
HAL Id: hal-01112286
https://hal.science/hal-01112286

Submitted on 2 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Out-of-centre distortions around an octahedrally
coordinated Ti4+ in BaTiO3

Manuel Gaudon

To cite this version:
Manuel Gaudon. Out-of-centre distortions around an octahedrally coordinated Ti4+ in BaTiO3.
Polyhedron, 2015, 88, pp.6-10. �10.1016/j.poly.2014.12.004�. �hal-01112286�

https://hal.science/hal-01112286
https://hal.archives-ouvertes.fr


1 
 

Out-of-centre distortions around an octahedrally coordinated Ti4+ in 

BaTiO3  

Manuel Gaudon* 

CNRS, Univ. Bordeaux, ICMCB, 33600 Pessac, France. 

*corresponding author, ICMCB/CNRS, 87 avenue du Dr. Albert Schweitzer, F-33608 Pessac 

Cedex, France - email: gaudon@icmcb-bordeaux.cnrs.fr  

 

Graphical Abstract 

 
  

cb

a

mailto:gaudon@icmcb-bordeaux.cnrs.fr


2 
 

Out-of-centre distortions around an octahedrally coordinated Ti4+ in 

BaTiO3  

Manuel Gaudon* 

CNRS, Univ. Bordeaux, ICMCB, 33600 Pessac, France. 

*corresponding author, ICMCB/CNRS, 87 avenue du Dr. Albert Schweitzer, F-33608 Pessac 

Cedex, France - email: gaudon@icmcb-bordeaux.cnrs.fr  

 

Highlights 

- Prediction of the Ti4+ position in the BaTiO3 octahedral sites 

- Prediction of the cubic-tetragonal-orthorhombic-rhomboedral phase transitions 

sequence  

- Impact of the cell distortion on the Ti4+ position 

 

  

mailto:gaudon@icmcb-bordeaux.cnrs.fr


3 
 

Out-of-centre distortions around an octahedrally coordinated Ti4+ in BaTiO3  

 
Manuel Gaudon* 

CNRS, Univ. Bordeaux, ICMCB, 33600 Pessac, France. 

*corresponding author, ICMCB/CNRS, 87 avenue du Dr. Albert Schweitzer, F-33608 Pessac 

Cedex, France - email: gaudon@icmcb-bordeaux.cnrs.fr  

 

Abstract 

The prototypical ferroelectric system BaTiO3 is an oxide with a perovskite-type structure that 

exhibits a textbook example of multiple phase transitions associated with an out-of-centre 

distortion of the octahedral Ti4+ cations. This research combines the double-well potentials 

model and the bond valence model, to provide an explanation for the cubic–tetragonal–

orthorhombic–rhombohedric phase transition sequence. It is shown that to consider the atomic 

displacements can only occur in the strict respect of their valence, which is calculated with the 

bond valence model, is sufficient to lead to the clear prediction of the whole transition 

sequence.   

 

Keywords: Phase transitions; perovskite; bond valence; thermodynamics. 

 

Introduction 

Numerous investigations of the BaTiO3 transitions have been proposed in the literature. 20 

years ago, the general consensus that both short-range ionic attractions and long-range 

ordering must be considered, has definitely emerged [1]. Recently, first-principles density 

functional theory integrating molecular dynamics have led to a better prediction of the phase 

transitions parameters [2-6]. This is interesting to note that latest reviews, essentially under 

the impulse of Polinger and Bersuker, point out essentially that the spontaneous polarization 
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is triggered by local vibronic interactions as pseudo Jahn-Teller effect (named as “second 

order Jahn-Teller effect, for other authors) [7-11]. It will be seen that in a quite similar 

manner that what is proposed in this paper, the Jahn-teller interactions result in a peculiar 

adiabatic potential energy surface (APES) which has eight trigonal [111] type minima, twelve 

[110] type saddle points between them, six higher in energy [100] type saddle points at the top 

of the barrier connecting four minima, and a maximum at the cubic symmetry. Nevertheless, 

it stills interesting to propose simplest models pointing out clearly the driving force.  

