0N k0ð Þ
SkTN

k0{1

2

� �
p2

c 1{pcð Þk
0{2, ð10Þ

where pc~ppv=SkT 1{ 1zRð Þ=2Cð Þ. In the L model, however,

every node can increase its degree by multiple links in each time

step. For simplicity, we neglect higher order terms induced by the

possibility of creating multiple links. Moreover, we note that

Equation (10) is a good estimate if there is not a strong correlation

between node degrees. The number of nodes of certain degree k is

given by

kw1 :
dN kð Þ

dt
~pinc N k{1ð Þ{N kð Þð Þ,

dN 1ð Þ
dt

~pc N 0ð Þ{pinc N 1ð Þzprec Ns 0ð Þ,

dN 0ð Þ
dt

~{pc N 0ð Þ{prec Ns 0ð Þ,

ð11Þ

where pinc~pczprec=2zp  pv con is an estimate of the probability

that the node degree increases, Ns(0) is the number of nodes with

0 out-degree and non-zero in-degree. Such nodes are important

because their connection can be easily reciprocated as a result of a

friend visit. However, these nodes are not counted directly into

N 1ð Þ, and so a correction is needed to account for them explicitly,

as in Equation (11). The number of such nodes can be calculated

as

dNs(0)

dt
~ pcN 0ð Þ{precNs 0ð Þ: ð12Þ

The numerical solution of this set of equations describing the

evolution of the L model is shown in Figure 9. The equations

accurately predict the dynamics of the clustering coefficient C, the

reciprocity R and the degree distribution P(k) for certain values of

the parameters (i.e., for medium and high values of pc, as in the

lower plots of Figure 9). The approximation yields slightly worse

results when the number of random connections is small in

comparison with the number of connections created due to friend

visits (i.e., for low values of pc, as in the upper plots of Figure 9B). In

the latter case, neither the degree distribution is well approximat-

ed, probably due to the degree-degree correlations introduced

through the friend visit mechanism.

The mean-field analysis of the L model shows that the friend

visiting mechanism is a direct cause of triangle closure and link

reciprocity. Equation 6, which estimates the growth of the number

of triangles in the network, accounts only for the friend visiting

mechanism; yet it approximates closely the value of the clustering

coefficient, also when pc, which controls the mechanism of random

connections, is high. Similarly, Equation 8, which estimates the

growth of the number of reciprocated connections, accounts for

the friend visiting mechanism and approximates well the value of

reciprocity.

Discussion

We introduce a model that couples human mobility and link

creation in social networks. The aim is to characterize the relation

between network topology and geography observed in empirical

online networks. The model has two free parameters pc and pv but,

despite its simplicity, it is able to reproduce a good number of geo-

social features observed in real data at a country level. Comparing

the TF model with simplified null models, we find that the

coupling of geography and structure through a realistic mobility

mechanism produces significantly more realistic social networks

than the uncoupled models.

Social links in our model are formed mostly with relational (due

to triadic closure), and proximity (through spatio-temporal

coincidences) mechanisms [48]. Visiting friends helps to reinforce

the existing relations and favors the closure of triads with

particular properties regarding the distance balance of their edges.

Random link creation accounts for online acquaintances or for

historical face-to-face encounters as individuals move their
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residence from one city to another. Finally, individual random

mobility allows the agents to explore new locations. We expect that

in our model the number of unique locations visited over time

grow linearly in time, due to the fact that with constant probability

(1{pv) an agent jumps to a new location, as opposed to slower

growth reported in [4]. We leave the exploration of temporal

aspects of our model for the future research. Our results show that

by establishing an appropriate balance between friend visits and

random link creation, the model can reproduce the main features

of online social networks, e.g., we show that 10%{30% of the

mobility has to be directed towards existing friends. We

demonstrate that these are the fundamental mechanisms at play

in the model.

The TF model is generic and functional for different datasets.

Human mobility driven by social ties has impact on the modeling

of disease spreading, and may improve its predictions. This model

can also be used in simulations of processes that involve social

networks and geography, e.g., simulations of opinion formation,

language evolution, or responses of a population to extreme

events. Moreover, it can also be helpful to design network

benchmarks with realistic geo-social properties to test, for instance,

the scalability of technical solutions in social online networks

related to geography of its physical infrastructure.
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Supporting Information

Figure S1 Network geo-social properties. Various statisti-

cal network properties are plotted for the data obtained from

Twitter (red squares), Gowalla (blue diamonds), Brightkite (green

triangles) and the null models (dashed lines), for the UK.

