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Abstract

We prove that, under a cfl condition, the explicit upwind finite vol-

ume discretization of the convection operator C(u) = ∂t(ρu) + div(uq),

with a given density ρ and momentum q, satisfies a discrete kinetic

energy decrease property, provided that the convection operator satis-

fies a ”consistency-with-the-mass-balance property”, which can be simply

stated by saying that it vanishes for a constant advected field u.

Key words : Compressible Navier-Stokes equations, Finite Volume dis-

cretizations, Stability, Kinetic Energy.

1 Introduction

Let ρ and q be a scalar and a vector smooth function respectively, defined over a
domain Ω of R

d, d = 2 or d = 3, and such that the following identity holds in Ω:

∂tρ + divq = 0. (1)

Let u be a smooth scalar function defined over Ω. If q vanishes on the boundary,
the following stability identity is known to hold:

∫

Ω

[
∂t(ρu) + div(uq)

]
udx =

1

2

d

dt

∫

Ω

ρu2 dx. (2)

When ρ stands for the density and q for the momentum, equation (1) is the usual
mass balance in variable density flows. Choosing for u a component of the velocity,
equation (2) yields the central argument of the kinetic energy conservation theorem.
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A discrete analogue of this result has been proven in [2] for an implicit discretiza-
tion of the convection operator for u, i.e. C(u) = ∂t(ρu) + div(uq), and is a central
argument of the stability of schemes for low Mach number flows [1], barotropic
monophasic [2] or diphasic [3] compressible flows. The aim of the present short note
is to prove that the same stability result holds for an explicit upwind discretization
of C(u), under a cfl condition. This result yields the (conditional) stability of the
semi-implicit version (i.e. with an explicit convection term in the momentum bal-
ance, the other terms (especially the diffusion term, discretized in an implicit way)
remaining unchanged) of the discretizations studied in [1, 2, 3].

For the sake of readability, we establish this stability result in two steps: in
Section 2, we address the case of a constant density flows, then we extend the proof
to compressible flows in Section 3.

2 The incompressible case

Let Ω be split in control volumes Ω̄ = ∪K∈MK̄. We denote by Eint the set of internal
faces of the mesh, and by σ = K|L the internal face separating control volumes K

and L of M.

In this section, we suppose that the density is constant, and, setting arbitrarily
ρ = 1, the discrete finite volume convection operator which we study reads:

∀K ∈ M, |K| CK =
|K|

δt
(uK − u∗

K) +
∑

σ=K|L

FK,σ u∗
σ, (3)

where FK,σ stands for the discrete mass flux coming out from K through σ, and u∗
σ

denotes the upwind (with respect to FK,σ) approximation of u on σ, i.e. u∗
σ = u∗

K if
FK,σ ≥ 0 and u∗

σ = u∗
L otherwise. We suppose that the scheme is conservative, i.e.

that, for an internal face σ = K|L, FK,σ = −FL,σ. Note that the fluxes through the
external faces are implicitly set to zero (which is consistent with a velocity prescribed
to zero at the boundary). The incompressibility of the flow reads, at the discrete
level:

∀K ∈ M,
∑

σ=K|L

FK,σ = 0. (4)

Let us define the local cfl number associated to the mesh K by:

cflK =
δt

|K|

∑

σ=K|L

max (FK,σ, 0) =
δt

|K|

∑

σ=K|L

−min (FK,σ, 0), (5)

and the global cfl number by:

cfl = max
K∈M

cflK . (6)

The stability of the convection operator defined by (3) is stated in the following
lemma.
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Lemma 2.1 Let cfl be defined by (5)-(6). For K ∈ M, let CK be defined by (3). If
cfl ≤ 1, then:

∑

K∈M

|K| uK CK ≥
1

2 δt

∑

K∈M

|K|
[
(uK)2 − (u∗

K)2
]
.