To provide a new avenue for investigating the BaTiO3 phase transition sequence—cubic–

tetragonal–orthorhombic–rhombohedric—that occurs with decreasing temperature, we 

combined the approaches based on the bond valence model [12,13] and the coupled double-

well potentials initially proposed by Aubry [14,15], which is widely referenced throughout the 

literature to describe the second-order phase transitions [16-20].  

 

Results and Discusssion 

In the bond valence model, each bond is characterised by a bond valence (s) equal to the 

atomic valence contributed by each terminal atom that is correlated with the bond length (r) 

by the following relationship [21]:  

s = exp (r0 − r) / B          equation (1) 

in which r0 and B are parameters that have been tabulated: for the Ti-O bond, r0 = 1.81 Å, and 

B = 0.37 in oxides.   

Around an atom, the sum of the bond valences is equal to the atomic valence (V). The ideal 

valences for titanium and oxygen are obviously V(Ti4+)= 4 and V(O2−)= 2. A valence sum rule 

was also proposed by Brown and indicates that the ionic crystals are more stable than the 

atomic valences near the ideal conditions. In BaTiO3, the Ba-O bonds are too long and the Ti-

O bonds too short for an ideal fit (tolerance factor far from the unity). Consequently, for the 
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perovskite-type structure to exist, the Ti-O bonds must be stretched so that the sum of their 

bond valences, which can be calculated using equation (1), becomes significantly lower 4.0. 

As a result of this structural inconsistency in the BaTiO3 perovskite phase, the environment of 

the Ti4+ cation will tend to distort to better satisfy the Ti4+ valence sum rule. At the expense of 

equation (1), the out-of-centre shift of the Ti4+ in its coordination sphere allows its atomic 

valence to increase. The decrease in one bond distance and the increase of the same 

magnitude in the opposite bond distance results in a net valence increase. The above 

proposition was made by Kunz and Brown [13] and was herein considered a good starting 

point for understanding the driving force of the various phase transitions in BaTiO3 that occur 

at low temperatures.  

The coupled double-well potentials model is a useful tool for studying phase transitions. The 

model contains an array of atoms with one atom in each unit cell and atoms that are linked by 

harmonic forces (which can be represented as springs). These harmonic forces provide a 

cooperative interaction at the origin of the long-range ordering. Each atom experiences a local 

double-well potential that provides the driving force for the phase transition such as the 

potential experienced by the Ti4+ in BaTiO3. In its simplest version, this model provides a 

scalar (one-dimensional) displacement of each atom (), and the local double-well potential 

[1,16] can be represented as follows:  

W() = −½×K× 2 + ¼×K′× 4       equation (2) 

in which the parameters K and K′ are positive constants.  

Two important quantities can be distinguished: (i) the depth of the potential well (W0) and (ii) 

the interaction energy between two neighbouring atoms, i.e., the spring force (J). This model 

can easily be generalised to higher dimensions to better fit a real 3D crystal network.  

Our research serves as a continuation of that by Kunz and Brown to propose an empirical 

double-well potential equation using the established bond valence model. Our idea that seems 
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trivial but is actually important is the potential that an octahedrally coordinated titanium in 

BaTiO3 can be assumed on first approximation to be proportional to the modulus of the 

deviation between the calculated valence of the titanium and its ideal valence (4).  

The calculated valence of titanium can be extracted as a function of the Ti position in the cell 

using the out-of-centre distortion,  according equation (2). Therefore, the calculation of the 

double-well potential versus the displacement amplitude was calculated in the three distortive 

modes: [001] for the tetrahedral distortion, [110] for the orthorhombic distortion and [111] for 

the rhombohedral distortion. Our description is based on three distinctive distortion modes 

unlike the model proposed by Comes et al. [22] in which the various phases are believed to 

derive from order–disorder transitions from a rhombohedral mode. The cell was fixed as a 

pseudo-cubic cell with the a0 parameter equal to 4.02 Å. Only Ti4+ was considered to have an 

out-of-centre distortion, i.e., the Ba2+ and O2- ions were considered fixed. 