(EPS)

Figure S2 Network geo-social properties. Various statisti-

cal network properties are plotted for the data obtained from

Twitter (red squares), Gowalla (blue diamonds), Brightkite (green

triangles) and the null models (dashed lines), for Germany.

(EPS)

Figure S3 Geo-social properties of the model networks.
Various statistical properties are plotted for the networks obtained

from Twitter data (red squares) and from simulation of the TF

model (black line) for the UK.

(EPS)

Figure S4 Geo-social properties of the model networks.
Various statistical properties are plotted for the networks obtained

from Twitter data (red squares) and from simulation of the TF

model (black line) for Germany.

(EPS)

Figure S5 Impact of pv on the TF model. We change the

value of pv while keeping pc fixed to the optimal value. Note that

this corresponds to an exploration of the parameter space along

the vertical line crossing the minimum of Err as plotted in Figure 3

for the UK.

(EPS)

Figure 9. Mean-field approximation. Predictions of the analysis versus results of the simulation of the L model for the clustering coefficient C, the
reciprocity R and the degree distribution P(k). In this case, we are taking the users from the UK and Germany because their lower numbers facilitate
the numerical integration of the Equations 6, 8, 9, 11 and 12.
doi:10.1371/journal.pone.0092196.g009
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Figure S6 Impact of pv on the TF model. We change the

value of pv while keeping pc fixed to the optimal value. Note that

this corresponds to an exploration of the parameter space along

the vertical line crossing the minimum of Err as plotted in Figure 3

for Germany.

(EPS)

Figure S7 Impact of pc on the TF model. We change the

value of pc while keeping pv fixed to its optimal value. Note that

this corresponds to an exploration of the parameter space along

the horizontal line crossing the minimum of Err as plotted in

Figure 3 for the UK.

(EPS)

Figure S8 Impact of pc on the TF model. We change the

value of pc while keeping pv fixed to its optimal value. Note that

this corresponds to an exploration of the parameter space along

the horizontal line crossing the minimum of Err as plotted in

Figure 3 for Germany.

(EPS)

Table S1 The contribution of each of the properties to
the total error of the TF model. Value of the error Err X½ � per

property X at the minimum of the total error Err for Twitter for

the three considered countries.

(PDF)

Appendix S1 Variants of the TF model. In this appendix,

we consider several variants of the TF model and the L model and

evaluate their results. Appendix S1 contains Figures S9 and S10.

(PDF)
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24. González MC, Lind PG, Herrmann HJ (2006) System of mobile agents to model

social networks. Phys Rev Lett 96: 088072.

25. Backstrom L, Sun E, Marlow C (2010) Find me if you can: Improving

geographical prediction with social and spatial proximity. Proceedings of the

19th international conference on World Wide Web - WWW 910, p.61–70.

26. Scellato S, Noulas A, Lambiotte R, Mascolo C (2011) Socio-spatial properties of

online location-based social networks. Proceedings of the 5th international AAAI

conference on weblogs and social media - ICWSM911, p.329–336.

27. Takhteyev Y, Gruzd A, Wellman B (2012) Geography of Twitter networks.

Social Networks 34: 73–81.

28. Lu X, Bengtsson L, Holme P (2012) Predictability of population displacement

after the 2010 Haiti earthquake. Proc Natl Acad Sci (USA) 109: 11576–11581.

29. Volkovich Y, Scellato S, Laniado D, Mascolo C, Kaltenbrunner A (2012) The

length of bridge ties: Structural and geographic properties of online social

interactions. Proceedings of the 6th international AAAI conference on weblogs

and social media - ICWSM 912, p.346–353.

30. Wang D, Pedreschi D, Song C, Giannotti F, Barabasi AL (2011) Human

mobility, social ties, and link prediction. Proceedings of the 17th ACM SIGKDD

international conference on knowledge discovery and data mining - KDD

911, p.1100–1108.

31. Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: User movement in

location-based social networks. Proceedings of the 17th ACM SIGKDD

international conference on knowledge discovery and data mining - KDD

911, p.1082–1090.

32. Sadilek A, Kautz H, Bigham JP (2012) Finding your friends and following them

to where you are. Proceedings of the fifth ACM international conference on

Web search and data mining - WSDM 912, p.723–732.
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