Local Single Ring Theorem

Abstract : The Single Ring Theorem, by Guionnet, Krishnapur and Zeitouni, describes the empirical eigenvalues distribution of a large generic matrix with prescribed singular values, i.e. an $N \times N$ matrix of the form $A=UTV$, with $U, V$ some independent Haar-distributed unitary matrices and $T$ a deterministic matrix whose singular values are the ones prescribed. In this text, we give a local version of this result, proving that it remains true at the microscopic scale $(\log N)^{-1/4}$. On our way to prove it, we prove a matrix subordination result for singular values of sums of non Hermitian matrices, as Kargin did for Hermitian matrices. This also allows to prove a local law for the singular values of the sum of two non Hermitian matrices and a delocalization result for singular vectors.
Type de document :
Pré-publication, Document de travail
MAP5 2015-05. 33 pages, 2 figures. 2015
Liste complète des métadonnées

Contributeur : Florent Benaych-Georges <>
Soumis le : mardi 3 février 2015 - 07:17:09
Dernière modification le : mardi 10 octobre 2017 - 11:22:04


  • HAL Id : hal-01112454, version 1
  • ARXIV : 1501.07840



Florent Benaych-Georges. Local Single Ring Theorem. MAP5 2015-05. 33 pages, 2 figures. 2015. 〈hal-01112454〉



Consultations de la notice