(i) In the tetrahedral mode  

W(Ti) = modulus { 4 – 4.exp[[r0 - (a0/2)2 + 2]0.5 / B] – exp[[r0 - a0/2 - ] / B] - exp[[r0 - a0/2 + ] 

/ B] }           equation (3) 

(ii) In the orthorhombic mode  

W(Ti) = modulus { 4 – 2.exp[[r0 - (a0/2/√2 + )2 + (a0/2/√2)2]0.5 / B] – 2. exp[[r0 - (a0/2/√2 - 

)2 + (a0/2/√2)2]0.5 / B]  - 2.exp[[r0 - (a0/2)2 + 2]0.5 / B] }                      equation (4) 

(iii) In the rhombohedral mode  

W(Ti) = modulus { 4 – 3.exp[[r0 - (a0/2/√3 + )2 + (a0.√2/2/√3)2]0.5 / B] – 3.exp[[r0 - (a0/2/√3 - 

)2 + (a0.√2/2/√3)2]0.5 / B] }       equation (5) 

Figure 1(a) provides the calculated double-well potential W(Ti) versus the displacement  for 

the three distortion modes. The W0 values were obtained for roughly similar displacements in 

the three modes. Thus, the origin of the double-well potential associated with the out-of-

centre distortions is already explained by taking into account only the fit of the titanium bond 



7 
 

valences in the perovskite and the ideal Ti4+ valence. Nevertheless, the reason that the three 

distortion modes all occur with decreasing temperature remains an open question. In the 

second step, the double-well potential was calculated for the [TiO3] octahedral pattern as the 

sum of the W(Ti), W(O1), W(O2) and W(O3) moduli. The calculation of the W(O) was made 

with a rule similar to that for the W(Ti). The ideal partial valence that the oxygen anions must 

exchange with their two neighbouring Ti4+ cations is 4/3; the oxygen anions must also 

exchange an ideal valence of 2/3 with their four neighbouring Ba2+ cations. The double-well 

potential was established using a cooperative long-range ordering of the titanium cations to 

account for the three distortion modes. Hence, as an example, the W(O3) in the tetrahedral 

mode can be written as follows:  

W(O3) = modulus { 4/3 – exp[[r0 - a0/2 - ) / B] – exp[[r0 - a0/2 + ) / B] }  equation (6) 

Figure 1(b) represents the double-well potentials obtained in the three modes for the [TiO3] 

pattern. The three modes present different double-well potential depths. Classifying the 

double-well depth in increasing order, i.e., classifying the modes versus their driving force, a 

tetrahedral–orthorhombic–rhombohedral sequence is obtained. This sequence is strongly 

correlated to the experimental order observed for BaTiO3 phases with decreasing temperature. 

However, the occurrence of the intermediate modes at intermediate temperatures remains 

unexplained, i.e., there is no a priori explanation as to why the direct transition from the cubic 

to rhombohedral phase fails to occur. The depth of the double-well potential for the 

tetrahedral and orthorhombic modes is never null due to a decoupling of the evolution versus 

the displacement between the oxygen anions and the titanium cation valences. In an opposite 

manner, the evolution of the [111] valence displacements between the central cation and the 

three oxygen corners in the rhombohedral mode are perfectly coupled. This behaviour is best 

illustrated by extracting the evolution of the W(Otensor) (see Figure 2(a)). The term Otensor 

represents the oxygen the most impacted by the Ti4+ out-of-centre distortion: the O3 in the 
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tetrahedral mode, the O1 (or O2) for the orthorhombic mode and the O1 (O2 or O3) for the 

rhombohedral mode. The Otensor can also be considered the spring force between two 

successive Ti4+ ions. Until now, a perfect long-range ordering was only considered, i.e., a 

purely cooperative (or efficient ferroelectric ordering or “ferro-coupling”). In an opposite 

manner, the impact of an “antiferro-coupling” of two neighbouring Ti4+ ions can be discussed. 