Proof – We have
∑

K∈M |K| uK CK = T1 + T2 with:

T1 =
∑

K∈M

|K|

δt
(uK − u∗

K) uK , T2 =
∑

K∈M

uK

∑

σ=K|L

FK,σ u∗
σ.

Using the identity 2a (a − b) = a2 + (a − b)2 − b2, valid for any real numbers a

and b, we get for T1:

T1 =
1

2 δt

∑

K∈M

|K|
[
(uK)2 − (u∗

K)2
]
+

1

2 δt

∑

K∈M

|K| (uK − u∗
K)2

We now turn to T2, which is split into T2 = T2,1 + T2,2 as follows:

T2,1 =
∑

K∈M

u∗
K

∑

σ=K|L

FK,σ u∗
σ, T2,2 =

∑

K∈M

(uK − u∗
K)

∑

σ=K|L

FK,σ u∗
σ.

We now notice that, by definition of the upstream value −u∗
σ, we have:

FK,σ u∗
σ = |FK,σ|

u∗
K − u∗

L

2
+ FK,σ

u∗
K + u∗

L

2

so T2,1 reads:

T2,1 =
∑

K∈M

u∗
K

∑

σ=K|L

|FK,σ|
u∗

K − u∗
L

2
+

∑

K∈M

u∗
K

∑

σ=K|L

FK,σ

u∗
K + u∗

L

2
. (7)

First the incompressibility relation (4) then the conservativity yield for the second
term:

∑

K∈M

u∗
K

∑

σ=K|L

FK,σ

u∗
K + u∗

L

2
=

∑

K∈M

u∗
K

∑

σ=K|L

FK,σ

u∗
L

2
= 0.

Reordering now the first summation in (7), we get:

T2,1 =
1

2

∑

σ∈Eint, σ=K|L

|FK,σ| (u∗
K − u∗

L)2.

Using once again Equation (4) to substract FK,σ u∗
K to all the fluxes at the faces of

the mesh K, we have for T2,2:

T2,2 =
∑

K∈M

(uK − u∗
K)

∑

σ=K|L, FK,σ≤0

FK,σ (u∗
L − u∗

K),
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where the notation
∑

σ=K|L, FK,σ≤0
means that the sum is restricted to the faces

where the quantity FK,σ is non-positive. Reordering the summations, we get:

T2,2 =
∑

σ∈Eint, σ=K|L, FK,σ≤0

FK,σ (uK − u∗
K) (u∗

L − u∗
K).

where the above notation means that we perform the sum over each internal face σ,
and we denote L the upwind control volume and K the downwind one. Using now
the Cauchy-Schwarz and Young inequalities, we obtain:

T2,2 ≥ −
1

2

∑

σ∈Eint, σ=K|L

|FK,σ| (u∗
L−u∗

K)2−
1

2

∑

σ∈Eint, σ=K|L, FK,σ≤0

|FK,σ| (uK −u∗
K)2.

The last summation reads:
∑

σ∈Eint, σ=K|L, FK,σ≤0

|FK,σ| (uK − u∗
K)2 =

∑

K∈M

(uK − u∗
K)2

∑

σ=K|L

−min (FK,σ, 0).

Gathering the final expressions for T1, T2,1 and T2,2, we obtain:

∑

K∈M

|K| uK CK ≥
1

2 δt

∑

K∈M

|K|
[
(uK)2 − (u∗

K)2
]

+
1

2

∑

K∈M

(uK − u∗
K)2

[ |K|

δt
−

∑

σ=K|

−min (FK,σ, 0)
]

,

which yields the conclusion. �

3 The compressible case

We now suppose that the flow is compressible, or, more precisely, that the density
varies with time and space and that the velocity and the density are linked by the
usual mass balance; the discrete mass balance now reads:

∀K ∈ M,
|K|

δt
(̺K − ̺∗K) +

∑

σ=K|L

FK,σ = 0, (8)

and we study the following convection operator:

∀K ∈ M, |K| CK =
|K|

δt
(̺KuK − ̺∗Ku∗

K) +
∑

σ=K|L

FK,σ u∗
σ, (9)

with the same definition for u∗
σ as in the previous section.