As example, in the tetrahedral mode, the double-well potentials of the Ti4+ ions and the O1 

and O2 remain unchanged in comparison with those in a cooperative ordering. In contrast, the 

valence of the O3 oxygen will be strongly affected because, in this case, two long (a0/2 + ) 

or two short (a0/2 + ) Ti-O distances could coexist around the oxygen tensor. In a ferro-

coupled chain, the occurrence of an antiferro-coupled fault could automatically cause the 

creation of two frustrated oxygen tensors (one with two long Ti-O distances and one with two 

short Ti-O distances). Thus, the evolution of the W(Otensor) versus the displacement  for an 

antiferro-coupling can be calculated as follows:   

W(O3) = ½.modulus { 4/3 – 2.exp[[r0 - a0/2 + ) / B] } + ½.modulus { 4/3 – 2.exp[[r0 - a0/2 - 

) / B] }            equation (7) 

In Figure 2(b), the W(Otensor) for the three modes is reported considering two half-spaces: the 

antiferro-coupled half-space is plotted on the left (negative displacements), and the ferro-

coupled half-space is plotted on the right (positive displacements). The interaction between 

two successive Ti4+ ions via the Otensor anion can be considered strongly linked  to the 

W(Otensor) potential in the antiferro-coupled half-space. As shown in Figure 2(b), the 

frustration created by an eventual exploration of the antiferro-coupled half-space grows 

according to the following sequence: rhombohedral–orthorhombic–tetrahedral, especially on 

the tensor atom. The interaction energy J at the origin of the long-range cooperative ordering 

can obviously follow the same sequence. One can consider the interaction energy J as a 
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function of the amplitude between the two half-space explorations () on the W(Otensor) on the 

double-well potential:   

𝑱(𝜹) = 𝑲′′ × (∫ 𝑾(𝐎𝐭𝐞𝐧𝐬𝐨𝐫)d𝜹 − ∫ 𝑾(𝐎𝐭𝐞𝐧𝐬𝐨𝐫)d𝜹
𝜹

𝟎

𝟎

−𝜹
)        equation (8) 

in which the parameter K″ is a positive constant. The energy function J() versus  is plotted 

for the three modes in Figure 3. The proportionality of J and TC (the phase transition 

temperature) is provided in the literature [23,24]. The TC sequence in increasing order is then : 

rhombohedral–orthorhombic–tetrahedral.  

The calculations were made considering a pseudo-cubic cell; however, all distortion modes 

are associated with additional atomic displacements and a cell distortion. The W(TiO3) was 

once again calculated in a realistic tetragonal phase (with aT = 3.995 Å and cT = 4.035 Å) 

taking into account the apical atoms and the equatorial plane shift of the octahedron: 

considering the out-of-centre Ti4+ as equal to +, an equivalent displacement of the apical 

oxygen ions occurs in the opposite direction (a displacement equal to –, and a displacement 

of –/2 occurs for the equatorial oxygen ions. These considerations were based on the crystal 

structure investigated by Kwei et al. [20]. The as-obtained results are compared to the 

previous results in a pseudo-cubic cell depicted in Figure 4(a). The  displacement (0.16 Å) 

associated with W0 is more realistic in the second case approaching the tetrahedral BaTiO3 

real positions but not yet equal to the experimental  : 0.09 Å [25]. 

The thermal vibrations of the atoms around their average positions have to be taken into 

consideration. The impact of the thermal vibrations can be roughly simulated considering that 

for each average  displacement at temperatures above 0 K, the W(TiO3) is equal to the 

integer of all W(TiO3) values obtained at 0 K around the same displacement with an 

integration amplitude equal to the thermal vibration. This calculation corresponds to a 

mathematical smoothing of the double-well potential with a chosen smoothing degree that 

corresponds to the thermal vibration. For tetrahedral mode as illustration, a thermal vibration 
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amplitude of 0.1 Å must be computed to reach a W0 positioning at 0.09 Å with then a correct 

set of Ti-O distances, as shown in Figure 4(b). The equivalence of the thermal vibration 

amplitude (0.1 Å) and the out-of-centre displacement (phonon mode = 0.09 Å) explains the 

experimental difficulties in extracting accurate atomic positions from X-ray diffraction and 

why the extent of the order–disorder versus displacive character remains, from our 

knowledge, unsettled for the BaTiO3 perovskite [26].  

 

Conclusion 

Using an accessible approach (based on the double-well potential models and the bond 

valence model), the inverse relationships between the sequences described by the double-well 

potential depths (driving force, crystal energy) and the interaction energies (phase transition 

temperature) calculated for the various distortion modes of the BaTiO3, clearly indicate that 

decreasing temperatures cause a cubic–tetragonal–orthorhombic–rhombohedral phase 

transition sequence. The position of the double-well potentials were also shown to correspond 

to experimental value if the cell parameters are well computed. The choice was made here to 

discuss only about the BaTiO3 textbook example, for which the lattice stresses due to 

structural incommensuration (tolerance factor far from the unity) very clearly predominates as 

the driving force of the ferroelectric behaviour. Nevertheless, the propose can be extended to 

other perovskite systems as SrTiO3 for illustration, for which the Sr-O bonds still are too long 

in comparison with Ti-O ones. Notice that the lattice stresses are already decreased for SrTiO3 

in comparison with BaTiO3 (as Sr2+ ions are smaller than Ba2+ ions), predicting a stabilization 

of the cubic phase to the detriment of the distorted polymorph systems. Another example is 

the BaSnO3 compound for which the cubic phase is stable at low temperature since the Sn is 

larger than Ti. On the other side, some ABO3 perovskite systems present opposite stresses due 

to B-O bonds too long in comparison with the A-O bonds. The model here used should so be 
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applied taking into consideration the A metal out-of-center distortion and/or octahedral tilts. 

Recently, we proposed an ab-initio calculation of the fluorine ions positions in Rb2KInF6 

double perovskites (elpasolite systems) correlated to octahedral tilts from the same 

consideration than in this paper (strict respect of the valence law) but, by manipulating the 

atomic positioning of the F- anions [27].   

We insist on the fact that in this easy approach, largely comprehensive to the chemist 

community, the strict respect of their valence of all the elements of the structure is the only 

proposition (and parameter) to integer to lead to the clear prediction of the whole transition 

sequence.   
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Figure captions  

 

Figure 1: Double-well potentials around Ti4+ (i): (a) W(Ti) and (b) W(TiO3) double-

well potentials versus the Ti4+ out-of-centre distortion () along the [100], [110] and [111] 

axes.   

Figure 2: Double-well potentials around Ti4+ (ii): W(Otensor) double-well potentials 

versus the Ti4+ out-of-centre distortion () along the [100] axis considering (a) long range 

ordering (ferro-coupled domain) and (b) the comparison between the antiferro-coupled 

and ferro-coupled half spaces.   

Figure 3: Coupled force versus distortion: The coupled force J()/K″ versus the Ti4+ out-of-

centre distortion () along the [100] axis calculated as the difference between the double-well 

integers on each half-space up to .  

Figure 4: Double-well potentials around Ti4+ (iii): (a) Comparison of the ferro-coupled 

W(TiO3) double-well potential along the [100] axis considering pseudo-cubic or real 

tetragonal cells. (b) A comparison of the ferro-coupled W(TiO3) double-well potential in 

the tetrahedral modes both considering and ignoring the thermal vibrations in addition to 

the soft phonon mode.  
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Figure 3  
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Figure 4 
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