Let us define the local cfl number associated to the mesh K by:

cflK =
δt

|K| ̺K

∑

σ=K|L

max (FK,σ, 0) =
δt

|K| ̺K

∑

σ=K|L

−min (FK,σ, 0), (10)

the definition (6) of the global cfl number remaining unchanged.

The stability of the convection operator defined by (9) is stated in the following
lemma.
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Lemma 3.1 Let cfl be defined by (10)-(6). For K ∈ M, let CK be defined by (9).
If cfl ≤ 1, then:

∑

K∈M

|K|

δt
uK CK ≥

1

2 δt

∑

K∈M

|K|
[
̺K (uK)2 − ̺∗K (u∗

K)2
]
.

Proof – We write
∑

K∈M

|K| uK CK = T1 + T2 with:

T1 =
∑

K∈M

|K|

δt
(̺K uK − ̺∗K u∗

K) uK , T2 =
∑

K∈M

uK

∑

σ=K|L

FK,σ u∗
σ.

In T1, let us first split (̺K uK−̺∗K u∗
K) uK = ̺K (uK−u∗

K)uK +(̺K−̺∗K)u∗
K uK

and then use the identity 2a (a − b) = a2 + (a − b)2 − b2, valid for any real number
a and b, to get:

T1 =
1

2 δt

∑

K∈M

|K| ̺K

[
(uK)2 − (u∗

K)2
]
+

1

2 δt

∑

K∈M

|K| ̺K (uK − u∗
K)2

+
∑

K∈M

|K| (̺K − ̺∗K) u∗
K uK

︸ ︷︷ ︸

T1,1

.

We now write T2 = T2,1 + T2,2 with:

T2,1 =
∑

K∈M

u∗
K uK

∑

σ=K|L

FK,σ, T2,2 =
∑

K∈M

uK

∑

σ=K|L

FK,σ (u∗
σ − u∗

K).

By (8), the term T2,1 is the opposite of T1,1. The term T2,2 is once again split as:

T2,2 =
∑

K∈M

u∗
K

∑

σ=K|L

FK,σ (u∗
σ − u∗

K)

︸ ︷︷ ︸

T2,3

+
∑

K∈M

(uK − u∗
K)

∑

σ=K|L

FK,σ (u∗
σ − u∗

K)

︸ ︷︷ ︸

T2,4

.

Using once again the identity 2a (a− b) = a2 +(a− b)2 − b2, we get for the first sum:

T2,3 =
∑

K∈M

∑

σ=K|L

FK,σ (u∗
σ − u∗

K) u∗
K

=
1

2

∑

K∈M

∑

σ=K|L

FK,σ

[
(u∗

σ)2 − (u∗
σ − u∗

K)2 − (u∗
K)2

]
.

and so:

T2,3 = −
1

2

∑

K∈M

(u∗
K)2

∑

σ=K|L

FK,σ +
1

2

∑

K∈M

∑

σ=K|L

FK,σ

[
(u∗

σ)2 − (u∗
σ − u∗

K)2
]
.
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Using (8) for the first sum and reordering the summations in the second one, using
the conservativity, we get:

T2,3 =
1

2

∑

K∈M

|K|

δt
(̺K − ̺∗K) (u∗

K)2 +
1

2

∑

σ∈Eint, σ=K|L

|FK,σ| (u∗
K − u∗

L)2.

We now remark that the first of these terms combines with the first term of T1 as
follows:

1

2 δt

∑

K∈M

|K|
[

̺K

[
(uK)2 − (u∗

K)2
]
+ (̺K − ̺∗K) (u∗

K)2
]

=

1

2 δt

∑

K∈M

|K|
[
̺K (uK)2 − ̺∗K(u∗

K)2
]
.

Gathering all terms, we conclude the proof by controlling the term T2,4, which is the
same as the term T2,2 of the incompressible cas, and can be absorbed by the same
terms. �
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